Deficit Irrigation to Enhance Fruit Quality of the ‘African Rose’ Plum under the Egyptian Semi-Arid Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment and Site Climatic Conditions
2.2. Irrigation Treatments
2.3. Yield and Fruit Physiochemical Characteristics
2.4. Economic Implications
2.5. Statistical Analysis
3. Results
3.1. Fruit Drop, Yield, and Physical Characteristics
3.1.1. Fruit Drop (%)
3.1.2. Number of Fruits and Fruit Weight (kg) Per Tree
3.1.3. Fruit Diameter (mm) and Firmness (N/mm2)
3.2. Fruit Chemical Characteristics
3.3. Economic Implications
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albala, K. Food Cultures of the World Encyclopedia; Greenwood: Santa Barbara, CA, USA, 2011; Volume 4, p. 1434. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). FAO Statistics; FAO: Rome, Italy, 2019; Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 30 January 2021).
- CULDEVCO. Fruit of the Future. Available online: https://www.culdevco.co.za/plums/african-rose-2/ (accessed on 5 February 2021).
- Theron, K.I.; Steenkamp, H.; Steyn, W.J. Efficacy of ACC (1-aminocyclopropane-1-carboxylic acid) as a chemical thinner alone or combined with mechanical thinning for Japanese plums (Prunus salacina). HortScience 2017, 52, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Farag, K.M. Performance of adopted fruit species and cultivars to Egyptian-desert agriculture and their major production problems. Adv. Plants Agric. Res. 2015, 2, 55–61. [Google Scholar] [CrossRef]
- Martinelli, F.; Basile, B.; Morelli, G.; D’andria, R.; Tonutti, P. Effects of irrigation on fruit ripening behavior and metabolic changes in olive. Sci. Hortic. 2012, 144, 201–207. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Johnson, R.S.; Luza, J.G.; Crisosto, G. Irrigation regimes affect fruit soluble solid concentration and rate of water loss of ‘O’Henry’ peaches. HortScience 1994, 29, 1169–1171. [Google Scholar] [CrossRef] [Green Version]
- Crisosto, C.H.; Johnson, R.S.; DeJong, T.M.; Day, K.R. Orchard factors affecting postharvest stone fruit quality. HortScience 1997, 32, 820–823. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.S. Water Use and Water Management of Mid to Late Season Stone Fruit; California Tree Fruit Agreement (CTFA) Annual Report; University of California: Davis, CA, USA , 1994; pp. 1–6. [Google Scholar]
- Mercier, V.; Bussi, C.; Lescourret, F.; Genard, M. Effects of different irrigation regimes applied during the final stage of rapid growth on an early maturing peach cultivar. Irrig. Sci. 2009, 27, 297–306. [Google Scholar] [CrossRef]
- Lopez, G.; Behboudian, M.H.; Vallverdu, X.; Mata, M.; Marsal, J. Mitigation of severe water stress by fruit thinning in ‘O’ Henery peach: Implications for fruit quality. Sci. Hortic. 2010, 125, 294–300. [Google Scholar] [CrossRef]
- El-Ansary, D.O. Effects of pre-harvest deficit and excess irrigation water on vine water relations, productivity and quality of Crimson Seedless table grapes. J. Plant Prod. Mansoura Univ. 2017, 8, 83–92. [Google Scholar] [CrossRef]
- Egyptian Export Center. Seasonal Calendar. Available online: https://hbanna.com/seasonal-calendar/ (accessed on 28 March 2021).
- El Hafez. Seasonal Produce Calendar. Available online: https://egysupplier.com/elhafez/seasonal-produce-calendar/ (accessed on 28 March 2021).
- Roberto, S.; Marinho de Assis, A.; Yamamoto, L.Y.; Miotto, L.; Sato, A.J.; Koyama, R.; Genta, W. Application timing and concentration of abscisic acid improve color of ‘Benitaka’ table grape. Sci. Hortic. 2012, 142, 44–48. [Google Scholar] [CrossRef]
- Boulahia-Kheder, S. Review on major fruit flies (Diptera: Tephritidae) in North Africa: Bio-ecological traits and future trends. Crop Prot. 2021, 140, 105416. [Google Scholar] [CrossRef]
- Ennab, H.A.; El-Shemy, M.A.; Alam-Eldein, S.M. Salicylic acid and putrescine to reduce postharvest storage problems and maintain quality of Murcott mandarin fruit. Agronomy 2020, 10, 115. [Google Scholar] [CrossRef] [Green Version]
- Fereres, E.; Goldhamer, D.A. Deciduous Fruit and Nut Trees. In Irrigation of Agricultural Crops, 1st ed.; Stewart, B.A., Nielsen, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1990; pp. 987–1017. [Google Scholar]
- Intrigliolo, D.S.; Ballester, C.; Castel, J.R. Carry-over effects of deficit irrigation applied over seven seasons in a developing Japanese plum orchard. Agric. Water Manag. 2013, 128, 13–18. [Google Scholar] [CrossRef]
- DeJong, T.M.; Goudriaan, J. Modeling peach fruit growth and carbohydrate requirements: Reevaluation of the double-sigmoid pattern. H. Am. Soc. Hortic. Sci. 1989, 114, 800–804. [Google Scholar]
- Handley, D.F.; Johnson, R.S. Late summer irrigation of water stressed peach tress reduces fruit double and deep sutures. HortScience 2000, 35, 771. [Google Scholar] [CrossRef] [Green Version]
- Intrigliolo, D.S.; Castel, J.R.P. Crop Yield Response to Water; Steduto, P., Hsiao, T.C., Fereres, E., Raes, D., Eds.; FAO Irrigation and Drianage Paper No. 66; FAO: Rome, Italy, 2012; pp. 348–355. [Google Scholar]
- Maatallah, S.; Guizani, M.; Hjlaoui, H.; Boughattas, N.E.H.; Lopez-Lauri, F.; Ennajeh, M. Improvement of fruit quality by moderate water deficit in three plum cultivars (Prunus salicina L.) cultivated in a semi-arid region. Fruits 2015, 70, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Naor, A. Irrigation scheduling of peach—Deficit irrigation at different phenological stages and water stress assessment. Acta Hortic. 2006, 713, 339–349. [Google Scholar] [CrossRef]
- Lawrence, B.T.; Melgar, J.C. Variable fall climate conditions on carbon assimilation and spring phenology of young peach trees. Plants 2020, 9, 1353. [Google Scholar] [CrossRef] [PubMed]
- Valverdu, X.; Girona, J.; Echeverria, G.; Marsal, J.; Behboudian, M.H.; Lopez, G. Sensory quality and consumer acceptance of ‘Tardibelle’ peach are improved by deficit irrigation applied during stage II of fruit development. Hoertscience 2012, 47, 656–659. [Google Scholar] [CrossRef] [Green Version]
- Domingo, X.; Arbones, A.; Rufat, J.; Villar, J.M.; Pascual, M. Four years of RDI during stage-II ersus stage-III in peaches for processing: Yield and quality. Acta Hortic. 2011, 889, 213–220. [Google Scholar] [CrossRef]
- Lopez, G.; Girona, J.; Marsal, J. Fruit responses to severe water stress during stage III of peach development. Acta Hortic. 2012, 962, 355–362. [Google Scholar] [CrossRef]
- Girona, J.; Mata, M.; Arbones, A.; Alegre, S.; Rufat, J.; Marsal, J. Peach tree response to single and combined regulated deficit irrigation regimes under shallow soils. J. Am. Soc. Hortic. Sci. 2003, 128, 432–440. [Google Scholar] [CrossRef] [Green Version]
- Blanco, V.; Domingo, R.; Pérez-Pastor, A.; Blaya-Ros, P.J.; Torres-Sánchez, R. Soil and plant water indicators for deficit irrigation management of field-grown sweet cherry trees. Agric. Water Manag. 2018, 208, 83–94. [Google Scholar] [CrossRef]
- Yang, B.; Yao, H.; Zhang, J.; Li, Y.; Ju, Y.; Zhao, X.; Fang, Y. Effect of regulated deficit irrigation on the content of soluble sugars, organic acids and endogenous hormones in Cabernet Sauvignon in the Ningxia region of China. Food Chem. 2020, 312, 126020. [Google Scholar] [CrossRef] [PubMed]
- Hamayat, N.; Hafiz, I.A.; Ahmad, T.; Ali, I.; Qureshi, A.A. Biochemical and physiological responses of peach rootstocks against drought stress. J. Pure Appl. Agric. 2020, 5, 82–89. [Google Scholar]
- Zhao, Z.; Wang, W.; Wu, Y.; Xu, M.; Huang, X.; Ma, Y.; Ren, D. Leaf physiological responses of mature pear trees to regulated deficit irrigation in field conditions under desert climate. Sci. Hortic. 2015, 187, 122–130. [Google Scholar] [CrossRef]
- Blanco, V.; Blaya-Ros, P.J.; Torres-Sánchez, R.; Domingo, R. Influence of regulated deficit irrigation and environmental conditions on reproductive response of sweet cherry trees. Plants 2020, 9, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-García, I.; Lecina, S.; Ruiz-Sánchez, M.C.; Vera, J.; Conejero, W.; Conesa, M.R.; Dominguez, A.; Pardo, J.J.; Léllis, B.C.; Montesinos, P. Trends and challenges in irrigation scheduling in the semi-arid area of n Spain. Water 2020, 12, 785. [Google Scholar] [CrossRef] [Green Version]
- World Weather Online. El-Khatatba Historical Weather; Egypt Historical Weather Almanac: Manchester, UK, 2020; Available online: https://www.worldweatheronline.com/ezbet-mahattet-el-khatatba-weather/al-minufiyah/eg.aspx (accessed on 16 February 2021).
- Smith, M. CROPWAT: A Computer Program for Irrigation Planning and Management; FAO Irrigation and Drainage Paper No. 46; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1992; p. 127. Available online: https://books.google.com.eg/books?hl=en&lr=&id=p9tB2ht47NAC&oi=fnd&pg=IA4&ots=jmKlfQ02aE&sig=l9ZCzpw92k-R9PqrIdAQs2g12RY&redir_esc=y#v=onepage&q&f=false (accessed on 16 November 2020).
- Chapman, H.D.; Pratt, F.P. Methods of Analysis for Soils, Plants and Waters, 1st ed.; University of California, Division of Agricultural Sciences: Davis, CA, USA, 1961; p. 309. [Google Scholar]
- Egyptian Ministry of Agriculture and Land Reclamation. Plum Production—Recommendation Book; Egyptian Ministry of Agriculture and Land Reclamation: Giza, Egypt. Available online: https://www.ceicdata.com/en/egypt/agricultural-production/agricultural-production-volume-fruits-sweets-plum (accessed on 10 January 2021).
- Allen, R.G.; Pereira, l.S.; Raes, D.; Smith, M. Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements); FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998; p. 327. Available online: https://www.researchgate.net/publication/235704197_Crop_evapotranspiration-Guidelines_for_computing_crop_water_requirements-FAO_Irrigation_and_drainage_paper_56 (accessed on 23 December 2020).
- Kader, A.A. Fruit Maturity, Ripening, and Quality Relationships; International Society for Horticultural Science: Leuven, Belgium, 1999. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000; pp. 490–510. [Google Scholar]
- Islam, F.H.; Gaballah, M.; Alaa, M.G. Effect of short-term deficit irrigation on fruit quality and yield of ‘Crimson Seedless’ grown under semi-arid conditions. Plant Arch. 2020, 20, 3343–3353. [Google Scholar]
- Kim, D.O.; Lee, C.Y. Extraction and Isolation of Polyphenolics. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D., Sporns, P., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002; Volume 6, pp. I1.2.1–I1.2.12. [Google Scholar]
- Fuleki, T.; Francis, F.J. Extraction and determination of total anthocyanin in cranberries. J. Food Sci. 1968, 33, 72–77. [Google Scholar] [CrossRef]
- Uthaibutra, J.; Gemma, H. Changes in abscisic acid content of peel and pulp of ‘Jona gold’ apples during pre- and post-harvest periods. J. Jpn. Soc. Hortic. Sci. 1991, 60, 443–448. [Google Scholar] [CrossRef]
- Egyptian Ministry of Water Resources and Irrigation. Plum Production—Recommendation Book; Egyptian Ministry of Irrigation and Water Resources: Giza, Egypt. Available online: https://www.mwri.gov.eg (accessed on 20 May 2021).
- Egypt Nominal GDP Growth: 2002–2020, CEIC Data. Available online: https://www.ceicdata.com/en/indicator/egypt/nominal-gdp-growth (accessed on 21 May 2021).
- CoStat, version 4.20; Statistics Software; CoHort Software: Berkeley, CA, USA, 1990.
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 7th ed.; Iowa State University Press: Ames, IA, USA, 1990; p. 593. [Google Scholar]
- Duncan, D.B. Multiple ranges and multiple F. test. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Naor, A.; Peres, M.; Greenblat, Y.; Gal, Y.; Ben Aire, R. Effects of pre-harvest irrigation regime and crop level on yield, fruit size distribution, and fruit quality of field grown ‘Black Amber’ Japanese plum. J. Hortic. Sci. Biotechnol. 2004, 79, 281–288. [Google Scholar] [CrossRef]
- Ruiz-Sánchez, M.C.; Abrisqueta, I.; Conejero, W.; Vera, J. Deficit Irrigation Management in Early-Maturing Peach Crop. In Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies, and Challenges for Woody Crops, 1st ed.; Tejero, I.F.G., Zuazo, V.H.D., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 111–126. [Google Scholar]
- Millán, S.; Casadesús, J.; Campillo, C.; Moñino, M.J.; Prieto, M.H. Using soil moisture sensors for automated irrigation scheduling in a plum crop. Water 2019, 11, 2061. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhang, H.; Gartung, J. Long-term productivity of early season peach trees under different irrigation methods and postharvest deficit irrigation. Agric. Water Manag. 2020, 230, 105940. [Google Scholar] [CrossRef]
- Fernandes, R.; Cuevas, M.V.; Diaz-Espejo, A. Effects of water stress on fruit growth and water relations between fruits and leaves in a hedgerow olive orchard. Agric. Water Manag. 2018, 210, 32–40. [Google Scholar] [CrossRef]
- Rahmati, M.; Vercambre, G.; Davarynejad, G.; Bannayan, M.; Azizi, M.; Genard, M. Water scarcity conditions affect peach fruit size and polyphenol contents more severely than other fruit quality traits. J. Sci. Food Agric. 2015, 95, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Torrecillas, A.; Domingo, R.; Galego, R.; Ruízsánchez, M.C. Apricot tree response to withhold in irrigation at different phonological periods. Sci. Hortic. 2000, 85, 201–215. [Google Scholar] [CrossRef]
- Rasmussen, G.K. Gibberellin and cell-wall hydrolysis as related to the low response of ‘Valencia’ oranges to abscission chemicals. HortScience 1981, 16, 497–498. [Google Scholar]
- Burns, J.K.; Lewandowski, D.J. Genetics and Expression of Pectinmethylesterase, endo-B-glucanase and Polygalacturonase Genes in Valencia Oranges. In Proceedings of the 1st International Citrus Biotechnology Symposium, Eilat, Israel, 29 November–3 December 1998; pp. 65–80. [Google Scholar]
- Kazokas, W.C.; Burns, J.K. Cellulase activity and gene expression in citrus fruit abscission zones during and after ethylene treatment. J. Am. Soc. Hortic. Sci. 1998, 123, 781–786. [Google Scholar] [CrossRef] [Green Version]
- Naor, A. The interaction of soil- and stem-water potential with crop level, fruit size and stomatal conductance of field grown ‘Black-Amber’ Japanese plum. J. Hortic. Sci. Biotechnol. 2004, 79, 273–280. [Google Scholar] [CrossRef]
- Samperio, A.; Prieto, M.H.; Blanco-Cipollone, F.; Vivas, A.; Moñino, M.J. Effects of post-harvest deficit irrigation in ‘Red Beaut’Japanese plum: Tree water status, vegetative growth, fruit yield, quality, and economic return. Agric. Water Manag. 2015, 150, 92–102. [Google Scholar] [CrossRef]
- Torrecillas, A.; Corell, M.; Egea, A.G.; Pérez-López, D.; Memmi, H.; Rodríguez, P.; Cruz, Z.N.; Centeno, A.; Intrigliolo, D.S.; Moriana, A. Agronomical Effects of Deficit Irrigation in Apricot, Peach, and Plum Trees. In Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies, and Challenges for Woody Crops, 1st ed.; Tejero, I.F.G., Zuazo, V.H.D., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 87–109. [Google Scholar]
- Xylogiannis, E.; Sofo, A.; Dichio, B.; Montanaro, G.; Mininni, A.N. Root−to−shoot signaling and leaf water−use efficiency in peach trees under localized irrigation. Agronomy 2020, 10, 437. [Google Scholar] [CrossRef] [Green Version]
- Mitcham, E.J.; McDonald, R.E. Changes in grapefruit Flavedo cell wall noncellulosic neutral composition. Phytochemistry 1993, 34, 1235–1239. [Google Scholar] [CrossRef]
- Behboudian, M.H.; Mills, T.M. Deficit irrigation in deciduous orchards. Hort. Rev. 1997, 21, 125–131. [Google Scholar]
- Yakushiji, H.; Morinaga, K.; Nonami, H. Sugar accumulation and portioning in Satsuma Mandarin tree tissues and fruit in response to drought stress. J. Am. Soc. Hortic. Sci. 1998, 123, 719–726. [Google Scholar] [CrossRef] [Green Version]
- Dbara, S.; Lahmar, K.; Ben Mimoun, M. Potassium mineral nutrition combined with sustained deficit irrigation to improve yield and quality of a late season peach cultivar (Prunus persica L. cv ‘Chatos’). Int. J. Fruit Sci. 2018, 18, 369–382. [Google Scholar] [CrossRef]
- Sotiropoulos, T.; Kalfountzos, D.; Aleksiou, I.; Kotsopoulos, S.; Koutinas, N. Response of a clingstone peach cultivar to regulated deficit irrigation. Sci. Agricola 2010, 67, 164–169. [Google Scholar] [CrossRef] [Green Version]
- Intrigliolo, D.S.; Castel, J.R. Response of plum trees to deficit irrigation under two crop levels: Tree growth, yield and fruit quality. Irrig. Sci. 2010, 28, 525–534. [Google Scholar] [CrossRef]
- Ebel, R.C.; Proebsting, E.L.; Patterson, M.E. Regulated deficit irrigation may alter apple maturity, quality, and storage life. HortScience 1993, 28, 141–143. [Google Scholar] [CrossRef] [Green Version]
- Yakushiji, H.; Nonami, H.; Fukuyama, T.; Ono, S.; Takagi, N.; Hashimoto, Y. Sugar accumulation enhanced by osmoregulation in Satsuma Mandarin fruit. J. Am. Soc. Hortic. Sci. 1996, 121, 466–472. [Google Scholar] [CrossRef]
- Alam-Eldein, S.M. Characterization of Citrus Peel Maturation and the Effect of Water Stress, Growth Regulators and Date of Harvest. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2011. [Google Scholar]
- Upreti, K.K.; Reddy, Y.T.N.; Shivuprasad, S.R.; Bindu, G.V.; Jayaram, H.L.; Rajan, S. Hormonal changes in response to Paclobutrazol induced early flowering in mango cv. Totapuri. Sci. Hortic. 2013, 150, 414–418. [Google Scholar] [CrossRef]
- Mari, G.G.; Guardiola, J.L.; Agusti, M.; Garcia-Mari, F.; Almela, V. The regulation of fruit aize in citrus by tree factors. In Proceedings of the 21st International Horticultural Congress, Hamburg, Germany, 29 August–4 September 1982; Bnemann, G., Joseph, A., Eds.; International Society for Horticultural Science: Leuven, Belgium, 1982; p. 1363. [Google Scholar]
- Thakur, A.; Zora, S. Responses of ‘Spring Bright’ and ‘Summer Bright’ nectarines to deficit irrigation: Fruit growth and concentration of sugars and organic acids. Sci. Hortic. 2012, 135, 112–119. [Google Scholar] [CrossRef]
- Blanco, V.; Torres-Sánchez, R.; Blaya-Ros, P.J.; Pérez-Pastor, A.; Domingo, R. Vegetative and reproductive response of ‘Prime Giant’sweet cherry trees to regulated deficit irrigation. Sci. Hortic. 2019, 249, 478–489. [Google Scholar] [CrossRef]
- Krause, G.H. Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol. Plant. 1988, 74, 566–574. [Google Scholar] [CrossRef]
- Terashima, I.; Wong, S.C.; Osmond, C.B.; Farquhar, G.D. Characterisation of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomy. Plant Cell Physiol. 1988, 29, 385–394. [Google Scholar]
- Cohen, A.; Goell, A. Fruit growth and dry matter accumulation in grapefruit during periods of water withholding after irrigation. Aust. J. Plant Physiol. 1988, 15, 633–639. [Google Scholar]
- Grierson, W. Maturity and Grade Standards. In Fresh Citrus Fruits, 2nd ed.; Wardowski, W.F., Miller, W.M., Hall, D.J., Grierson, W., Eds.; Florida Science Source Inc.: Longboat Key, FL, USA, 2006; pp. 23–48. [Google Scholar]
- Goldhamer, D.A.; Viveros, M. Effects of pre harvest irrigation cut of durations and postharvest water deprivation on almond tree performance. Irrig. Sci. 2000, 19, 125–131. [Google Scholar] [CrossRef]
- Guizani, M.; Dabbou, S.; Maatallah, S.; Montevecchi, G.; Hajlaoui, H.; Rezig, M.; Kilani-Jaziri, S. Physiological responses and fruit quality of four peach cultivars under sustained and cyclic deficit irrigation in center-west of Tunisia. Agric. Water Managem. 2019, 217, 81–97. [Google Scholar] [CrossRef]
- Jiménez, S.; Fattahi, M.; Bedis, K.; Nasrolahpour-Moghadam, S.; Irigoyen, J.J.; Gogorcena, Y. Interactional Effects of Climate Change Factors on the Water Status, Photosynthetic Rate, and Metabolic Regulation in Peach. Front. Plant Sci. 2020, 11, 43. [Google Scholar] [CrossRef] [Green Version]
- Syvertsen, J.P. Minimum leaf water potential and stomatal conductance in citrus leaves of different ages. Ann. Bot. 1982, 49, 827–834. [Google Scholar] [CrossRef]
- Vu, J.C.V.; Yelenosky, G. Non-structural carbohydrate concentrations in leaves ‘Valencia’ orange subjected to water deficits. Environ. Expt. Bot. 1989, 29, 149–154. [Google Scholar] [CrossRef]
- Yuan, X.K.; Yang, Z.Q.; Li, Y.X.; Liu, Q.; Han, W. Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica 2016, 54, 28–39. [Google Scholar] [CrossRef]
- Rana, G.S.; Sing, K. Studying on extending postharvest life of sweet orange fruits. Crop Res. 1992, 5, 154–157. [Google Scholar]
- Kobashi, K.; Gemma, H.; Iwahori, S. Abscisic acid content and sugar metabolism of peaches grown under water stress. J. Am. Soc. Hortic. Sci. 2000, 125, 425–428. [Google Scholar] [CrossRef]
- Campi, P.; Gaeta, L.; Mastrorilli, M.; Losciale, P. Innovative soil management and micro-climate modulation for saving water in peach orchards. Front. Plant Sci. 2020, 11, 1052. [Google Scholar] [CrossRef]
- Hajian, G.; Ghasemnezhad, M.; Ghazvini, R.F.; Khaledian, M.R. Effects of regulated deficit irrigation on vegetative growth, fruit yield and quality of Japanese plum (Prunus salicina Lindell’Methly’). Agric. Conspec. Sci. 2020, 85, 61–70. [Google Scholar]
- Conesa, M.R.; Conejero, W.; Vera, J.; Ruiz-Sánchez, M.C. Effects of postharvest water deficits on the physiological behavior of early-maturing nectarine trees. Plants 2020, 9, 1104. [Google Scholar] [CrossRef]
- Johnson, R.S.; Handley, D.F.; DeJong, T.M. Long-term response of early maturing peach trees to postharvest water deficits. J. Am. Soc. Hortic. Sci. 1992, 117, 881–886. [Google Scholar] [CrossRef] [Green Version]
- Boud, A. Evolution and current status of research in phenolic compounds. Phytochemistry 2007, 68, 2722–2735. [Google Scholar]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Alesiani, D.; Canini, A.; D’Abroca, B.; DellaGreca, M.; Fiorentino, A.; Mastellone, C.; Monaco, P.; Pacifico, S. Antioxidant and antiproliferative activities of phytochemicals from Quince (Cydonia vulgaris) peels. Food Chem. 2010, 118, 199–207. [Google Scholar] [CrossRef]
- Kristl, J.; Slekovec, M.; Tojnko, S.; Unuk, T. Extractable antioxidants and non-extractable phenolics in the total antioxidant activity of selected plum cultivars (Prunus domestica L.): Evolution during on-tree ripening. Food Chem. 2011, 125, 29–34. [Google Scholar] [CrossRef]
- Diaz-Mula, H.M.; Zapata, P.J.; Guillen, F.; Castilo, S.; Martinez-Romero, D.; Valero, D.; Serrano, M. Changes in phytochemical and nutritive parameters and bioactive compounds during development and on-tree ripening of eight plum cultivars: A comparative study. J. Sci. Food Agric. 2008, 88, 2499–2507. [Google Scholar] [CrossRef]
- Norman, S.M.; Maier, V.P.; Pon, D.L. Abscisic acid accumulation and carotenoid and chlorophyll content in relation to water stress and leaf age of different types of citrus. J. Agric. Food Chem. 1990, 38, 1326–1334. [Google Scholar] [CrossRef]
- Sharp, R.E.; LeNoble, M.E.; Else, M.A.; Thome, E.T.; Gherardi, F. Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: Evidence for an interaction with ethylene. J. Exp. Bot. 2000, 51, 1575–1584. [Google Scholar] [CrossRef] [Green Version]
- Hegazi, E.S.; El-Motaium, R.A.; Yehia, T.A.; Hashem, M.E. Effect of foliar boron application on boron, chlorophyll, phenol, sugars and hormones concentration of olive (Olea europea L.) buds, leaves, and fruits. J. Plant Nutr. 2018, 41, 749–765. [Google Scholar] [CrossRef]
- Sanchez, S.M. The fine structure of the guard cells of Helianthus annuus. Amer. J. Bot. 1977, 64, 814–824. [Google Scholar] [CrossRef]
- Johnson, R.S.; Handley, D.F.; Day, K.R. Postharvest water stress of an early maturing plum. J. Hortic. Sci. 1994, 69, 1035–1041. [Google Scholar] [CrossRef]
- Aung, L.H.; Houch, L.G.; Norman, S.M. The abscisic acid content of citrus with special references to lemon. J. Exp. Bot. 1991, 42, 1083–1088. [Google Scholar] [CrossRef]
- Pinillos, V.; Ibáñez, S.; Cunha, J.M.; Hueso, J.J.; Cuevas, J. Postveraison deficit irrigation effects on fruit quality and yield of “Flame Seedless” table grape cultivated under greenhouse and net. Plants 2020, 9, 1437. [Google Scholar] [CrossRef] [PubMed]
- Valero, D.; Romero, D.M.; Serrano, M.; Riquelme, F. Postharvest gibberellin and heat treatment effects on polyamines, abscisic acid and firmness in lemon. J. Food Sci. 1998, 63, 611–615. [Google Scholar] [CrossRef]
- Wingler, A.; Purdy, S.; MacLean, J.A.; Pourtau, N. The role of sugars in integrating environmental signals during the regulation of leaf senescence. J. Exp. Bot. 2006, 57, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Okuda, H.; Noda, K.; Hirabayashi, T. Free ABA concentration in fruit from water-stressed Satsuma mandarin trees did not increase at night. J. Hortic. Sci. Biotechnol. 2002, 77, 674–676. [Google Scholar] [CrossRef]
- Razouk, R.; Kajji, A.; Hamdani, A.; Charaf, J.; Hssaini, L.; Bouda, S. Yield and fruit quality of almond, peach and plum under regulated deficit irrigation. Front. Agric. Sci. Eng. 2020, 7, 325. [Google Scholar]
- Boland, A.M.; Jerie, P.H.; Mitchell, P.D.; Goodwin, I. Long-term effects of restricted root volume and regulated deficit irrigation on peach: I. Growth and mineral nutrition. J. Am. Soc. Hortic. Sci. 2000, 125, 135–142. [Google Scholar] [CrossRef] [Green Version]
- García-Mariño, N.; De la Torre, F.; Matilla, A.J. Organic acids and soluble sugars in edible and nonedible parts of damson plum (Prunus domestica L. subsp. insititia cv. Syriaca) fruits during development and ripening. Food Sci. Technol. Int. 2008, 14, 187–193. [Google Scholar]
- Falchi, R.; Bonghi, C.; Drincovich, M.F.; Famiani, F.; Lara, M.V.; Walker, R.P.; Vizzotto, G. Sugar metabolism in stone fruit: Source-sink relationships and environmental and agronomical effects. Front. Plant Sci. 2020, 11, 1820. [Google Scholar] [CrossRef] [PubMed]
- Moñino, M.J.; Blanco-Cipollone, F.; Vivas, A.; Bodelón, O.G.; Prieto, M.H. Evaluation of different deficit irrigation strategies in the late-maturing Japanese plum cultivar’ Angeleno’. Agric. Water Manag. 2020, 234, 106–111. [Google Scholar] [CrossRef]
- Behboudian, M.H.; Marsal, J.; Girona, J.; Lopez, G. Quality and yield responses of deciduous fruits to reduced irrigation. Hortic. Rev. 2011, 38, 149–189. [Google Scholar]
Month | Min Temp (°C) | Max Temp (°C) | Humidity (%) | Rainfall (mm) | Wind Speed (km/Day) | Radiation (MJ/m2/Day) | ETo (mm/Day) |
---|---|---|---|---|---|---|---|
May | 14.1 | 31.8 | 54 | 0.0 | 216 | 24.5 | 6.05 |
June | 17.5 | 34.6 | 56 | 0.0 | 190 | 26.3 | 6.23 |
Soil Analysis (0–40 cm) | Water Analysis | ||
---|---|---|---|
pH | 7.4 | pH | 7.3 |
Sand (%) | 93.4 | ||
Silt (%) | 3.9 | ||
Clay (%) | 2.7 | ||
Total dissolved salts (ppm) | 600 | Total dissolved salts (ppm) | 400 |
CaCO3 (%) | 5.6 | ||
Ca2+ (meq/100 g) | 4 | Ca2+ (meq/L) | 3.1 |
Mg2+ (meq/100 g) | 2 | Mg2+ (meq/L) | 2.5 |
Na+ (meq/100 g) | 7.2 | Na+ (meq/L) | 2.7 |
K+ (meq/100 g) | 1.3 | K+ (meq/L) | 0.2 |
Cl− (meq/100 g) | 3.2 | Cl− (meq/L) | 2.3 |
So42− (meq/100 g) | 9.3 | So42− (meq/L) | 4.1 |
CO3− (meq/100 g) | - | ||
HCO3− (meq/100 g) | 2 | HCO3− (meq/L) | 2.1 |
100% ETc | 80% ETc | 60% ETc | ||||
---|---|---|---|---|---|---|
May | June | May | June | May | June | |
ETo | 6.05 | 6.23 | 4.84 | 4.98 | 3.63 | 3.73 |
Kc | 0.90 | 0.85 | 0.90 | 0.85 | 0.90 | 0.85 |
WR (mm/m2/day) | 4.36 | 3.97 | 3.57 | 3.17 | 2.61 | 2.38 |
WR (m3/ha/day) | 62.78 | 58.88 | 41.12 | 37.57 | 22.55 | 21.12 |
WR (m3/ha/month) | 1883.4 | 1766.4 | 1233.6 | 1127.1 | 676.5 | 633.6 |
Treatment | Number of Fruits/Tree | Fruit Weight/Tree (kg) | ||
---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | |
100% ETc (control) | 327.8 a | 362.0 a | 22.5 a | 26.5 a |
80% ETc | 305.3 b | 334.0 b | 20.0 b | 23.5 b |
60% ETc | 236.6 c | 332.0 b | 17.5 c | 20.7 c |
Treatment | Fruit Diameter (mm) | Fruit Firmness (N/mm2) | ||
---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | |
100% ETc (control) | 48.2 a | 50.5 a | 0.056 a | 0.056 a |
80% ETc | 46.0 b | 48.7 b | 0.054 a | 0.042 b |
60% ETc | 44.0 c | 46.7 c | 0.047 b | 0.041 b |
Treatment | TSS (°Brix) | TA (%) | ||
---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | |
100% ETc (control) | 12.9 c | 12.9 c | 0.94 a | 0.89 a |
80% ETc | 14.9 b | 14.9 b | 0.82 b | 0.80 b |
60% ETc | 15.8 a | 15.9 a | 0.80 c | 0.78 c |
Treatment | Total Phenols (mg/100 g FW) | Anthocyanins (mg/100 g FW) | ||
---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | |
100% ETc (control) | 100.5 c | 105.9 c | 40.7 c | 44.5 c |
80% ETc | 115.3 b | 120.9 b | 74.5 b | 75.2 b |
60% ETc | 119.4 a | 129.9 a | 80.2 a | 85.0 a |
Treatment | Cost (LE/ha) | |
---|---|---|
2019 | 2020 | |
100% ETc (control) | 6513.8 | 6523.6 |
80% ETc | 4213.8 | 4220.1 |
60% ETc | 2338.3 | 2341.8 |
Ethephon; two sprays (2000 ppm each) | 5236.0 | 5356.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, I.F.; Gaballah, M.S.; El-Hoseiny, H.M.; El-Sharnouby, M.E.; Alam-Eldein, S.M. Deficit Irrigation to Enhance Fruit Quality of the ‘African Rose’ Plum under the Egyptian Semi-Arid Conditions. Agronomy 2021, 11, 1405. https://doi.org/10.3390/agronomy11071405
Hassan IF, Gaballah MS, El-Hoseiny HM, El-Sharnouby ME, Alam-Eldein SM. Deficit Irrigation to Enhance Fruit Quality of the ‘African Rose’ Plum under the Egyptian Semi-Arid Conditions. Agronomy. 2021; 11(7):1405. https://doi.org/10.3390/agronomy11071405
Chicago/Turabian StyleHassan, Islam F., Maybelle S. Gaballah, Hanan M. El-Hoseiny, Mohamed E. El-Sharnouby, and Shamel M. Alam-Eldein. 2021. "Deficit Irrigation to Enhance Fruit Quality of the ‘African Rose’ Plum under the Egyptian Semi-Arid Conditions" Agronomy 11, no. 7: 1405. https://doi.org/10.3390/agronomy11071405
APA StyleHassan, I. F., Gaballah, M. S., El-Hoseiny, H. M., El-Sharnouby, M. E., & Alam-Eldein, S. M. (2021). Deficit Irrigation to Enhance Fruit Quality of the ‘African Rose’ Plum under the Egyptian Semi-Arid Conditions. Agronomy, 11(7), 1405. https://doi.org/10.3390/agronomy11071405