Spatial and Temporal Assessment of Nitrate-N under Rice-Wheat System in Riparian Wetlands of Punjab, North-Western India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Details
2.3. Modelling Approach
2.4. Model—GIS Linkage
2.5. Statistical Analysis
3. Results
3.1. Spatial and Temporal Distribution of NO3−-N Concentration in Groundwater
3.2. Validation of Simulations
3.3. Predictions of NO3−-N Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grover, D.K.; Singh, J.M.; Kaur, A.; Kumar, S. State Agricultural Profile—Punjab; Punjab Agricultural University: Ludhiana, Punjab, India, 2017; pp. 1–74. [Google Scholar]
- Bijay-Singh; Varinderpal-Singh. Productivity and fertility of soils in the Indo-Gangetic Plains of South Asia. Arch. Agron. Soil Sci. 2012, 58, S33–S40. [Google Scholar] [CrossRef]
- Katyal, J.C.; Bijay-Singh; Vlek, P.L.G.; Buresh, R.J. Efficient Nitrogen Use as Affected by Urea Application and Irrigation Sequence1. Soil Sci. Soc. Am. J. 1987, 51, 366–370. [Google Scholar] [CrossRef]
- Bijay-Singh; Yadvinder-Singh; Sekhon, G.S. Fertilizer-N use efficiency and nitrate pollution of groundwater in developing countries. J. Contam. Hydrol. 1995, 20, 167–184. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Garg, S.; Sondhi, S.K.; Taneja, D.S. Nitrate contamination of shallow aquifer groundwater in the central dis-tricts of Punjab, India. J. Environ. Sci. Eng. 2012, 54, 90–97. [Google Scholar] [PubMed]
- Ahada, C.P.S.; Suthar, S. Groundwater nitrate contamination and associated human health risk assessment in southern districts of Punjab, India. Environ. Sci. Pollut. Res. 2018, 25, 25336–25347. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, A.; Manjunath, K.; Panigrahy, S. Non-point source pollution in Indian agriculture: Estimation of nitrogen losses from rice crop using remote sensing and GIS. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 190–200. [Google Scholar] [CrossRef]
- Wick, K.; Heumesser, C.; Schmid, E. Groundwater nitrate contamination: Factors and indicators. J. Environ. Manag. 2012, 111, 178–186. [Google Scholar] [CrossRef] [Green Version]
- van Dam, J.C.; Huygen, J.; Wesseling, J.G.; Feddes, R.A.; Kabat, P.; van Walsum, P.E.V.; Groenendijk, P.; van Diepen, C.A. Theory of SWAP Version 2.0. Simulation of Water Flow, Solute Transport and Plant Growth in the Soil-Water-Atmosphere-Plant Environment; Wageningen Agricultural University : Wageningen, The Netherlands, 1997; Volume 45, pp. 1–168. [Google Scholar]
- Kroes, J.G.; Roelsma, J. ANIMO 3.5; User’s Guide for the ANIMO Version 3.5 Nutrient Leaching Model; Wageningen Agricultural University: Wageningen, The Netherlands, 1997; Volume 46, pp. 1–100. [Google Scholar]
- Asseng, S.; Keating, B.; Fillery, I.; Gregory, P.; Bowden, J.; Turner, N.; Palta, J.; Abrecht, D. Performance of the APSIM-wheat model in Western Australia. Field Crop. Res. 1998, 57, 163–179. [Google Scholar] [CrossRef]
- Quemada, M.; Cabrera, M.L. CERES-N Model Predictions of Nitrogen Mineralized from Cover Crop Residues. Soil Sci. Soc. Am. J. 1995, 59, 1059–1065. [Google Scholar] [CrossRef]
- Hansen, S.; Jensen, H.E.; Nielsen, N.E.; Svendsen, H. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY. Nutr. Cycl. Agroecosystems 1991, 27, 245–259. [Google Scholar] [CrossRef]
- de Paz, J.M.; Ramos, C. Simulation of nitrate leaching for different nitrogen fertilization rates in a region of Valencia (Spain) using a GIS–GLEAMS system. Agric. Ecosyst. Environ. 2004, 103, 59–73. [Google Scholar] [CrossRef]
- Jabro, J.D.; Toth, J.D.; Dou, Z.; Fox, R.H.; Fritton, D.D. Evaluation of Nitrogen Version of Leachm for Predicting Nitrate Leaching. Soil Sci. 1995, 160, 209–217. [Google Scholar] [CrossRef]
- Li, Z.; Wen, X.; Hu, C.; Li, X.; Li, S.; Zhang, X.; Hu, B. Regional simulation of nitrate leaching potential from winter wheat-summer maize rotation croplands on the North China Plain using the NLEAP-GIS model. Agric. Ecosyst. Environ. 2020, 294, 106861. [Google Scholar] [CrossRef]
- Duwig, C.; Normand, B.; Vauclin, M.; Vachaud, G.; Green, S.R.; Becquer, T. Evaluation of the WAVE Model for Predicting Nitrate Leaching for Two Contrasted Soil and Climate Conditions. Vadose Zone J. 2003, 2, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; McGechan, M. A Review of Carbon and Nitrogen Processes in Four Soil Nitrogen Dynamics Models. J. Agric. Eng. Res. 1998, 69, 279–305. [Google Scholar] [CrossRef]
- Kroes, J.; Roelsma, J. Simulation of water and nitrogen flows on field scale; application of the SWAP–ANIMO model for the Müncheberg data set. In Modelling Water and Nutrient Dynamics in Soil–Crop Systems; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2007; pp. 111–128. [Google Scholar] [CrossRef]
- Marinov, D.; Querner, E.; Roelsma, J. Simulation of water flow and nitrogen transport for a Bulgarian experimental plot using SWAP and ANIMO models. J. Contam. Hydrol. 2005, 77, 145–164. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, V.; Pinheiro, A.; Castro, N.M.D.R. Simulating transport of nitrogen and phosphorus in a Cambisol after natural and simulated intense rainfall. J. Contam. Hydrol. 2014, 160, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.; Broeke, M.H.-T.; Rötter, R. Simulation of nitrogen leaching in sandy soils in The Netherlands with the ANIMO model and the integrated modelling system STONE. Agric. Ecosyst. Environ. 2005, 105, 523–540. [Google Scholar] [CrossRef]
- Roelsma, J.; Hendriks, R. Comparative study of nitrate leaching models on a regional scale. Sci. Total. Environ. 2014, 499, 481–496. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Qiu, J.; Li, C.; Gao, M.; Gao, C. Calibration of DNDC model for nitrate leaching from an intensively cultivated region of Northern China. Geoderma 2014, 223-225, 108–118. [Google Scholar] [CrossRef]
- Bijay-Singh; Yadvinder-Singh; Imas, P.; Xie, J.-C. Potassium Nutrition of the Rice–Wheat Cropping System. Adv. Agron. 2003, 81, 203–259. [Google Scholar] [CrossRef]
- Farmaha, B.S. Evaluating Animo Model for Predicting Nitrogen Leaching in Rice and Wheat. Arid. Land Res. Manag. 2013, 28, 25–35. [Google Scholar] [CrossRef]
- Cockx, L.; Van Meirvenne, M.; Hofman, G. Characterization of nitrogen dynamics in a pasture soil by electromagnetic induction. Biol. Fertil. Soils 2005, 42, 24–30. [Google Scholar] [CrossRef]
- Panhwar, Q.A.; Ali, A.; Naher, U.A.; Memon, M.Y. Fertilizer Management Strategies for Enhancing Nutrient Use Efficiency and Sustainable Wheat Production. In Organic Farming: Global Perspectives and Methods; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 17–39. [Google Scholar] [CrossRef]
- Wijayanti, Y.; Budihardjo, K.; Sakamoto, Y.; Setyandito, O. Topsoil N-budget model in orchard farming to evaluate groundwater nitrate contamination. IOP Conf. Ser. Earth Environ. Sci. 2017, 109, 12034. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Song, J.; Zhang, Y.; Kong, F.; Wen, M.; Zhang, G. Nitrate Pollution and Preliminary Source Identification of Surface Water in a Semi-Arid River Basin, Using Isotopic and Hydrochemical Approaches. Water 2016, 8, 328. [Google Scholar] [CrossRef]
- El-Sadek, A.; Feyen, J.; Radwan, M.; El Quosy, D. Modeling water discharge and nitrate leaching using DRAINMOD-GIS technology at small catchment scale. Irrig. Drain. 2003, 52, 363–381. [Google Scholar] [CrossRef]
- Delin, S.; Stenberg, M. Effect of nitrogen fertilization on nitrate leaching in relation to grain yield response on loamy sand in Sweden. Eur. J. Agron. 2014, 52, 291–296. [Google Scholar] [CrossRef]
- Singh, K.; Sondhi, S. SW—Soil and Water: Validation of a Fertilizer Nitrogen Model during Crop Production. J. Agric. Eng. Res. 2001, 78, 317–324. [Google Scholar] [CrossRef]
- Jiang, Y.; Zebarth, B.; Love, J. Long-term simulations of nitrate leaching from potato production systems in Prince Edward Island, Canada. Nutr. Cycl. Agroecosyst. 2011, 91, 307–325. [Google Scholar] [CrossRef]
- Bijay-Singh; Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 1–24. [Google Scholar] [CrossRef]
- Bawatharani, T.; Mowjood, M.I.M.; Dayawansa, N.D.K.; Kumaragamage, D. Nitrate leaching as a function of fertilization and irrigation practices in sandy regosols. Trop. Agric. Res. 2004, 16, 172–180. [Google Scholar]
- Ünlü, K.; Özenirler, G.; Yurteri, C. Nitrogen fertilizer leaching from cropped and irrigated sandy soil in Central Turkey. Eur. J. Soil Sci. 1999, 50, 609–620. [Google Scholar] [CrossRef]
- Bijay-Singh; Varinderpal-Singh; Ali, A.M. Site-Specific Fertilizer Nitrogen Management in Cereals in South Asia. Sustain. Agric. Rev. 2020, 39, 137–178. [Google Scholar] [CrossRef]
Characteristics | Symbol | Value | |
---|---|---|---|
Soil Horizon I (0–120 cm) | Soil Horizon II (120–450 cm) | ||
Residual moisture content (cm3 cm−3) | θr | 0.049 | 0.081 |
Saturated moisture content (cm3 cm−3) | θs | 0.330 | 0.310 |
Saturated hydraulic conductivity (cm d−1) | Ksat | 29.5 | 98.9 |
Alpha, main drying curve (cm−1) | α | 0.062 | 0.079 |
Exponent in hydraulic conductivity function | λ | −3.100 | −0.610 |
Soil shape function (n) | n | 1.170 | 3.000 |
Alpha, main wetting curve (cm−1) | α | 0.036 | 0.036 |
Parameter | Units | Range | Wheat | Rice |
---|---|---|---|---|
Mass fraction of fresh organic material not passing a dissolved stage but transformed directly into humus | kg kg−1 | 0–1 | 0.99 | 0.125 |
Assimilation factor | 0–1 | 0.99 | 0.17 | |
Reduction factor for organic dissolved matter under oxygen limited conditions | 0–1 | 0.365 | 0.30 | |
Decomposition for organic dissolved matter | a−1 | 0.01–100 | 10 | 10 |
Decomposition for humus biomass | a−1 | 0.01–100 | 0.02 | 0.02 |
Nitrification rate | a−1 | 10–500 | 20 | 30 |
Denitrification rate | d−1 | 0.01–1 | 0.01 | 0.025 |
Nitrogen content of organic classes | kg kg−1 | 0–1 | 0.007 | 0.022 |
Nitrogen content of humus biomass | kg kg−1 | 0–1 | 0.048 | 0.025 |
Nitrogen content of exudates | kg kg−1 | 0–1 | 0.025 | 0.025 |
Expected cumulative N–uptake by crop in first period | kg ha−1 | 10–800 | 128 | 113 |
Expected cumulative N–uptake in second period | kg ha−1 | 10–800 | 78 | 84 |
Cumulative transpiration in first period | m | 0–1 | 0.167 | 0.167 |
Cumulative transpiration in Second period | m | 0–1 | 0.123 | 0.123 |
Day when maximum N–uptake rate alters | 1–366 | 100 | 255 | |
Maximum selectivity factor for N–uptake | 0.5–1 | 0.75 | 0 | |
Relative duration of sunshine | 0.1–0.5 | 0.37 | 0.46 | |
Frequency of yearly temperature wave | rad d−1 | 0.001–0.03 | 0.0173 | 0.0173 |
Thermal diffusivity | m2 d−1 | 0.01–0.1 | 0.052 | 0.052 |
Amplitude of yearly sinus wave | °C | 0–20 | 10 | 10 |
Average yearly temperature at soil surface | °C | 0–20 | 11 | 11 |
Dry bulk density | kg m−3 | 500–2650 | 1500, 1570 | 1500, 1570 |
Diffusion constants | 0.3–5 | 3.0, 4.2 | 3.0, 4.2 | |
C/N ratio | 5–60 | 35, 30 | 10, 30 | |
pH water | 2–12 | 7.5, 7.0 | 7.5, 7.0 | |
Sorption coefficient of NH4+-N | m3 kg−1 | 0.00001–0.001 | 0.000043 | 0.000043 |
Aeric matter of roots (dry matter) | kg m−2 | 0–20 | 0.025 | 2.5 |
Aeric matter of shoots (dry matter) | kg m−2 | 0–20 | 0 | 2.5 |
Aeric matter of nitrogen present in crop | kg m−2 | 0–800 | 0.002 | 0 |
Organic matter content in fertilizer | kg kg−1 | 0–1 | 0 | 0 |
Mineral NH4+-N content in fertilizer | kg kg−1 | 0–1 | 0.46 | 0.46 |
Mineral NO3−-N content in fertilizer | kg kg−1 | 0–1 | 0 | 0 |
Sampling Site | MAE | r | p | RMSE |
---|---|---|---|---|
Soil moisture | ||||
Ghumana | 0. 031 | 0.86 | 0. 38 | 0. 034 |
Sainsowal Khurd | 0. 025 | 0.79 | 0. 64 | 0. 029 |
Jattiwal | 0. 028 | 0.88 | 0. 88 | 0. 033 |
Jodhwal | 0. 028 | 0.74 | 0. 12 | 0. 035 |
Bhulewal | 0. 028 | 0.79 | 0. 71 | 0. 033 |
NO3−-N | ||||
Ghumana | 1.100 | 0.87 | 0. 43 | 1.336 |
Sainsowal Khurd | 1.375 | 0.87 | 0. 75 | 1.521 |
Jattiwal | 0. 840 | 0.78 | 0. 27 | 1.099 |
Jodhwal | 0. 720 | 0.84 | 0. 71 | 0.932 |
Bhulewal | 0. 488 | 0.83 | 0. 60 | 0.619 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farmaha, B.S.; Pritpal-Singh; Bijay-Singh. Spatial and Temporal Assessment of Nitrate-N under Rice-Wheat System in Riparian Wetlands of Punjab, North-Western India. Agronomy 2021, 11, 1284. https://doi.org/10.3390/agronomy11071284
Farmaha BS, Pritpal-Singh, Bijay-Singh. Spatial and Temporal Assessment of Nitrate-N under Rice-Wheat System in Riparian Wetlands of Punjab, North-Western India. Agronomy. 2021; 11(7):1284. https://doi.org/10.3390/agronomy11071284
Chicago/Turabian StyleFarmaha, Bhupinder S., Pritpal-Singh, and Bijay-Singh. 2021. "Spatial and Temporal Assessment of Nitrate-N under Rice-Wheat System in Riparian Wetlands of Punjab, North-Western India" Agronomy 11, no. 7: 1284. https://doi.org/10.3390/agronomy11071284
APA StyleFarmaha, B. S., Pritpal-Singh, & Bijay-Singh. (2021). Spatial and Temporal Assessment of Nitrate-N under Rice-Wheat System in Riparian Wetlands of Punjab, North-Western India. Agronomy, 11(7), 1284. https://doi.org/10.3390/agronomy11071284