The Use of Electrostatic Field to Improve Soybean Seed Germination in Organic Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Electrostatic Field (Direct Current, DC) and Seed Treatment
2.3. Seed Germination Test
- Mean germination time (MGT) was calculated according to the formula of Ellis and Roberts [20]. MGT = Σ (ni/di), where ni is number of germinated seeds and di the day of counting.
- Time to 50% germination (T50) was calculated using the formula of Coolbear et al. T50 = ti + (N/2 − ni) (tj − ti)/(nj − ni) where N is the final number of germinated seeds, and nj and ni represent the cumulative number of seeds germinated at times tj and ti, respectively, when ni < N/2 < ni [21]. On the eighth day, 10 average fresh seedlings were taken at random, and their lengths and weights were measured. Then the average per 1 seedling was calculated.
2.4. Biochemical Analysis
2.5. Statistical Analysis
3. Results
3.1. Germination Results
3.2. Nitrogen, Phosphorus, Potassium, and Calcium Content in Soybean Seedlings
4. Discussion
4.1. Germination
4.2. Nitrogen, Phosphorus, Potassium, and Calcium Content in Soybean Seedlings
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Golijan, J.; Dimitrijević, B. Global organic food market. Acta Agric. Serb. 2018, 23, 125–140. [Google Scholar] [CrossRef]
- Willer, H.; Lernoud, J. The World of Organic Agriculture; FiBL, IFOAM: Bonn, Germany, 2020; p. 333. ISBN 978-3-03736-159-7. [Google Scholar]
- Balisteiro, D.M.; Rombaldi, C.V.; Genovese, M.I. Protein, isoflavones, trypsin inhibitory and in vitro antioxidant capacities: Comparison among conventionally and organically grown soybeans. Food Res. Int. 2013, 51, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Kamali, F.P.; Meuwissen, M.P.M.; de Boer, I.J.M.; van Middelaar, C.E.; Moreira, A.; Lansink, A.G.O. Evaluation of the envi-ronmental, economic, and social performance of soybean farming systems in southern Brazil. J. Clean. Prod. 2017, 142, 385–394. [Google Scholar] [CrossRef]
- FiBL Statistics—Area (12.01.2021: 14:05h). Available online: https://statistics.fibl.org/ (accessed on 17 June 2021).
- Clemente, T.E.; Cahoon, E.B. Soybean oil: Genetic approaches for modification of functionality and total content. Physiol. Plant 2009, 151, 1030–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiprovski, B.; Miladinović, J.; Koren, A.; Malenčić, Đ.; Mikulič-Petkovšek, M. Black and yellow soybean: Contribution of seed quality to oxidative stress response during plant development. Genetika 2019, 51, 495–510. [Google Scholar] [CrossRef] [Green Version]
- Dixit, A.K.; Kumar, V.; Rani, A.; Manjaya, J.G.; Bhatnagar, D. Effect of gamma irradiation on lipoxygenases, trypsin inhibitor, raffinose family oligosaccharides and nutritional factors of different seed coat colored soybean (Glycine max L.). Radiat. Phys. Chem. 2011, 80, 597–603. [Google Scholar] [CrossRef]
- Bilalis, D.; Kakabouki, I.; Karkanis, A.; Travlos, I.; Triantafyllidis, V.; Hela, D. Seed and saponin producton of organic quinoa (Chenopodium quinoa Willd.) for different tllage and fertlizaton. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Lamanauskas, N.; Pataro, G.; Bobinas, Č.; Šatkauskas, S.; Viškelis, P.; Bobinaitė, R.; Ferrari, G. Impact of pulsed electric field treatment on juice yield and recovery of bioactive compounds from raspberries and their byproducts. Zemdirbyste 2016, 103, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Patil, B.M. Effect of electrocultre on seed germination and growth of Raphanus sativus (L). Afr. J. Plant Sci. 2018, 12, 350–353. [Google Scholar] [CrossRef]
- Gui, Z.B.; Piras, A.; Qiao, L.M.; Gui, K.; Wang, B. Improving germination of seeds soaked GA3 by electrostatic field treatment. Int. J. Recent Technol. Eng. 2013, 2, 133–136. [Google Scholar]
- Kiatgamjorn, P.; Khanngern, W.; Nitta, S. The Effect of Electric Field on Bean Sprout Growing. In Proceedings of the International Conference on Electromagnetic Compatibility (ICEMC2002), Bangkok, Thailand, 24–27 July 2002; pp. 237–241. [Google Scholar]
- Morar, R.; Munteanu, R.; Simion, E.; Munteanu, I.; Dascalescu, L. Electrostatic treatment of bean seeds. IEEE Trans. Ind. Appl. 1999, 35, 208–212. [Google Scholar] [CrossRef]
- Alison, A.; Powell, M.A.; Oliveira, D.A.; Matthews, S. The role of imbibition damage in determining the vigour of white and coloured seed lots of dwarf french beans (Phaseolus vulgaris). J. Exp. Bot. 1986, 37, 716–722. [Google Scholar] [CrossRef]
- Baskin, J.M.; Baskin, C.C.; Li, X. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biol. 2000, 15, 139–152. [Google Scholar] [CrossRef]
- Mavi, K. The relationship between seed coat color and seed quality in watermelon Crimson sweet. Hortic. Sci. 2010, 37, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Velijević, N.; Štrbanović, R.; Poštić, P.; Stanisavljević, R.; Đukanović, L. Effects of coat colour on the seed quality and initial seedling growth of red clover cultivars (Trifolium pratense). J. Proc. Energy Agric. 2017, 21, 174–177. [Google Scholar] [CrossRef] [Green Version]
- International Seed Testing Association. International Seed Testing Association. International rules for seed testing. In Seed Science and Technology; International Seed Testing Association: Bassersdorf, Switzerland, 2019. [Google Scholar]
- Ellis, R.A.; Roberts, E.H. The quantification of ageing and survival in orthodox seeds. Seed Sci. Technol. 1981, 9, 373–409. [Google Scholar]
- Coolbear, P.; Francis, A.; Grierson, D. The effect of low temperature pre-sowing treatment under the germination performance and membrane integrity of artificially aged tomato seeds. J. Exp. Bot. 1984, 35, 1609–1617. [Google Scholar] [CrossRef]
- Bremner, J.M.; Sparks, D.L. (Eds.) Methods of soil analysis. Part 3. Chemical methods. In Soil Science Society of America; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Plank, C.O. Plant Analysis Reference Procedures for the Southern Region of the United States; Southern Cooperative Series Bulletin 368; State Department of Agriculture: Raleigh, NC, USA, 1992.
- Florez, M.; Carbonell, M.V.; Martinez, E. Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environ. Exp. Bot. 2007, 59, 68–75. [Google Scholar] [CrossRef]
- Mahajan, T.S.; Pandey, O.P. Magnetic-time model for seed germination. Afr. J. Biotechnol. 2012, 11, 15415–15421. [Google Scholar] [CrossRef]
- Radzevičius, A.; Sakalauskienė, S.; Dagys, M.; Simniškis, R.; Karklelienė, R.; Bobinas, Č.; Duchovskis, P. The effect of strong microwave electric field radiation on: (1) vegetable germination and seedling growth rate. Zemdirbyste 2013, 100, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Koch, E.; Schmitt, A.; Stephan, D.; Kromphardt, C.; Jahn, M.; Krauthausen, H.; Forsberg, G.; Werner, S.; Amein, T.; Wright, S.A.I.; et al. Evaluation of non-chemical seed treatment methods for the control of Alternaria dauci and A. radicina on carrot seeds. Eur. J. Plant Pathol. 2010, 127, 99–112. [Google Scholar] [CrossRef]
- Macovei, A.; Garg, B.; Raikwar, S.; Balestrazzi, A.; Carbonera, D.; Buttafava, A.; Bremont, J.F.J.; Gill, S.S.; Tuteja, N. Synergistic exposure of rice seeds to different doses of γ-ray and salinity stress resulted in increased antioxidant enzyme activities and gene-specific modulation of TC-NER pathway. BioMed Res. Int. 2014, 170, 780–787. [Google Scholar] [CrossRef] [Green Version]
- Djukic, V.; Miladinov, Z.; Dozet, G.; Cvijanovic, M.; Tatic, M.; Miladinovic, J.; Balesević-Tubic, S. Pulsed electromagnetic field-a cultivation practice used to increase soybean seed germination and yield. Zemdirbyste 2017, 104, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Miladinov, Z.; Balesevic Tubic, S.; Miladinovic, J.; Djukic, V.; Dozet, G.; Milosevic, B.; Vasiljevic, S. Effect of electrostatic field on germination of primed and unprimed soybean seeds. JATEM 2020, 3, 464–474. [Google Scholar]
- Palov, I.; Sirakov, K. Results from yield research on maize obtained after pre-sowing electromagnetic treatment of old and new seeds. Agric. Eng. 2004, 36, 34–42. [Google Scholar]
- Rezaei-Zarchi, S.; Imani, S.; Mehrjerdi, A.H.; Mohebbifar, R.M. The effect of electric field on the germination and growth of Medicago sativa planet, as a native Iranian alfalfa seed. Acta Agric. Serb. 2012, 17, 105–115. [Google Scholar]
- Patwardhan, M.S.; Gandhare, W.Z. Effect of electricity on seed germination. IEEMA J. 2013, 5, 88–92. [Google Scholar] [CrossRef]
- Celestino, C.; Picazo, M.L.; Toribio, M. Influence of chronic exposure to an electromagnetic field to germination and early growth of Quercussuber seeds: Preliminary study. Electro-Magnetobiology 2000, 19, 115–120. [Google Scholar] [CrossRef]
- Ahmet, E. Effect of magnetic field on yield and growth in strawberry “Camarosa”. J. Hortic. Sci. Biotechnol. 2003, 78, 145–147. [Google Scholar] [CrossRef]
- Pittman, U.J. Effects of magnetic seed treatment on yields of barley, wheat and oats on Suthern Alberta. Can. J. Plant Sci. 1977, 57, 37–45. [Google Scholar] [CrossRef]
- Shabrangi, A.; Majd, A. Comparing Effects of Electromagnetic Fields (60 Hz) on seed germination and seedling development in Monocotyledons and Dicotyledons. In Proceedings of the Electromagnetics Research Symposium, Moscow, Russia, 18–21 August 2009. [Google Scholar]
- Putincev, A.F.; Platonova, N.A. Treatment of seed in electromagnetic field (in Russian). Agriculture 1997, 4, 45–46. [Google Scholar]
- Bai, X.D.; Gao, P.X.; Wang, Z.L.; Wang, E.G. Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett. 2003, 82, 4806–4808. [Google Scholar] [CrossRef] [Green Version]
- Jia-Ming, Y. Effects of high-voltage electrostatic field on growth in plants. In Proceedings of the International Conference on Modern Electrostatics, Beijing, China, 21–25 October 1988; pp. 140–143. [Google Scholar]
- Kovalyshyn, S.J. Study of structural changes in the cells of the stimulated seed sprouts. Int. Agrophys. 2016, 30, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Tiveri, M.; Tiwari, R.K. Method of enhancing seed germination in Chlorophytum sp. Int. J. Res. Eng. Technol. 2016, 3, 21–25. [Google Scholar]
- Zhao, M.; Forrester, J.; McCaig, C. A small, physiological electric field orients cell division. Proc. Natl. Acad. Sci. USA 1999, 96, 4942–4946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miladinov, Z.; Balešević-Tubić, S.; Đukić, V.; Ilić, A.; Čobanović, L.; Dozet, G.; Merkulov-Popadić, L. Effect of priming on soybean seed germination parameters. Acta Agric. Serb. 2018, 45, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Khajeh-Hosseini, M.; Lomholt, A.; Matthews, S. Mean germination time in the laboratory estimates the relative vigour and field performance of commercial seed lots of maize (Zea mays L.). Seed Sci. Technol. 2009, 37, 446–456. [Google Scholar] [CrossRef]
- Lynikiene, S.; Pozeliene, A.; Rutkauskas, G. Influence of corona discharge field on seed viability and dynamics of germination. Int. Agrophys. 2006, 20, 195–200. [Google Scholar]
- Tan-Wilson, A.L.; Wilson, K.A. Mobilization of seed protein reserves. Physiol. Plant 2012, 145, 140–153. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.S.; Ma, B.-L.; Woods, S.; Cornelius, P.L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 2007, 47, 643–653. [Google Scholar] [CrossRef]
- Yan, W.; Frégeau-Reid, J. Breeding line selection based on multiple traits. Crop Sci. 2008, 48, 417–423. [Google Scholar] [CrossRef]
- Miladinov, Z.; Balesevic Tubic, S.; Crnobarac, J.; Miladinovic, J.; Canak, P.; Djukic, V.; Petrovic, K. Effects of foliar application of solutions of ascorbic acid, glycine betaine, salicylic acid on the yield and seed germination of soybean in the agroecological conditions of South Eastern Europe. Zemdirbyste 2020, 107, 337–344. [Google Scholar] [CrossRef]
- Damon, A.; McGonegal, R.; Tosto, P.; Ward, W. Higher Level Biology, 2nd ed.; Pearson Education Limited: London, UK, 2014; p. 409. [Google Scholar]
Year | Area (ha) | |
---|---|---|
Europe | World | |
2009 | 24,059 | 105,907 |
2010 | 30,139 | 397,661 |
2011 | 34,234 | 400,406 |
2012 | 28,410 | 314,555 |
2013 | 29,994 | 314,511 |
2014 | 51,194 | 374,237 |
2015 | 83,539 | 604,143 |
2016 | 124,215 | 578,172 |
2017 | 123,920 | 671,179 |
2018 | 171,757 | 740,964 |
Factors | GE | GP | MGT | T50 | SFL | SFW |
---|---|---|---|---|---|---|
Gen | 15.61 *** | 28.39 *** | 7.66 *** | 2.73 * | 4.99 ** | 54.55 *** |
EF | 18.48 *** | 7.56 *** | 6.69 *** | 3.38 * | 1.96 ns | 1.67 ns |
ET | 2.1 ns | 2.1 ns | 0.77 ns | 0.08 ns | 1.92 ns | 0.41 ns |
Gen × EF | 3.45 *** | 1.81 ns | 2.62 ** | 1.73 ns | 1.82 ns | 1.60 ns |
Gen × ET | 1.07 ns | 0.31 ns | 1.70 ns | 1.41 ns | 2.37 ns | 1.26 ns |
EF × ET | 0.48 ns | 1.54 ns | 0.94 ns | 1.07 ns | 0.54 ns | 0.69 ns |
Gen × EF × ET | 0.75 ns | 1.03 ns | 0.86 ns | 0.93 ns | 0.56 ns | 0.84 ns |
Mean Factors | GE (%) | GP (%) | MGT (days) | T50 (days) | SFL (cm) | SFW (g) |
---|---|---|---|---|---|---|
Gen | ||||||
Sava | 63.24 b | 84.48 c | 4.89 b | 3.99 a | 6.56 c | 0.53 c |
NS 2024 | 75.43 a | 97.24 a | 4.90 b | 3.50 b | 8.60 a | 0.55 c |
NS 1347 | 57.14 bc | 90.86 b | 5.16 a | 3.66 ab | 7.21 bc | 0.69 b |
NS 3127 | 48.67 c | 84.38 c | 5.28 a | 3.60 b | 7.29 bc | 0.79 a |
NS Blackstar | 49.90 c | 82.67 c | 5.18 a | 3.41 b | 8.04 ab | 0.66 b |
EF | ||||||
0 V | 51.07 bc | 84.93 b | 5.17 a | 3.91 a | 6.83 b | 0.61 b |
3 V | 56.73 b | 90.33 a | 5.08 a | 3.47 b | 7.35 ab | 0.65 ab |
6 V | 73.60 a | 90.67 a | 4.90 b | 3.46 b | 8.01 a | 0.64 ab |
9 V | 50.20 c | 84.27 b | 5.22 a | 3.83 a | 7.61 ab | 0.66 a |
ET | ||||||
0 min | 51.07 b | 84.93 b | 5.17 a | 3.91 a | 6.83 b | 0.61 b |
1 min | 58.13 ab | 87.07 ab | 5.09 a | 3.61 a | 7.42 ab | 0.64 ab |
3 min | 62.22 a | 89.78 a | 5.04 a | 3.57 a | 7.89 a | 0.65 a |
Factors | N | P2O5 | K | Ca |
---|---|---|---|---|
Gen | 443.13 *** | 772.99 *** | 9780.29 *** | 896.01 *** |
EF | 27.66 *** | 76.29 *** | 585.55 *** | 91.10 *** |
ET | 63.96 *** | 10.00 ** | 499.94 *** | 104.02 *** |
Gen × EF | 22.57 *** | 20.52 *** | 159.90 *** | 105.81 *** |
Gen × ET | 12.78 *** | 21.19 *** | 122.81 *** | 88.07 *** |
EF × ET | 24.83 *** | 98.34 *** | 510.66 *** | 56.78 *** |
Gen × EF × ET | 18.19 *** | 15.82 *** | 203.96 *** | 103.42 *** |
Mean Factors | N (%) | P (%) | K (%) | Ca (%) |
---|---|---|---|---|
Gen | ||||
Sava | 6.5093 c | 0.7190 b | 1.9379 c | 0.4254 b |
NS 2024 | 6.2973 e | 0.6637 d | 2.1714 a | 0.3743 d |
NS 1347 | 6.8984 a | 0.6723 c | 1.8496 d | 0.3569 e |
NS 3127 | 6.5591 b | 0.6558 e | 1.7739 e | 0.3799 c |
NS Blackstar | 6.3327 d | 0.7550 a | 1.9891 b | 0. 4697 a |
EF | ||||
0 V | 6.4906 c | 0.6990 b | 1.9378 b | 0.3883 c |
3 V | 6.5740 a | 0.7074 a | 1.9865 a | 0.3947 a |
6 V | 6.5258 b | 0.6822 d | 1.9121 c | 0.3968 b |
9 V | 6.4727 c | 0.6869 c | 1.9378 b | 0.4187 a |
ET | ||||
0 min | 6.4906 b | 0.6990 a | 1.9378 b | 0.3883 c |
1 min | 6.4863 b | 0.6945 b | 1.9620 a | 0.4110 a |
3 min | 6.5621 a | 0.6899 c | 1.9289 c | 0.3958 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamlic, Z.; Maksimovic, I.; Canak, P.; Mamlic, G.; Djukic, V.; Vasiljevic, S.; Dozet, G. The Use of Electrostatic Field to Improve Soybean Seed Germination in Organic Production. Agronomy 2021, 11, 1473. https://doi.org/10.3390/agronomy11081473
Mamlic Z, Maksimovic I, Canak P, Mamlic G, Djukic V, Vasiljevic S, Dozet G. The Use of Electrostatic Field to Improve Soybean Seed Germination in Organic Production. Agronomy. 2021; 11(8):1473. https://doi.org/10.3390/agronomy11081473
Chicago/Turabian StyleMamlic, Zlatica, Ivana Maksimovic, Petar Canak, Goran Mamlic, Vojin Djukic, Sanja Vasiljevic, and Gordana Dozet. 2021. "The Use of Electrostatic Field to Improve Soybean Seed Germination in Organic Production" Agronomy 11, no. 8: 1473. https://doi.org/10.3390/agronomy11081473
APA StyleMamlic, Z., Maksimovic, I., Canak, P., Mamlic, G., Djukic, V., Vasiljevic, S., & Dozet, G. (2021). The Use of Electrostatic Field to Improve Soybean Seed Germination in Organic Production. Agronomy, 11(8), 1473. https://doi.org/10.3390/agronomy11081473