Long-Term Biosolids Applications to Overgrazed Rangelands Improve Soil Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Design
2.2. Sample Collection and Processing
2.3. Soil Health and Laboratory Soil Analysis—The Soil Management Assessment Framework
- Soil physical health indicators: (1) bulk density and (2) water-stable aggregates (WSAs);
- Soil chemical health indicators: (3) pH and (4) electrical conductivity (EC);
- Soil nutrient health indicators: plant-available (5) phosphorus (P) and (6) potassium (K); and
- Soil biological health indicators: (7) potentially mineralizable nitrogen (PMN), (8) microbial biomass carbon (MBC), (9) beta-glucosidase activity (BG), and (10) soil organic carbon (SOC).
2.4. Soil Physical Health Indicators
2.5. Soil Chemical Health Indicators
2.6. Soil Nutrient Health Indicators
2.7. Soil Biological Health Indicators
2.8. Statistical Analysis
3. Results and Discussion
3.1. Soil Physical Indicators, Indicator Scores, and Physical Soil Health
3.2. Soil Chemical Indicators and Chemical Soil Health
3.3. Soil Nutrient Indicators and Nutrient Soil Health
3.4. Soil Biological Indicators and Biological Soil Health
3.5. Combined Effects on Physical, Chemical, Nutrient, and Biological Soil Health on Overall Soil Health
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Develop. 2010, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Zerga, B. Rangeland degradation and restoration: A global perspective. Point J. Agric. Biotechnol. Res. 2015, 1, 037–054. [Google Scholar]
- USDA-NRCS. Rangelands. 2020. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/landuse/rangepasture/range/?cid=STELPRDB1043345 (accessed on 5 June 2021).
- Distel, R.A. Grazing ecology and the conservation of the Caldenal rangelands, Argentina. J. Arid Environ. 2016, 134, 49–55. [Google Scholar] [CrossRef]
- USDA-NRCS. Soil Health. 2017. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/ (accessed on 5 June 2021).
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The Soil Management Assessment Framework: A quantitative soil quality evaluation method. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- U.S. EPA. Biosolids Technology Fact Sheet Land Application of Biosolids. 2000. Available online: https://www3.epa.gov/npdes/pubs/land_application.pdf (accessed on 5 June 2021).
- Barbarick, K.A.; Ippolito, J.A. Nutrient assessment of a dryland agroecosystem after 12 years of biosolids application. Agron. J. 2007, 99, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Barbarick, K.A.; Ippolito, J.A.; McDaniel, J.; Hansen, N.C.; Peterson, G.A. Biosolids application to no-till dryland agroecosystems. Agic. Ecosys. Environ. 2012, 150, 72–81. [Google Scholar] [CrossRef]
- Tsadilas, C.D.; Mitsios, I.K.; Golia, E. Influence of Biosolids Application on Some Soil Physical Properties. Commun. Soil Sci. Plant Anal. 2005, 36, 709–716. [Google Scholar] [CrossRef]
- Saviozzi, A.; Biasci, A.; Riffaldi, R.; Levi-Minzi, R. Long-term effects of farmyard manure and sewage sludge on some soil biochemical characteristics. Biol. Fert. Soils 1999, 30, 100–106. [Google Scholar] [CrossRef]
- Barbarick, K.A.; Doxtader, K.G.; Redente, E.F.; Brobst, R.B. Biosolids effects on microbial activity in shrubland and grassland soils. Soil Sci. 2004, 169, 176–187. [Google Scholar] [CrossRef]
- Dennis, G.L.; Fresquez, P.R. The soil microbial community in a sewage-sludge-amended semi-arid grassland. Biol. Fert. Soils 1989, 7, 310–317. [Google Scholar] [CrossRef]
- Sullivan, T.; Stromberger, M.; Paschke, M.; Ippolito, J. Long-term impacts of infrequent biosolids application on chemical and microbial properties of a semi-arid rangeland soil. Biol. Fert. Soils 2006, 42, 258–266. [Google Scholar] [CrossRef]
- Sullivan, T.; Stromberger, M.; Paschke, M. Parallel Shifts in Plant and Soil Microbial Communities in Response to Biosolids in a Semi-Arid Grassland. Soil Biol. Biochem. 2006, 38, 449–459. [Google Scholar] [CrossRef]
- California Soil Resource Lab. SoilWeb Apps—SoilWeb Earth. 2008. Available online: https://casoilresource.lawr.ucdavis.edu/soilweb-apps/ (accessed on 5 June 2021).
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis, Part 1—Physical and Mineralogical Methods Agronomy Monograph 9, 2nd ed.; Klute, A., Ed.; Soil Science Society of America: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- Thomas, G.W. Soil pH and soil acidity. In Methods of Soil Analysis, Part 3—Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 475–490. [Google Scholar]
- Rhoades, J.D. Electrical conductivity and total dissolved solids. In Methods of Soil Analysis, Part 3—Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 417–435. [Google Scholar]
- Olsen, S.; Cole, C.; Watanabe, F.; Dean, L. Estimation of Available Phosphorus in Soils by Extraction with sOdium Bicarbonate; United States Department of Agriculture: Washington, DC, USA, 1954; p. 19. [Google Scholar]
- Curtin, D.; McCallum, F.M. Biological and chemical assays to estimate nitrogen supplying power of soils with contrasting management histories. Aust. J. Soil Res. 2004, 42, 737–746. [Google Scholar] [CrossRef]
- Hobbie, S.E. Chloroform Fumigation Direct Extraction (CFDE) Protocol for Microbial Biomass Carbon and Nitrogen. 1998. Available online: https://web.stanford.edu/group/Vitousek/chlorofume.html (accessed on 5 June 2021).
- Beck, T.; Joergensen, R.; Kandeler, E.; Makeshin, E.; Nuss, E.; Oberholzer, H.; Scheu, S. An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol. Biochem. 1997, 29, 1023–1032. [Google Scholar] [CrossRef]
- Green, V.; Stott, D.; Cruz, J.; Curi, N. Tillage impacts on soil biological activity and aggregation in a Brazilian Cerrado Oxisol. Soil Till. Res. 2007, 92, 114–121. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total C, organic C, and organic matter. In Methods of Soil Analysis, Part 3—Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 975–977. [Google Scholar]
- Sherrod, L.A.; Dunn, G.; Peterson, G.; Kolberg, R. Inorganic C analysis by modified pressure-calcimeter method. Soil Sci. Soc. Am. J. 2002, 66, 299–305. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 5 June 2021).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019; Available online: https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (accessed on 5 June 2021).
- Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.3–3. 2020. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 5 June 2021).
- Ippolito, J.A.; Ducey, T.F.; Diaz, K.; Barbarick, K.A. Long-term biosolids land application influences soil health. Sci. Total Environ. 2021, 791, 148344. [Google Scholar] [CrossRef]
- Pierzynski, G.M.; Sims, J.T.; Vance, G.F. Soils and Environmental Quality; Lewis Publishers: Boca Raton, FL, USA, 1994. [Google Scholar]
- Brummer, J.E.; Davis, J.G.; Booher, M.R. Fertilizing Cool Season Grasses and Grass/Legume Mixtures. 2011. Available online: https://extension.colostate.edu/topic-areas/agriculture/fertilizing-cool-season-grasses-and-grasslegume-mixtures-0-522/ (accessed on 5 June 2021).
- Sciubba, L.; Cavani, L.; Negroni, A.; Zanaroli, G.; Fava, F.; Ciavatta, C.; Marzadori, C. Changes in the Functional Properties of a Sandy Loam Soil Amended with Biosolids at Different Application Rates. Geoderma 2014, 221–222, 40–49. [Google Scholar] [CrossRef]
- Stott, D.E.; Cambardella, C.A.; Tomer, M.D.; Karlen, D.L.; Wolf, R. A Soil Quality Assessment within the Iowa River South Fork Watershed. Soil Sci. Soc. Am. J. 2011, 75, 2271–2282. [Google Scholar] [CrossRef]
- Hargreaves, P.R.; Brookes, P.C.; Ross, G.J.S.; Poulton, P.R. Evaluating Soil Microbial Biomass Carbon as an Indicator of Long-Term Environmental Change. Soil Biol. Biochem. 2003, 35, 401–407. [Google Scholar] [CrossRef]
- Bandick, A.K.; Dick, R.P. Field management effects on soil enzyme activities. Soil Biol. Biochem. 1999, 31, 1471–1479. [Google Scholar] [CrossRef]
- Paudel, B.R.; Udawatta, R.P.; Kremer, R.J.; Anderson, S.H. Soil Quality Indicator Responses to Row Crop, Grazed Pasture, and Agroforestry Buffer Management. Agroforest. Syst. 2011, 84, 311–323. [Google Scholar] [CrossRef]
- Bastida, F.; Zsolnay, A.; Hernandez, T.; García, C. Past, Present and Future of Soil Quality Indices: A Biological Perspective. Geoderma 2008, 147, 159–171. [Google Scholar] [CrossRef]
Constituent | Unit | 1991 Biosolids | 2002 Biosolids |
---|---|---|---|
pH | 7.3 | 7.3 | |
EC | dS m−1 | 5.0 | 20 |
Organic N | mg kg−1 | 41,160 | 41,750 |
NH4-N | mg kg−1 | 3640 | 5440 |
NO3-N | mg kg−1 | 98 | 2.9 |
Total P | mg kg−1 | 16,140 | 11,350 |
Total K | mg kg−1 | 1900 | 420 |
Year trt (Mg ha−1) | ρb (g cm−3) † | WSAs (%) | pH | EC (dS m−1) | P (mg kg−1) | K (mg kg−1) | PMN (mg kg−1) | MBC (mg g−1) | BG (mg Pnp kg−1 Soil h−1) | SOC (%) |
---|---|---|---|---|---|---|---|---|---|---|
1991 | Physical | Chemical | Nutrient | Biological | ||||||
0 | 0.72 | 71.1 | 6.15 a | 0.10 | 23.7 d | 607 | 22.2 | 99.1 | 24.2 | 1.79 ab |
2.5 | 0.72 | 76.2 | 6.20 a | 0.11 | 33.3 d | 577 | 25.3 | 106 | 23.5 | 1.54 b |
5 | 0.74 | 72.3 | 6.07 ab | 0.12 | 55.3 cd | 600 | 29.2 | 95.8 | 19.7 | 1.89 ab |
10 | 0.77 | 70.0 | 5.95 ab | 0.13 | 77.7 bc | 661 | 35.4 | 88.6 | 21.7 | 1.90 ab |
21 | 0.76 | 67.7 | 5.90 ab | 0.12 | 108 b | 547 | 31.2 | 111 | 15.1 | 1.96 ab |
30 | 0.72 | 81.2 | 5.65 b | 0.12 | 147 a | 575 | 25.5 | 116 | 12.8 | 2.11 a |
1991 AVG: | 0.74 | 73.1 | 5.99 | 0.12 | 74.2 | 595 | 28.1 | 102.8 | 19.5 | 1.87 |
2002 | ||||||||||
0 | 0.70 | 77.2 | 6.52 A | 0.15 | 21.3 E | 570 | 23.3 | 97.6 | 24.2 | 1.46 C |
2.5 | 0.70 | 76.9 | 6.48 AB | 0.21 | 37.7 DE | 589 | 28.6 | 100 | 26.2 | 1.85 BC |
5 | 0.72 | 80.9 | 6.28 ABC | 0.17 | 64.9 CD | 649 | 33.9 | 95.5 | 19.5 | 1.83 BC |
10 | 0.73 | 72.5 | 5.85B CD | 0.14 | 99.9 BC | 597 | 28.8 | 98.4 | 22.7 | 2.26 B |
21 | 0.78 | 70.5 | 5.68 CD | 0.18 | 126 B | 611 | 29.9 | 116 | 14.6 | 2.17 B |
30 | 0.69 | 76.0 | 5.50 D | 0.31 | 175 A | 653 | 38.8 | 128 | 26.0 | 2.88 A |
2002 AVG: | 0.72 | 75.7 | 6.05 | 0.19 | 87.5 | 612 | 30.6 | 105.9 | 22.2 | 2.08 |
ANOVA (between trts) | NS | NS | ** | NS | ** | NS | NS | NS | NS | ** |
ANOVA (between years) | NS | NS | NS | ** | ** | NS | NS | NS | NS | ** |
ANOVA (trt x yr interaction) | NS | NS | NS | NS | NS | NS | NS | NS | NS | ** |
Year Trt (Mg ha−1) | ρb † | WSAs | pH | EC | P | K | PMN | MBC | BG | SOC |
---|---|---|---|---|---|---|---|---|---|---|
1991 | Physical | Chemical | Nutrient | Biological | ||||||
0 | 0.99 | 1.00 | 0.98 a | 1.00 | 1.00 a | 1.00 | 0.99 | 0.14 | 0.03 | 0.31 ab |
2.5 | 0.99 | 1.00 | 0.99 a | 1.00 | 1.00 a | 1.00 | 1.00 | 0.16 | 0.03 | 0.23 b |
5 | 0.99 | 1.00 | 0.97 a | 1.00 | 1.00 a | 1.00 | 1.00 | 0.12 | 0.03 | 0.36 ab |
10 | 0.99 | 1.00 | 0.88 ab | 1.00 | 0.96 a | 1.00 | 1.00 | 0.13 | 0.03 | 0.36 ab |
21 | 0.99 | 1.00 | 0.86 ab | 1.00 | 0.76 a | 1.00 | 1.00 | 0.16 | 0.03 | 0.38 ab |
30 | 0.99 | 1.00 | 0.71 b | 1.00 | 0.16 b | 1.00 | 0.99 | 0.16 | 0.03 | 0.45 a |
1991 AVG: | 0.99 | 1.00 | 0.90 | 1.00 | 0.81 | 1.00 | 1.00 | 0.15 | 0.03 | 0.35 |
2002 | ||||||||||
0 | 0.99 | 1.00 | 0.87 | 1.00 | 1.00 A | 1.00 | 1.00 | 0.12 | 0.03 | 0.21 C |
2.5 | 0.99 | 1.00 | 0.80 | 1.00 | 1.00 A | 1.00 | 1.00 | 0.13 | 0.03 | 0.34 BC |
5 | 0.99 | 1.00 | 0.92 | 1.00 | 1.00 A | 1.00 | 1.00 | 0.12 | 0.03 | 0.33 BC |
10 | 0.99 | 1.00 | 0.85 | 1.00 | 0.82 AB | 1.00 | 1.00 | 0.13 | 0.03 | 0.50 B |
21 | 0.99 | 1.00 | 0.74 | 1.00 | 0.59 B | 1.00 | 1.00 | 0.16 | 0.02 | 0.47 B |
30 | 0.99 | 1.00 | 0.60 | 1.00 | 0.06 C | 1.00 | 1.00 | 0.21 | 0.03 | 0.72 A |
2002 AVG: | 0.99 | 1.00 | 0.80 | 1.00 | 0.75 | 1.00 | 1.00 | 0.15 | 0.03 | 0.43 |
ANOVA (between trts) | NS | NS | ** | NS | ** | NS | NS | NS | NS | ** |
ANOVA (between years) | NS | NS | * | NS | NS | NS | NS | NS | NS | ** |
ANOVA (trt x yr interaction) | NS | NS | NS | NS | NS | NS | NS | NS | NS | ** |
Year Trt (Mg ha−1) | Physical SHI | Chemical SHI | Nutrient SHI | Biological SHI | Overall SHI |
---|---|---|---|---|---|
1991 | |||||
0 | 1.00 | 0.99a | 1.00 | 0.37 | 0.75 a |
2.5 | 1.00 | 0.99 a | 1.00 | 0.35 | 0.74 a |
5 | 1.00 | 0.98 a | 1.00 | 0.38 | 0.75 a |
10 | 1.00 | 0.94 ab | 0.98 | 0.38 | 0.74 a |
21 | 1.00 | 0.93 ab | 0.88 | 0.39 | 0.72 a |
30 | 1.00 | 0.86 b | 0.83 | 0.41 | 0.65 b |
1991 AVG: | 1.00 | 0.95 | 0.95 | 0.38 | 0.73 |
2002 | |||||
0 | 1.00 | 0.93 | 0.99 | 0.34 C | 0.72 A |
2.5 | 1.00 | 0.90 | 1.00 | 0.37 BC | 0.73 A |
5 | 1.00 | 0.96 | 1.00 | 0.37 BC | 0.74 A |
10 | 1.00 | 0.93 | 0.91 | 0.42 B | 0.73 A |
21 | 1.00 | 0.87 | 0.79 | 0.41 BC | 0.70 AB |
30 | 1.00 | 0.81 | 0.91 | 0.49 A | 0.66 B |
2002 AVG: | 1.00 | 0.90 | 0.93 | 0.40 | 0.71 |
ANOVA (between trts) | NS | * | * | ** | ** |
ANOVA (between years) | NS | * | NS | * | NS |
ANOVA (trt x yr interaction) | NS | NS | NS | * | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchanan, C.M.; Ippolito, J.A. Long-Term Biosolids Applications to Overgrazed Rangelands Improve Soil Health. Agronomy 2021, 11, 1339. https://doi.org/10.3390/agronomy11071339
Buchanan CM, Ippolito JA. Long-Term Biosolids Applications to Overgrazed Rangelands Improve Soil Health. Agronomy. 2021; 11(7):1339. https://doi.org/10.3390/agronomy11071339
Chicago/Turabian StyleBuchanan, Cassidy M., and James A. Ippolito. 2021. "Long-Term Biosolids Applications to Overgrazed Rangelands Improve Soil Health" Agronomy 11, no. 7: 1339. https://doi.org/10.3390/agronomy11071339
APA StyleBuchanan, C. M., & Ippolito, J. A. (2021). Long-Term Biosolids Applications to Overgrazed Rangelands Improve Soil Health. Agronomy, 11(7), 1339. https://doi.org/10.3390/agronomy11071339