Drought and Salinity in Citriculture: Optimal Practices to Alleviate Salinity and Water Stress
Abstract
:1. Introduction
2. Citrus Salinity Stress and Responsive Mechanisms
2.1. Response to Salinity Stress
2.2. Ion Toxicity Interplay under Salinity Stress
2.3. Salinity Avoidance Mechanisms
2.4. Tolerance Mechanisms
2.5. Genetic Approaches to Improve Salinity Stress
3. Citrus Drought Stress and Responsive Mechanisms
3.1. Drought Stress Resistance Mechanisms
3.2. Intercellular Signaling Cascade and Control of Gene Expression under Drought Stress
4. Agricultural and Irrigation Practices That Cope with Salinity and Drought in Citrus
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baldwin, E.A. Citrus fruit. In Biochemistry of Fruit Ripening; Springer, Chapman & Hall: London, UK, 1993; pp. 107–149. [Google Scholar]
- Syvertsen, J.P.; Garcia-Sanchez, F. Multiple abiotic stresses occurring with salinity stress in citrus. Environ. Exp. Bot. 2014, 103, 128–137. [Google Scholar] [CrossRef]
- Passioura, J. The drought environment: Physical, biological and agricultural perspectives. J. Exp. Bot. 2007, 58, 113–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, M.K.V. The water relations and irrigation requirements of citrus (Citrus spp.): A review. Exp. Agric. 2012, 48, 347. [Google Scholar] [CrossRef]
- Pardo, J.M. Biotechnology of water and salinity stress tolerance. Curr. Opin. Biotechnol. 2010, 21, 185–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prior, L.D.; Grieve, A.M.; Bevington, K.B.; Slavich, P.G. Long-term effects of saline irrigation water on ‘Valencia’ orange trees: Relationships between growth and yield, and salt levels in soil and leaves. Aust. J. Agric. Res. 2007, 58, 349–358. [Google Scholar] [CrossRef]
- Santana-Vieira, D.D.S.; Freschi, L.; da Hora Almeida, L.A.; de Moraes, D.H.S.; Neves, D.M.; Dos Santos, L.M.; Bertolde, F.Z.; Soares Filho, W.S.; Coelho Filho, M.A.; da Silva Gesteira, A. Survival strategies of citrus rootstocks subjected to drought. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef]
- Romero, P.; Navarro, J.M.; Pérez-Pérez, J.; García-Sánchez, F.; Gómez-Gómez, A.; Porras, I.; Martinez, V.; Botía, P. Deficit irrigation and rootstock: Their effects on water relations, vegetative development, yield, fruit quality and mineral nutrition of Clemenules mandarin. Tree Physiol. 2006, 26, 1537–1548. [Google Scholar] [CrossRef]
- Rodríguez-Gamir, J.; Ancillo, G.; Aparicio, F.; Bordas, M.; Primo-Millo, E.; Forner-Giner, M.Á. Water-deficit tolerance in citrus is mediated by the down regulation of PIP gene expression in the roots. Plant Soil 2011, 347, 91–104. [Google Scholar] [CrossRef]
- Hasan, N.; Kamruzzaman, M.; Islam, S.; Hoque, H.; Bhuiyan, F.H.; Prodhan, S.H. Development of partial abiotic stress tolerant Citrus reticulata Blanco and Citrus sinensis (L.) Osbeck through Agrobacterium-mediated transformation method. J. Genet. Eng. Biotechnol. 2019, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Simpson, C.R.; Nelson, S.D.; Melgar, J.C.; Jifon, J.; King, S.R.; Schuster, G.; Volder, A. 2014 Growth response of grafted and ungrafted citrus trees to saline irrigation. Sci. Hortic. 2014, 169, 199–205. [Google Scholar] [CrossRef]
- Murkute, A.A.; Sharma, S.; Sing, S.K. Citrus in terms of soil and water salinity: A review. J. Sci. Ind. Res. 2005, 64, 393–402. [Google Scholar]
- Al-Yassin, A. Influence of salinity on citrus: A review paper. J. Cent. Eur. Agric. 2004, 5, 263–272. [Google Scholar]
- Cerdá, A.; Nieves, M.; Guillen, M. Salt tolerance of lemon trees as affected by rootstock. Irrig. Sci. 1990, 11, 245–249. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Sánchez, F.; Syvertsen, J. Salinity tolerance of Cleopatra mandarin and Carrizo citrange citrus rootstock seedlings is affected by CO2 enrichment during growth. J. Am. Soc. Hortic. Sci. 2006, 131, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, L.; Grattan, S.R. How salinity damages citrus: Osmotic effects and specific ion toxicities. HortTechnology 2005, 15, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Aragón, R.; Rodríguez-Navarro, A. Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions. Plant J. 2017, 91, 208–219. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Peng, D.; Zhang, X.; Peng, Y.; Chen, M.; Ma, X.; Huang, L.; Yan, Y. Na+ induces the tolerance to water stress in white clover associated with osmotic adjustment and aquaporins-mediated water transport and balance in root and leaf. Environ. Exp. Bot. 2017, 144, 11–24. [Google Scholar] [CrossRef]
- Brito, M.E.B.; de Brito, K.S.A.; Fernandes, P.D.; Gheyi, H.R.; Suassuna, J.F.; dos Santos Soares Filho, W.; de Melo, A.S.; Xavier, D.A. Growth of ungrafted and grafted citrus rootstocks under saline water irrigation. Afr. J. Agric. Res. 2014, 9, 3600–3609. [Google Scholar]
- Tester, M.; Davenport, R. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 2003, 91, 503–527. [Google Scholar] [CrossRef]
- García-Sánchez, F.; Martinez, V.; Jifon, J.; Syvertsen, J.; Grosser, J. Salinity reduces growth, gas exchange, chlorophyll and nutrient concentrations in diploid sour orange and related allotetraploid somatic hybrids. J. Hortic. Sci. Biotechnol. 2002, 77, 379–386. [Google Scholar] [CrossRef]
- Li, B.; Tester, M.; Gilliham, M. Chloride on the move. Trends Plant Sci. 2017, 22, 236–248. [Google Scholar] [CrossRef]
- Brumos, J.; Talon, M.; Bouhal, R.; Colmenero-Flores, J.M. Cl-homeostasis in includer and excluder citrus rootstocks: Transport mechanisms and identification of candidate genes. Plant Cell Environ. 2010, 33, 2012–2027. [Google Scholar] [CrossRef]
- Gonzalez, P.; Syvertsen, J.P.; Etxeberria, E. Sodium distribution in salt-stressed citrus rootstock seedlings. HortScience 2012, 47, 1504–1511. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, S.; Wang, J.; Lin, J. Exogenous abscisic acid alleviates harmful effect of salt and alkali stresses on wheat seedlings. Int. J. Environ. Res. Public Health 2020, 17. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Cadenas, A.; Iglesias, D.; Arbona, V.; Colmenero-Flores, J.; Primo-Millo, E.; Talon, M. Physiological and molecular responses of citrus to salinity. Recent Res. Dev. Plant Mol. Biol. 2003, 1, 281–298. [Google Scholar]
- Tanou, G.; Ziogas, V.; Belghazi, M.; Christou, A.; Filippou, P.; Job, D.; Fotopoulos, V.; Molassiotis, A. Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Plant Cell Environ. 2014, 37, 864–885. [Google Scholar] [CrossRef] [PubMed]
- Asada, K. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Biol. 1999, 50, 601–639. [Google Scholar] [CrossRef]
- Al Kharusi, L.; Al Yahyai, R.; Yaish, M.W. Antioxidant response to salinity in salt-tolerant and salt-susceptible cultivars of date palm. Agriculture 2019, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Sharma, P. Recent insights into physiological and molecular regulation of salt stress in fruit crops. Adv. Plants Agric. Res. 2018, 8, 171–183. [Google Scholar] [CrossRef]
- Lima-Costa, M.E.; Ferreira, S.; Duarte, A.; Ferreira, A. Alleviation of salt stress using exogenous proline on a citrus cell line. Acta Hortic. 2008, 868, 109–112. [Google Scholar] [CrossRef] [Green Version]
- Anjum, S.A.; Xie, X.Y.; Wang, L.C.; Saleem, M.F.; Man, C.; Lei, W. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 2011, 6, 2026–2032. [Google Scholar]
- Gimeno, V.; Syvertsen, J.; Nieves, M.; Simón, I.; Martínez, V.; García-Sánchez, F. Additional nitrogen fertilization affects salt tolerance of lemon trees on different rootstocks. Sci. Hortic. 2009, 121, 298–305. [Google Scholar] [CrossRef]
- Ying-Ning, Z.; Qiang-Sheng, W. Sodium chloride stress induced changes in leaf osmotic adjustment of trifoliate orange (Poncirus trifoliata) seedlings inoculated with mycorrhizal fungi. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 64–69. [Google Scholar]
- Ruiz, M.; Quiñones, A.; Martínez-Alcántara, B.; Aleza, P.; Morillon, R.; Navarro, L.; Primo-Millo, E.; Martínez-Cuenca, M.R. Effects of salinity on diploid (2x) and doubled diploid (4x) Citrus macrophylla genotypes. Sci. Hortic. 2016, 207, 33–40. [Google Scholar] [CrossRef]
- Forner-Giner, M.A.; Primo-Millo, E.; Forner, J.B. Performance of Forner-Alcaide 5 and Forner-Alcaide 13, hybrids of Cleopatra mandarin × Poncirus trifoliata, as salinity-tolerant citrus rootstocks. J. Am. Pomol. Soc. 2009, 63, 72–80. [Google Scholar]
- Zhang, M.; Liu, Y.; Han, G.; Zhang, Y.; Wang, B.; Chen, M. Salt tolerance mechanisms in trees: Research progress. Trees Struct. Funct. 2020, 35, 717–730. [Google Scholar] [CrossRef]
- Hamani, A.K.M.; Li, S.; Chen, J.; Amin, A.S.; Wang, G.; Xiaojun, S.; Zain, M.; Gao, Y. Linking exogenous foliar application of glycine betaine and stomatal characteristics with salinity stress tolerance in cotton (Gossypium hirsutum L.) seedlings. BMC Plant Biol. 2021, 21. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- López-Climent, M.F.; Arbona, V.; Pérez-Clemente, R.M.; Gómez-Cadenas, A. Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environ. Exp. Bot. 2008, 62, 176–184. [Google Scholar] [CrossRef]
- Molassiotis, A.; Fotopoulos, V. Oxidative and nitrosative signaling in plants: Two branches in the same tree? Plant Signal. Behav. 2011, 6, 210–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanou, G.; Filippou, P.; Belghazi, M.; Job, D.; Diamantidis, G.; Fotopoulos, V.; Molassiotis, A. Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J. 2012, 72, 585–599. [Google Scholar] [CrossRef]
- Ziogas, V.; Tanou, G.; Filippou, P.; Diamantidis, G.; Vasilakakis, M.; Fotopoulos, V.; Molassiotis, A. Nitrosative responses in citrus plants exposed to six abiotic stress conditions. Plant Physiol. Biochem. 2013, 68, 118–126. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Jacob, P.; Hirt, H.; Bendahmane, A. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol. J. 2017, 15, 405–414. [Google Scholar] [CrossRef]
- Pedrosa, A.M.; Martins, C.d.P.S.; Gonçalves, L.P.; Costa, M.G.C. Late Embryogenesis Abundant (LEA) constitutes a large and diverse family of proteins involved in development and abiotic stress responses in sweet orange (Citrus sinensis L. Osb.). PLoS ONE 2015, 10, e0145785. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Guan, C.; Wang, S.M. Coordination of AtHKT1; 1 and AtSOS1 facilitates Na+ and K+ homeostasis in Arabidopsis thaliana under salt stress. J. Plant Biol. 2014, 57, 282–290. [Google Scholar] [CrossRef]
- Shi, H.; Quintero, F.J.; Pardo, J.M.; Zhu, J.K. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 2002, 14, 465–477. [Google Scholar] [CrossRef] [Green Version]
- Berthomieu, P.; Conejero, G.; Nublat, A.; Brackenbury, W.J.; Lambert, C.; Savio, C.; Uozumi, N.; Oiki, S.; Yamada, K.; Cellier, F.; et al. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J. 2003, 22, 2004–2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Alcántara, B.; Martínez-Cuenca, M.R.; Quinones, A.; Iglesias, D.J.; Primo-Millo, E.; Forner-Giner, M.A. Comparative expression of candidate genes involved in sodium transport and compartmentation in citrus. Environ. Exp. Bot. 2015, 111, 52–62. [Google Scholar] [CrossRef]
- Miles, C.; Wayne, M. Quantitative trait locus (QTL) analysis. Nat. Educ. 2008, 1, 208. [Google Scholar]
- Singh, A.; Sharma, S.; Singh, B. Effect of germination time and temperature on the functionality and protein solubility of sorghum flour. J. Cereal Sci. 2017, 76, 131–139. [Google Scholar] [CrossRef]
- Raga, V. Genetic analysis of salt tolerance in a progeny derived from the citrus rootstocks Cleopatra mandarin and trifoliate orange. Tree Genet. Genomes 2016, 12, 34. [Google Scholar] [CrossRef]
- Tozlu, I.; Guy, C.L.; Moore, G.A. QTL analysis of Na+ and Cl− accumulation related traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and nonsaline environments. Genome 1999, 42, 692–705. [Google Scholar] [CrossRef]
- Pérez-Pérez, J.G.; Romero, P.; Navarro, J.M.; Botía, P. Response of sweet orange cv ‘Lane late’ to deficit irrigation in two rootstocks. I: Water relations, leaf gas exchange and vegetative growth. Irrig. Sci. 2008, 26, 415–425. [Google Scholar] [CrossRef]
- Zaher-Ara, T.; Boroomand, N.; Sadat-Hosseini, M. Physiological and morphological response to drought stress in seedlings of ten citrus. Trees 2016, 30, 985–993. [Google Scholar] [CrossRef]
- Verslues, P.E.; Agarwal, M.; Katiyar-Agarwal, S.; Zhu, J.; Zhu, J.K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006, 45, 523–539. [Google Scholar] [CrossRef]
- Gowda, V.R.; Henry, A.; Yamauchi, A.; Shashidhar, H.E.; Serraj, R. Root biology and genetic improvement for drought avoidance in rice. Field Crop. Res. 2011, 122, 1–13. [Google Scholar] [CrossRef]
- Hu, H.; Xiong, L. Genetic engineering and breeding of drought-resistant crops. Annu. Rev. Plant Biol. 2014, 65, 715–741. [Google Scholar] [CrossRef]
- Pérez-Pérez, J.G.; Robles, J.M.; Tovar, J.C.; Botía, P. Response to drought and salt stress of lemon ‘Fino 49’ under field conditions: Water relations, osmotic adjustment and gas exchange. Sci. Hortic. 2009, 122, 83–90. [Google Scholar] [CrossRef]
- García-Sánchez, F.; Syvertsen, J.P.; Gimeno, V.; Botía, P.; Perez-Perez, J.G. Responses to flooding and drought stress by two citrus rootstock seedlings with different water-use efficiency. Physiol. Plant. 2007, 130, 532–542. [Google Scholar] [CrossRef]
- Ruiz-Sánchez, M.C.; Domingo, R.; Savé, R.; Biel, C.; Torrecillas, A. Effects of water stress and rewatering on leaf water relations of lemon plants. Biol. Plant. 1997, 39, 623. [Google Scholar] [CrossRef]
- Arbona, V.; Iglesias, D.J.; Jacas, J.; Primo-Millo, E.; Talon, M.; Gómez-Cadenas, A. Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant Soil 2005, 270, 73–82. [Google Scholar] [CrossRef]
- Tudela, D.; Primo-Millo, E. 1-Aminocyclopropane-1-carboxylic acid transported from roots to shoots promotes leaf abscission in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings rehydrated after water stress. Plant Physiol. 1992, 100, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bielorai, H.; Dasberg, S.; Erner, Y.; Brum, M. Effect of various soil moisture regimes and fertilizer levels on citrus yield response under partial wetting of the root zone. In Proceedings of the International Society of Citriculture, International Citrus Congress, Tokyo, Japan, 9–12 November 1981; Shimizu: Tokyo, Japan; Volume 1, pp. 585–589. [Google Scholar]
- Balal, R.M.; Khan, M.M.; Shahid, M.A.; Mattson, N.S.; Abbas, T.; Ashfaq, M.; Garcia-Sanchez, F.; Ghazanfer, U.; Gimeno, V.; Iqbal, Z. Comparative studies on the physiobiochemical, enzymatic, and ionic modifications in salt-tolerant and salt-sensitive citrus rootstocks under NaCl stress. J. Am. Soc. Hortic. Sci. 2012, 137, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Seday, U.; Gulsen, O.; Uzun, A.; Toprak, G. Response of citrus rootstocks to different salinity levels for morphological and antioxidative enzyme activites. J. Anim. Plant Sci. 2014, 24, 512–520. [Google Scholar]
- Colmenero-Flores, J.M.; Campos, F.; Garciarrubio, A.; Covarrubias, A.A. Characterization of Phaseolus vulgaris cDNA clones responsive to water deficit: Identification of a novel late embryogenesis abundant-like protein. Plant Mol. Biol. 1997, 35, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Reyes, J.L.; Rodrigo, M.J.; Colmenero-Flores, J.M.; Gil, J.V.; Garay-Arroyo, A.; Campos, F.; Salamini, F.; Bartels, D.; Covarrubias, A.A. Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ. 2005, 28, 709–718. [Google Scholar] [CrossRef] [Green Version]
- Podda, A.; Checcucci, G.; Mouhaya, W.; Centeno, D.; Rofidal, V.; del Carratore, R.; Luro, F.; Morillon, R.; Ollitrault, P.; Maserti, B.E. Salt-stress induced changes in the leaf proteome of diploid and tetraploid mandarins with contrasting Na+ and Cl− accumulation behaviour. J. Plant Physiol. 2013, 170, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.P.; Zhang, L.L.; Zhang, H.Q.; Miao, L.X. Identification of Genes Involved in the Responses of Tangor (C. reticulata × C. sinensis) to drought stress. BioMed Res. Int. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding plant responses to drought—From genes to the whole plant. Funct. Plant Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef]
- Sah, S.K.; Reddy, K.R.; Li, J. Abscisic acid and abiotic stress tolerance in crop plants. Front. Plant Sci. 2016, 7, 571. [Google Scholar] [CrossRef] [Green Version]
- Geiger, D.; Maierhofer, T.; Al-Rasheid, K.A.; Scherzer, S.; Mumm, P.; Liese, A.; Ache, P.; Wellmann, C.; Marten, I.; Grill, E.; et al. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci. Signal. 2011, 4, ra32. [Google Scholar] [CrossRef]
- Moreno-Alvero, M.; Yunta, C.; Gonzalez-Guzman, M.; Lozano-Juste, J.; Luis Benavente, J.; Arbona, V.; Menendez, M.; Martinez-Ripoll, M.; Infantes, L.; Gomez-Cadenas, A.; et al. Structure of ligand-bound intermediates of crop ABA receptors highlights PP2C as necessary ABA co-receptor. Mol. Plant 2017, 10, 1250–1253. [Google Scholar] [CrossRef] [Green Version]
- Fathi, A.; Tari, D.B. Effect of drought stress and its mechanism in plants. Int. J. Life Sci. 2016, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kaur, G.; Asthir, B. Molecular responses to drought stress in plants. Biol. Plant. 2017, 61, 201–209. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.S.M.A.; Fujita, D.B.S.M.A.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Sustain. Agric. 2009, 29, 185–212. [Google Scholar]
- Romero, P.; Lafuente, M.T.; Rodrigo, M.J. The Citrus ABA signalosome: Identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration. J. Exp. Bot. 2012, 63, 4931–4945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Cadenas, A.; Francisco, R.T.; Talon, M.; Eduardo, P.M. Leaf abscission induced by ethylene in water-stressed intact seedlings of Cleopatra Mandarin requires previous abscisic acid accumulation in roots. Plant Physiol. 1996, 112, 401–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iglesias, D.J.; Cercós, M.; Colmenero-Flores, J.M.; Naranjo, M.A.; Ríos, G.; Carrera, E.; Ruiz-Rivero, O.; Lliso, I.; Morillon, R.; Tadeo, F.R.; et al. Physiology of citrus fruiting. Braz. J. Plant Physiol. 2007, 19, 333–362. [Google Scholar] [CrossRef]
- Merelo, P.; Agustí, J.; Arbona, V.; Costa, M.L.; Estornell, L.H.; Gómez-Cadenas, A.; Coimbra, S.; Gómez, M.D.; Pérez-Amador, M.A.; Domingo, C.; et al. Cell wall remodeling in abscission zone cells during ethylene-promoted fruit abscission in citrus. Front. Plant Sci. 2017, 8, 126. [Google Scholar] [PubMed] [Green Version]
- Jitratham, A.; Yazama, F.; Kondo, S. Effects of drought stress on abscisic acid and jasmonate metabolism in citrus. Environ. Control Biol. 2006, 44, 41–49. [Google Scholar] [CrossRef] [Green Version]
- de Ollas, C.; Hernando, B.; Arbona, V.; Gómez-Cadenas, A. Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol. Plant. 2013, 147, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Kourgialas, N.N.; Koubouris, G.C.; Dokou, Z. Optimal irrigation planning for addressing current or future water scarcity in Mediterranean tree crops. Sci. Total Environ. 2019, 654, 616–632. [Google Scholar] [CrossRef]
- Molassiotis, A.; Job, D.; Ziogas, V.; Tanou, G. Citrus plants: A model system for unlocking the secrets of NO and ROS-inspired priming against salinity and drought. Front. Plant Sci. 2016, 7, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kourgialas, N.N.; Karatzas, G.P. A modeling approach for agricultural water management in citrus orchards: Cost-effective irrigation scheduling and agrochemical transport simulation. Environ. Monit. Assess. 2015, 187, 462. [Google Scholar] [CrossRef]
- Vahrmeijer, J.T.; Taylor, N.J. Quantifying Citrus Water Use and Water Stress at Orchard Level. Measurement and Modelling of Seasonal Citrus Water Use for Different Growth Stages and Canopy Sizes; WRC Report No TT 772/2/18; Water Research Commission and Department of Agriculture Forestry and Fisheries: Pretoria, South Africa, 2018; Volume 2. [Google Scholar]
- Morianou, G.; Ziogas, V.; Kourgialas, N.N.; Karatzas, G.P. Effect of irrigation practices upon yield and fruit quality of four grapefruit (Citrus paradisi Mac.) cultivars. Water Supply 2021, in press. [Google Scholar] [CrossRef]
- Syvertsen, J.; Levy, Y. Salinity interactions with other abiotic and biotic stresses in citrus. HortTechnology 2005, 15, 100. [Google Scholar] [CrossRef]
- Gimeno, V.; Díaz-López, L.; Simón-Grao, S.; Martínez, V.; Martínez-Nicolás, J.J.; García-Sánchez, F. Foliar potassium nitrate application improves the tolerance of Citrus macrophylla L. seedlings to drought conditions. Plant Physiol. Biochem. 2014, 83, 308–315. [Google Scholar] [CrossRef]
- Kumar, A.; Verma, J.P. Does plant—Microbe interaction confer stress tolerance in plants: A review? Microbiol. Res. 2018, 207, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Khoshbakht, D.; Ghorbani, A.; Baninasab, B.; Naseri, L.A.; Mirzaei, M. Effects of supplementary potassium nitrate on growth and gas-exchange characteristics of salt-stressed citrus seedlings. Photosynthetica 2014, 52, 589–596. [Google Scholar] [CrossRef]
- Simon-Grao, S.; Simon, I.; Lidon, V.; Conesa, A.; Manera, J.; Brotons, J.M.; Martinez-Nicolas, J.J.; Garcia-Sanchez, F. Effects of shade screens and mulching on the color change of fruits from “Fino 49” lemon trees irrigated with water of different salinity or irrigation regimes. Sci. Hortic. 2016, 209, 316–322. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Anyfanti, I.; Karatzas, G.P.; Dokou, Z. An integrated method for assessing drought prone areas—Water efficiency practices for a climate resilient Mediterranean agriculture. Sci. Total Environ. 2018, 625, 1290–1300. [Google Scholar] [CrossRef]
- Colmenero-Flores, J.M.; Arbona, V.; Morillon, R.; Gómez-Cadenas, A. Salinity and water deficit. In The Genus Citrus; Talon, M., Caruso, M., Gmitter, F.G., Eds.; Woodhead Publishing: Amsterdam, The Netherlands, 2020; pp. 291–309. [Google Scholar]
- Ziogas, V.; Tanou, G.; Belghazi, M.; Filippou, P.; Fotopoulos, V.; Grigorios, D.; Molassiotis, A. Roles of sodium hydrosulfide and sodium nitroprusside as priming molecules during drought acclimation in citrus plants. Plant Mol. Biol. 2015, 89, 433–450. [Google Scholar] [CrossRef]
- Kostopoulou, Z.; Therios, I.; Roumeliotis, E.; Kanellis, A.K.; Molassiotis, A. Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Plant Physiol. Biochem. 2015, 86, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.; Tong, L.; Li, F.; Lu, H.; Li, S.; Du, T.; Wu, Y. Effect of a new antitranspirant on the physiology and water use efficiency of soybean under different irrigation rates in an arid region. Front. Agric. Sci. Eng. 2017, 4, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Conesa, M.R.; Espinosa, P.J.; Pallarés, D.; Pérez-Pastor, A. Influence of plant biostimulant as technique to harden citrus nursery plants before transplanting to the field. Sustainability 2020, 12, 6190. [Google Scholar] [CrossRef]
- Spann, T.M.; Little, H.A. Applications of a commercial extract of the brown seaweed Ascophyllum nodosum increases drought tolerance in container-grown ‘Hamlin’ sweet orange nursery trees. HortScience 2011, 46, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front. Plant Sci. 2017, 8, 1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, Y.; Zhang, F.; Srivastava, A.K.; Wu, Q.; Kuča, K. Arbuscular mycorrhizal fungi regulate polyamine homeostasis in roots of trifoliate orange for improved adaptation to soil moisture deficit stress. Front. Plant Sci. 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Zou, Y.; Wu, Q.; Kuča, K. Arbuscular mycorrhizal fungi alleviate drought stress in trifoliate orange by regulating H+-ATPase activity and gene expression. Front. Plant Sci. 2021, 12, 461. [Google Scholar] [CrossRef] [PubMed]
- Abobatta, W.F.; Khalifa, S.M. Influence of hydrogel composites soil conditioner on navel orange growth and productivity. J. Agric. Hortic. Res. 2019, 2, 1–6. [Google Scholar]
- Chen, S.; Zommorodi, M.; Fritz, E.; Wang, S.; Hüttermann, A. Hydrogel modified uptake of salt ions and calcium in Populus euphratica under saline conditions. Trees 2004, 18, 175–183. [Google Scholar]
- Pattanaaik, S.K.; Singh, B.; Wangchu, L.; Debnath, P.; Hazarika, B.N.; Pandey, A.K. Effect of hydrogel on water and nutrient management of Citrus limon. Int. J. Agric. Innov. Res. 2015, 3, 1656–1659. [Google Scholar]
- Abobatta, W.F. Impact of hydrogel polymer in agricultural sector. Adv. Agric. Environ. Sci. 2018, 1, 59–64. [Google Scholar] [CrossRef]
Salinity Stress | Reference |
---|---|
Citriculture and salinization limits | |
Values of electrical conductivity (EC) over 3 dS m−1 and sodium adsorption ratio (SAR) over 9 in saturated soil extract are characterized as critical for the survival of the cultivation | [11] |
Chlorine concentration values above 355 ppm are prohibited for growing citrus | [11] |
The Cl− ion levels in citrus plants leaves required to cause toxicity start from 0.7% dry matter | [18] |
Response to Salinity Stress | |
Inefficient ability to allocate saline ions into intercellular cell structures | [18] |
Promote root Na+ and Cl− uptake and accumulate these ions to plant parts, so as to achieve proper osmotic adjustment | [20] |
Use salt ions for their osmotic adjustment in order to avoid water deficit | [18] |
Ion toxicity interplay | |
Under mild salinity stress, a mostly osmotic-driven decrease in fruit yield is demonstrated, without any visual severe toxicity symptom due to the accumulation of Na+ or Cl− ions | [23] |
Under intense salinity stress, citrus plants accumulate excessive levels of Na+ and Cl− ions into the canopy, reaching toxicity levels and severely deregulating the photosynthetic apparatus and tree growth | [23] |
Leaf abscission is driven by the endogenous levels of phyto-hormone abscisic acid (ABA) and 1-aminocycloprpane-1-carboxylic acid (ACC) | [28] |
Polyamines have been proposed as signaling molecules during the adjustment of citrus plants towards salinity stress | [29] |
Store Na+ in the woody root-sphere and basal stem parts and exclude it from the leaves via xylem retrieval | [24] |
Sequestrate Na+ in root tissue vacuoles and immobilize them into the cell wall | [26] |
Amelioration mechanisms | |
Pretreatment with ABA reduces ethylene release and leaf abscission via the prevention of Cl− accumulation in leaves | [27] |
Use of exogenous proline (5 mM) significantly minimized the negative impact of sanity stress in salt-sensitive orange cv. Valencia Late | [33] |
Genetic ploid level influences the relative salt tolerance of rootstocks, and tetraploid citrus seedlings demonstrate greater salt resistance than shown by diploid genotypes | [37] |
The Na+ and Cl− exclusion mechanism is a heritable characteristic—production of citrus hybrids that exclude salinity ions efficiently and perform even better than the parent genotypes | [38] |
Enzyme activity and protein synthesis | |
Citrus plants under salinity stress do respond in a positive manner towards the establishment of a sufficient antioxidant defense arsenal | [44,45,46] |
Induce the biosynthesis of specific protein groups, hydrophilins and heat shock proteins (HSPs), that protect cell compartments and contribute to the overall plant cell protection | [48] |
Genetic approaches | |
Identification of natural variations by direct selection or by quantitative trait loci—QTL mapping | [55] |
Drought Stress | |
Reduces physiological parameters such as stomatal conductance (gs) and net assimilation of CO2 (ACO2) and leaf transpiration (Eleaf) | [2] |
Drought resistance: good resistance—mandarins (Citrus reticulata spp.) > rangpur lime > rough lemon > sour orange > Citrus macrophylla; medium resistance: lemon > trifoliate orange > citrange hybrid > Citrus chuana; poor resistance: Sweet orange > Citrus verrucose > grapefruit | [9,58] |
Mitigation mechanisms | |
Osmolyte accumulation depends upon genotype, and intensity and duration of the stress | [62] |
Citrus have the ability to modify the elasticity of the cell wall | [64] |
Leaf area is reduced, with parallel increase of root/shoot ratio and allocation of roots to deeper soil layers | [67] |
Biosynthesis of compatible osmolytes such as proline and other betaines, with the exception of glycine betaine | [63] |
Accumulation of osmoprotectants, antioxidants, ROS scavengers, and cell-protective proteins, such as HSP and hydrophilins | [68,69] |
Intercellular signaling cascade and control of gene expression | |
ABA modulates signaling pathways that lead to transcriptional control of many genes that control the synthesis of metabolites involved in the stabilization of enzyme complexes, plasma membrane protection, and osmotic potential regulation | [78] |
Under severe drought stress, several plant organs are abscised, including leaves, stems, or even fruits, due to the production of ethylene that participates in the fruit and leaf abscission processes with the parallel accumulation of ABA | [82,83,84] |
There is an active interplay between JA and ABA accumulation, since JA act upstream towards ABA biosynthesis, thus facilitating the orchestration of physiological responses | [85] |
Hydrogen sulfide, acting upstream towards the expression of genes and protein synthesis related with the adaptation of citrus plants | [45] |
ROS, RNS, and chemical agents as priming agents that can potentially trigger intercellular metabolic reactions towards the adaptation of citrus to drought stress | [88] |
Agricultural Practice | Alleviate Drought Stress | Alleviate Salinity Stress | Reference |
---|---|---|---|
Proper irrigation (amount and frequency) based on tree age, tree species, climate, soil type, and/or saline irrigation | P | P | [4,87] |
Appropriate fertilizer applications (calcium or nitrates in the nutritional solution) | P | P | [94] |
Foliar potassium nitrate application | P | NP | [93] |
Use of Cleopatra’s mandarin rootstock and hybrids—orange varieties as interstocks | P | P | [38,63,92] |
Compost application | P | NP | [96,97] |
Chemical priming (use of sodium nitroprusside, sodium hydrosulfide, melatonin, and polyamines) | P | NP | [29,99,100] |
The use of biostimulants | P | P | [103,104] |
Use of plant-growth-promoting microbes (arbuscular mycorrhizal fungi) | P | P | [107,109] |
The use of hydrogels | P | P | [111] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziogas, V.; Tanou, G.; Morianou, G.; Kourgialas, N. Drought and Salinity in Citriculture: Optimal Practices to Alleviate Salinity and Water Stress. Agronomy 2021, 11, 1283. https://doi.org/10.3390/agronomy11071283
Ziogas V, Tanou G, Morianou G, Kourgialas N. Drought and Salinity in Citriculture: Optimal Practices to Alleviate Salinity and Water Stress. Agronomy. 2021; 11(7):1283. https://doi.org/10.3390/agronomy11071283
Chicago/Turabian StyleZiogas, Vasileios, Georgia Tanou, Giasemi Morianou, and Nektarios Kourgialas. 2021. "Drought and Salinity in Citriculture: Optimal Practices to Alleviate Salinity and Water Stress" Agronomy 11, no. 7: 1283. https://doi.org/10.3390/agronomy11071283
APA StyleZiogas, V., Tanou, G., Morianou, G., & Kourgialas, N. (2021). Drought and Salinity in Citriculture: Optimal Practices to Alleviate Salinity and Water Stress. Agronomy, 11(7), 1283. https://doi.org/10.3390/agronomy11071283