Can Long-Term Experiments Predict Real Field N and P Balance and System Sustainability? Results from Maize, Winter Wheat, and Soybean Trials Using Mineral and Organic Fertilisers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. N and P Balance Calculations and Statistics
2.3. System Sustainability
3. Results
3.1. NUE and PUE for the Long-Term Experiment
3.2. NUE and PUE in Real Field Conditions
3.3. LTE System Sustainability
3.4. System Sustainability in the RF Condition
4. Discussion
4.1. Real Field vs. Long-Term Experiment Fertilisation Efficiency
4.2. System Sustainability
4.3. Methodological Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Crop | Treat | DY | S.E. | N out | S.E. | N in | S.E. | P out | S.E. | P in | S.E. |
---|---|---|---|---|---|---|---|---|---|---|---|
(kg ha−1) | |||||||||||
Sugar beet | fym | 13,396 | 294.6 | 147 | 3.2 | 270 | 3.8 | 23 | 0.5 | 74 | 1.7 |
res | 9178 | 259.2 | 101 | 2.9 | 70 | 3.8 | 16 | 0.5 | 31 | 1.7 | |
slu + min | 11,778 | 182.4 | 130 | 2.0 | 230 | 2.7 | 21 | 0.3 | 83 | 1.2 | |
Wheat | fym | 4650 | 91.4 | 103 | 2.2 | 70 | 3.8 | 18 | 0.4 | 31 | 1.7 |
res | 3730 | 66.6 | 84 | 1.6 | 70 | 2.5 | 15 | 0.3 | 31 | 1.1 | |
slu + min | 4485 | 50.5 | 100 | 1.2 | 230 | 2.1 | 18 | 0.2 | 83 | 0.9 | |
Silage mazie | slu + min | 19,432 | 432.5 | 148 | 3.3 | 230 | 3.8 | 30 | 0.7 | 83 | 1.7 |
Grain maize | fym | 10,845 | 115.4 | 152 | 1.6 | 278 | 2.1 | 33 | 0.4 | 72 | 0.9 |
res | 7771 | 116.7 | 109 | 1.7 | 95 | 3.3 | 24 | 0.4 | 31 | 0.9 | |
slu + min | 10,266 | 88.0 | 143 | 1.2 | 254 | 2.4 | 31 | 0.3 | 89 | 0.8 | |
Alfalfa | fym | 13,556 | 206.0 | 369 | 5.7 | 0 | 0.0 | 30 | 0.5 | 31 | 1.7 |
slu + min | 15,155 | 193.3 | 412 | 5.3 | 160 | 0.0 | 33 | 0.4 | 83 | 1.7 | |
Meadow | slu + min | 13,368 | 227.0 | 241 | 4.1 | 230 | 3.8 | 16 | 0.3 | 83 | 1.7 |
Soybean | res | 3746 | 61.9 | 261 | 4.3 | 70 | 3.8 | 28 | 0.5 | 31 | 1.7 |
slu + min | 3706 | 66.7 | 259 | 4.6 | 230 | 3.8 | 28 | 0.5 | 83 | 1.7 |
Crop | Treat | DY | S.E. | N out | S.E. | N in | S.E. | P out | S.E. | P in | S.E. |
---|---|---|---|---|---|---|---|---|---|---|---|
(kg ha−1) | |||||||||||
Winter wheat | CONV | 6076 | 327.6 | 128 | 6.9 | 157 | 11.3 | 24 | 1.5 | 36 | 2.9 |
ORG | 4041 | 312.3 | 85 | 6.6 | 105 | 10.7 | 16 | 1.0 | 0 | 0.0 | |
Silage maize | CONV | 13,844 | 637.4 | 152 | 7.0 | 307 | 7.5 | 37 | 1.7 | 48 | 8.0 |
Grain maize | CONV | 8372 | 622.4 | 126 | 9.3 | 324 | 28.2 | 26 | 2.2 | 43 | 6.4 |
ORG | 5082 | 640.8 | 76 | 9.6 | 154 | 12.0 | 16 | 1.7 | 20 | 2.3 | |
Soybean | CONV | 3445 | 218.9 | 240 | 15.3 | 7 | 4.5 | 26 | 1.6 | 24 | 2.9 |
ORG | 2703 | 223.1 | 189 | 15.6 | 105 | 14.3 | 20 | 1.7 | 13 | 1.4 |
Agricultural Product | Residue | |||
---|---|---|---|---|
Crop | N (kg kg−1) | P (kg kg−1) | N (kg kg−1) | P (kg kg−1) |
Winter wheat | 0.021 | 0.00396 | 0.005 | 0.00088 |
Silage maize | 0.011 | 0.00264 | - | - |
Grain maize | 0.015 | 0.00308 | 0.009 | 0.00176 |
Soybean | 0.070 | 0.00748 | 0.023 | 0.00308 |
Fertiliser | N (kg kg−1) | P (kg kg−1) |
---|---|---|
Farmyard manure | 0.005 | 0.0011 |
Slurry | 0.004 | 0.00132 |
Limit | N | P |
---|---|---|
Desired min. productivity (kg ha−1) | 80 | 16 |
Min. use efficiency (%) | 50 | 50 |
Max. use efficiency (%) | 90 | 90 |
Desired max. surplus (kg ha−1) | 80 | 16 |
Nutrient | Crop | Max | a | B | Res SS | R | RMSE | Bias |
---|---|---|---|---|---|---|---|---|
N | Winter wheat | 77.9 | 0.7 | 1.000 | 0.837 | 0.77 | 0.216 | 0.146 |
Maize | 99.3 | 1.0 | 0.997 | 0.661 | 0.82 | 0.148 | 0.119 | |
P | Winter wheat | 33.6 | 1.7 | 1.001 | 0.943 | −0.64 | 0.229 | 0.191 |
Maize | 23.9 | 1.0 | 0.993 | 1.929 | −0.51 | 0.254 | 0.199 | |
Soybean | 131.6 | 4.6 | 1.000 | 0.500 | −0.79 | 0.316 | 0.287 |
RMSE | ||||
---|---|---|---|---|
Nutrient | Crop | All Data | Organic | Conventional |
N | Winter wheat | 0.254 | 0.286 | 0.254 |
Maize | 0.443 | 0.494 | 0.197 | |
P | Winter wheat | 0.315 | - | 0.315 |
Maize | 0.483 | 0.562 | 0.422 | |
Soybean | 0.868 | 1.180 | 0.257 |
References
- Eurostat Agri-Environmental Indicator-Mineral Fertiliser Consumption. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_mineral_fertiliser_consumption#Analysis_at_EU_level (accessed on 1 July 2021).
- Ladha, J.K.K.; Jat, M.L.L.; Stirling, C.M.M.; Chakraborty, D.; Pradhan, P.; Krupnik, T.J.; Sapkota, T.B.; Pathak, H.; Rana, D.S.; Tesfaye, K.; et al. Achieving the sustainable development goals in agriculture: The crucial role of nitrogen in cereal-based systems. Adv. Agron. 2020, 163, 39–116. [Google Scholar]
- OECD. Environmental Performance of Agriculture in OECD Countries Since 1990; OECD Ed.: Paris, France, 2008. [Google Scholar]
- Gaudino, S.; Goia, I.; Borreani, G.; Tabacco, E.; Sacco, D. Cropping system intensification grading using an agro-environmental indicator set in northern Italy. Ecol. Indic. 2014, 40, 76–89. [Google Scholar] [CrossRef]
- Oenema, O.; Kros, H.; De Vries, W. Approaches and uncertainties in nutrient budgets: Implications for nutrient management and environmental policies. Eur. J. Agron. 2003, 20, 3–16. [Google Scholar] [CrossRef]
- Bassanino, M.; Sacco, D.; Zavattaro, L.; Grignani, C. Nutrient balance as a sustainability indicator of different agro-environments in Italy. Ecol. Indic. 2011, 11, 715–723. [Google Scholar] [CrossRef]
- Longo, M.; Dal Ferro, N.; Lazzaro, B.; Morari, F. Trade-offs among ecosystem services advance the case for improved spatial targeting of agri-environmental measures. J. Environ. Manag. 2021, 285, 112131. [Google Scholar] [CrossRef] [PubMed]
- Eurostat Gross Nutrient Balance on Agricultural Land. Available online: https://ec.europa.eu/eurostat/cache/metadata/en/t2020_rn310_esmsip2.htm (accessed on 16 December 2020).
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Anglade, J.; Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 2014, 9, 105011. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Miao, Y.; Stewart, B.A.; Zhang, F. Long-term experiments for sustainable nutrient management in China. A review. Agron. Sustain. Dev. 2010, 31, 397–414. [Google Scholar] [CrossRef] [Green Version]
- Schröder, J.J.; Smit, A.L.; Cordell, D.; Rosemarin, A. Improved phosphorus use efficiency in agriculture: A key requirement for its sustainable use. Chemosphere 2011, 84, 822–831. [Google Scholar] [CrossRef]
- EU Nitrogen Expert Panel. Nitrogen Use Efficiency (NUE)—An Indicator for the Utilization of Nitrogen in Agriculture and Food Systems; Wageningen University: Wageningen, The Netherlands, 2015. [Google Scholar]
- Quemada, M.; Lassaletta, L.; Jensen, L.S.; Godinot, O.; Brentrup, F.; Buckley, C.; Foray, S.; Hvid, S.K.; Oenema, J.; Richards, K.G.; et al. Exploring nitrogen indicators of farm performance among farm types across several European case studies. Agric. Syst. 2020, 177, 102689. [Google Scholar] [CrossRef]
- Bai, Z.; Caspari, T.; Gonzalez, M.R.; Batjes, N.H.; Mäder, P.; Bünemann, E.K.; de Goede, R.; Brussaard, L.; Xu, M.; Ferreira, C.S.S.; et al. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- Camarotto, C.; Piccoli, I.; Dal Ferro, N.; Polese, R.; Chiarini, F.; Furlan, L.; Morari, F. Have we reached the turning point? Looking for evidence of SOC increase under conservation agriculture and cover crop practices. Eur. J. Soil Sci. 2020, 71, 1050–1063. [Google Scholar] [CrossRef]
- Piccoli, I.; Furlan, L.; Lazzaro, B.; Morari, F. Examining conservation agriculture soil profiles: Outcomes from northeastern Italian silty soils combining indirect geophysical and direct assessment methods. Eur. J. Soil Sci. 2020, 71, 1064–1075. [Google Scholar] [CrossRef]
- Körschens, M. The importance of long-term field experiments for soil science and environmental research—A review. Plant Soil Environ. 2006, 52, 1–8. [Google Scholar]
- Giardini, L. Productivity and Sustainability of Different Cropping Systems; Patron Editore: Bologna, Italy, 2004. [Google Scholar]
- Dal Ferro, N.; Zanin, G.; Borin, M. Crop yield and energy use in organic and conventional farming: A case study in north-east Italy. Eur. J. Agron. 2017, 86, 37–47. [Google Scholar] [CrossRef]
- Dal Ferro, N.; Piccoli, I.; Berti, A.; Polese, R.; Morari, F. Organic carbon storage potential in deep agricultural soil layers: Evidence from long-term experiments in northeast Italy. Agric. Ecosyst. Environ. 2020, 300, 106967. [Google Scholar] [CrossRef]
- Berti, A.; Morari, F.; Dal Ferro, N.; Simonetti, G.; Polese, R. Organic input quality is more important than its quantity: C turnover coefficients in different cropping systems. Eur. J. Agron. 2016, 77, 138–145. [Google Scholar] [CrossRef]
- Anglade, J.; Billen, G.; Garnier, J. Relationships for estimating N2 fixation in legumes: Incidence for N balance of legume-based cropping systems in Europe. Ecosphere 2015, 6, 1–24. [Google Scholar] [CrossRef]
- Vos, J. The nitrogen response of potato (Solanum tuberosum L.) in the field: Nitrogen uptake and yield, harvest index and nitrogen concentration. Potato Res. 1997, 40, 237–248. [Google Scholar] [CrossRef]
- Berti, A.; Dalla Marta, A.; Mazzoncini, M.; Tei, F. An overview on long-term agro-ecosystem experiments: Present situation and future potential. Eur. J. Agron. 2016, 77, 236–241. [Google Scholar] [CrossRef]
- Berzsenyi, Z.; Győrffy, B.; Lap, D.Q. Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long-term experiment. Eur. J. Agron. 2000, 13, 225–244. [Google Scholar] [CrossRef]
- Piccoli, I.; Sartori, F.; Polese, R.; Berti, A. Crop yield after 5 decades of contrasting residue management. Nutr. Cycl. Agroecosystems 2020, 117, 231–241. [Google Scholar] [CrossRef]
- Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N.; Mäder, P.; Stolze, M.; Smith, P.; Scialabba, N.E.H.; et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maillard, É.; Angers, D.A. Animal manure application and soil organic carbon stocks: A meta-analysis. Glob. Chang. Biol. 2014, 20, 666–679. [Google Scholar] [CrossRef]
- Grillo, F.; Piccoli, I.; Furlanetto, I.; Ragazzi, F.; Obber, S.; Bonato, T.; Meneghetti, F.; Morari, F. Agro-environmental sustainability of anaerobic digestate fractions in intensive cropping systems: Insights regarding the Nitrogen use efficiency and crop performance. Agronomy 2021, 11, 745. [Google Scholar] [CrossRef]
- Giardini, L. Potenzialità Produttiva e Sostenibilità dei Sistemi Colturali; Pàtron: Bologna, Italy, 2004; ISBN 8855527487. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccoli, I.; Sartori, F.; Polese, R.; Borin, M.; Berti, A. Can Long-Term Experiments Predict Real Field N and P Balance and System Sustainability? Results from Maize, Winter Wheat, and Soybean Trials Using Mineral and Organic Fertilisers. Agronomy 2021, 11, 1472. https://doi.org/10.3390/agronomy11081472
Piccoli I, Sartori F, Polese R, Borin M, Berti A. Can Long-Term Experiments Predict Real Field N and P Balance and System Sustainability? Results from Maize, Winter Wheat, and Soybean Trials Using Mineral and Organic Fertilisers. Agronomy. 2021; 11(8):1472. https://doi.org/10.3390/agronomy11081472
Chicago/Turabian StylePiccoli, Ilaria, Felice Sartori, Riccardo Polese, Maurizio Borin, and Antonio Berti. 2021. "Can Long-Term Experiments Predict Real Field N and P Balance and System Sustainability? Results from Maize, Winter Wheat, and Soybean Trials Using Mineral and Organic Fertilisers" Agronomy 11, no. 8: 1472. https://doi.org/10.3390/agronomy11081472
APA StylePiccoli, I., Sartori, F., Polese, R., Borin, M., & Berti, A. (2021). Can Long-Term Experiments Predict Real Field N and P Balance and System Sustainability? Results from Maize, Winter Wheat, and Soybean Trials Using Mineral and Organic Fertilisers. Agronomy, 11(8), 1472. https://doi.org/10.3390/agronomy11081472