Tree Canopy Management Affects Dynamics of Herbaceous Vegetation and Soil Moisture in Silvopasture Systems Using Arboreal Legumes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Establishment
2.2. Treatments and Experimental Design
2.3. Herbage Responses
2.4. Soil Moisture
2.5. Data Analyzes
3. Results
3.1. Total Herbage Mass and Total Green Herbage Mass
3.2. Green and Dry Plant Fraction (Leaf Blade and Stem) Biomass
3.3. Crude Protein of Green Leaf Blade and Green Stem
3.4. Herbage Accumulation Rate
3.5. Canopy Bulk Density (CBD) and Canopy Height
3.6. Soil Moisture
4. Discussion
4.1. Total and Green Herbage Mass
4.2. Herbage Accumulation Rate
4.3. Canopy Bulk Density—CBD and Canopy Height
4.4. Proportions of Green (Leaf Blade and Stem) and Senescent Material (Leaf Blade and Stem)
4.5. Crude Protein of Green Leaf Blade and Green Stem
4.6. Soil Moisture
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coleman, S.W.; Moore, J.E.; Wilson, J.R. Quality and utilization. In Warm-Season (C4) Grasses; Moser, L.E., Burson, B.L., Sollenberger, L.E., Eds.; Agronomy Series No. 45; ASA-CSSA-SSSA: Madison, WI, USA, 2004; pp. 267–308. [Google Scholar]
- Lima, H.N.B.; Dubeux, J.C.B., Jr.; Santos, M.V.F.; Mello, A.C.L.; Lira, M.A.; Cunha, M.V.; Freitas, E.V.; Apolinário, V.X.O. Herbage responses of signalgrass under full sun or shade in a silvopasture system using tree legumes. Agron. J. 2020, 112, 1839–1848. [Google Scholar] [CrossRef]
- Martuscello, J.A.; Jank, L.; Neto, M.M.G.; Laura, V.A.; Cunha, D.N.F.V. Genus Brachiaria grass yields under different shade levels. Rev. Bras. Zootec. 2009, 38, 1183–1190. [Google Scholar] [CrossRef] [Green Version]
- Paciullo, D.S.C.; Gomide, C.A.M.; Castro, C.R.T.; Maurício, R.M.; Fernandes, P.B.; Morenz, M.J.F. Morphogenesis, biomass and nutritive value of Panicum maximum under different shade levels and fertilizer nitrogen rates. Grass Forage Sci. 2017, 72, 590–600. [Google Scholar] [CrossRef] [Green Version]
- Dubeux, J.C.B., Jr.; Sollenberger, L.E.; Mathews, B.W.; Scholberg, J.M.; Santos, H.Q. Nutrient cycling in warm-climate grasslands. Crop Sci. 2007, 47, 915–928. [Google Scholar] [CrossRef]
- Kaba, J.S.; Zerbe, S.; Agnolucci, M.; Scandellari, F.; Abunyewa, A.A.; Giovannetti, M.; Tagliavini, M. Atmospheric nitrogen fixation by Gliricidia trees (Gliricidia sepium (Jacq.) Kunth ex Walp.) intercropped with cocoa (Theobroma cacao L.). Plant Soil 2019, 435, 323–336. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, T.K.; Furtado, S.C.; Andrade, C.M.S.D.; Franke, I.L. Suggestions to Implement Silvopasture Systems; EMBRAPA: Rio Branco, Brazil, 2003. [Google Scholar]
- Ribaski, J.; Varella, A.C.; Flores, C.A.; Mattei, V.L. Silvopasture Systems in the Pampa Biome. 2009. Available online: http://ainfo.cnptia.embrapa.br/digital/bitstream/item/38407/1/Ribaski-J.-etal-1.pdf (accessed on 10 May 2020).
- Paciullo, D.S.C.; Castro, C.R.T.; Gomide, C.A.M.; Fernandes, P.B.; Rocha, W.S.D.; Müller, M.D.; Rossiello, R.O.P. Soil bulk density and biomass partitioning of Urochloa decumbens in a silvopastoral system. Sci. Agric. 2010, 67, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.C.; Corsi, M. Grazing management. In Simpósio Sobre Manejo de Pastagens; FEALQ: Piracicaba, Brazil, 2003; pp. 155–186. [Google Scholar]
- Drouillard, J.S. Current situation and future trends for beef production in the United States of America—A review. Asian-Australas. J. Anim. Sci. 2018, 31, 1007–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hocquette, J.F.; Ellies-Oury, M.P.; Lherm, M.; Pineau, C.; Deblitz, C.; Farmer, L. Current situation and future prospects for beef production in Europe—A review. Asian-Australas. J. Anim. Sci. 2018, 31, 1017–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apolinário, V.X.O.; Dubeux, J.C.B., Jr.; Lira, M.A.; Ferreira, R.L.C.; de Mello, A.C.L.; Coelho, D.L.; Muir, J.P.; Sampaio, E.V.S.B. Decomposition of arboreal legume fractions in a silvopastoral system. Crop Sci. 2016, 56, 1356–1363. [Google Scholar] [CrossRef]
- Herrera, A.M.; de Mello, A.C.; de Oliveira Apolinário, V.X.; Júnior, J.C.; da Silva, V.J.; dos Santos, M.V.; da Cunha, M.V. Decomposition of senescent leaves of signalgrass (Urochloa decumbens Stapf. R. Webster) and arboreal legumes in silvopastoral systems. Agrofor. Syst. 2020, 94, 2213–2224. [Google Scholar] [CrossRef]
- Silva, I.A.G.; Dubeux, J.C.B., Jr.; de Mello, A.C.L.; da Cunha, M.V.; dos Santos, M.V.F.; Apolinário, V.X.O.; de Freitas, E.V. Tree legumes enhance livestock performance in silvopasture system. Agron. J. 2021, 113, 358–369. [Google Scholar] [CrossRef]
- Lira, M.A.; Freitas, E.V.; Dubeux, J.C.B., Jr.; Zárate, R.M.L.; Andrade, W.B.; Farias, I. Evaluation of Brachiaria decumbens, Stapf. and Brachiaria humidicola, Rendle pastures, with heifers, in the Coastal region of Pernambuco. Rev. Soc. Bras. Zootec. 1995, 24. [Google Scholar]
- Barthram, G.T.; Elston, D.A.; Bolton, G.R. A comparison of three methods for measuring the vertical distribution of herbage mass in grassland. Grass Forage Sci. 2000, 55, 193–200. [Google Scholar] [CrossRef]
- Haydock, K.P.; Shaw, N.H. The comparative yield method for estimating dry matter yield of pasture. Aust. J. Exp. Agric. Anim. Husb. 1975, 15, 663–670. [Google Scholar]
- Sollenberger, L.E.; Cherney, D.J.R. Evaluating forage production and quality. Sci. Grassl. Agric. 1995, 2, 97–110. [Google Scholar]
- Arruda, D.S.R. Comparison of Methods to Assess Herbage Mass in Stargrass Pastures under Different Grazing Intensities. Master’s Thesis, Universidade Estadual de Maringá, Maringá, Brazil, 2009. [Google Scholar]
- Frame, J. Herbage Mass. In Sward Measurement Handbook; Hodgson, J., Baker, R.D., Davies, A., Eds.; British Grassland Society: Nantwich, UK, 1981; pp. 39–67. [Google Scholar]
- Klein, V.A.; Camara, R.K.; Simon, M.A.; Júnior, I.J.B. Evaluation of eletronic sensors of electric resistance and tensiometers with tension transducers to determine soil water potential. Rev. Ciências Agroveterinárias 2004, 3, 80–86. [Google Scholar]
- Abraham, E.M.; Kyriazopoulos, A.P.; Parissi, Z.M. Growth, dry matter production, phenotypic plasticity, and nutritive value of three natural populations of Dactylis glomerata L. under various shading treatments. Agrofor. Syst. 2014, 88, 287–299. [Google Scholar] [CrossRef]
- Mello, A.C.L.; Costa, S.B.M.; Dubeux, J.C.B., Jr.; Santos, M.V.F.; Apolinário, V.X.O.; Filho, F.T.; Mirelles, M.S.; Pereira, C.G. Pasture characteristics and animal performance in a silvopastoral system with Brachiaria decumbens, Gliricidia sepium and Mimosa caesalpiniifolia. Trop. Grassl. Forrajes Trop. 2014, 2, 85–87. [Google Scholar] [CrossRef]
- Costa, S.B.M.; Mello, A.C.L.; Dubeux, J.C.B., Jr.; Santos, M.V.F.; Lira, M.A.; Oliveira, J.T.C.; Apolinário, V.X.O. Livestock performance in warm-climate silvopastures using tree legumes. Agron. J. 2016, 108, 2026–2035. [Google Scholar] [CrossRef]
- Apolinário, V.X.O.; Dubeux, J.C.B.; Lira, M.A.; Ferreira, R.L.C.; Mello, A.C.L.; Santos, M.V.F.; Sampaio, E.V.S.B.; Muir, J.P. Tree legumes provide marketable wood and add nitrogen in warm-climate silvopasture systems. Agron. J. 2015, 107, 1915–1921. [Google Scholar] [CrossRef]
- Karvatte, N.; Klosowski, E.S.; Almeida, R.G.; Mesquita, E.E.; Oliveira, C.C.; Alves, F.V. Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest. Int. J. Biometeorol. 2016, 60, 1933–1941. [Google Scholar] [CrossRef]
- Santos, D.C.; Júnior, R.G.; Vilela, L.; Pulrolnik, K.; Bufon, V.; França, A.F.S. Forage dry mass accumulation and structural characteristics of Piatã grass in silvopastoral systems in the Brazilian savannah. Agric. Ecosyst. Environ. 2016, 233, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Pandey, C.B. Forage Production and Nitrogen Nutrition in Three Grasses under Coconut Tree Shades in the Humid-Tropics. Agrofor. Syst. 2011, 83, 1–12. [Google Scholar] [CrossRef]
- Guenni, O. Growth responses of three Brachiaria species to light intensity and nitrogen supply. Trop. Grassl. 2008, 42, 7587. [Google Scholar]
- Braga, C.J.; Pedreira, C.G.S.; Oliveira, E.A.; Paulino, V.T. Seasonal herbage accumulation plant-part composition and nutritive value of signalgrass (Urochloa decumbens) pastures under simulated continuous stocking. Trop. Grassl. Forrajes Trop. 2020, 8, 48–59. [Google Scholar] [CrossRef]
- Lopes, C.M.; Paciullo, D.S.C.; Araújo, S.A.C.; Morenz, M.J.F.; Gomide, C.A.M.; Mauricio, R.M.; Braz, T.G.S. Plant morphology and herbage accumulation of signal grass with or without fertilization, under different light regimes. Cienc. Rural. 2017, 47, e20160472. [Google Scholar] [CrossRef]
- Molan, L.K. Canopy Structure, Light Interception, and Herbage Accumulation in Marandu Palissadegrass Pastures under Different Post-Grazing Stubble Heigh and Continuous Stocking. Master’s Thesis, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, Brazil, 2004. [Google Scholar]
- Santos, A.M.G.; Dubeux, J.C.B., Jr.; Santos, M.V.F.; Lira, M.A.; Apolinário, V.X.O.; Costa, S.B.M.; Coêlho, D.L.; Peixôto, T.V.F.R.; Santos, E.R.S. Animal performance in grass monoculture or silvopastures using tree legumes. Agrofor. Syst. 2020, 94, 615–626. [Google Scholar] [CrossRef]
- George, S.; Wright, D.L.; Marois, J.J. Impact of grazing on soil properties and cotton yield in an integrated crop-livestock system. Soil Tillage Res. 2013, 132, 47–55. [Google Scholar] [CrossRef]
- Gargaglione, V.; Peri, P.L.; Aires, U.B. Tree-grass interaction for N in Nothofagus antarctica silvopastoral systems: Evidence of facilitation from trees to underneath grass. Agrofor. Syst. 2014, 88, 779–790. [Google Scholar] [CrossRef]
- Sales, E.C.; Saraiva, C.R.; Reis, S.T.; Rocha, V.R., Jr.; Pires, D.A.; Vitor, C.M. Morphogenesis and productivity of Pioneiro elephant grass under different residual heights and light interceptions. Acta Sci. 2014, 36, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Eldor, P. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, K.; Van, S.J.W.; Navarrete-Tindall, N.E.; Lin, C.H.; Jose, S.; Garrett, H.E. Responses of legumes and grasses to non-, moderate, and dense shade in Missouri, USA. II. Forage quality and its species-level plasticity. Agrofor. Syst. 2019, 93, 25–38. [Google Scholar] [CrossRef]
- Bosi, C.; Pezzopane, J.R.M.; Sentelhas, P.S. Soil water availability in a full sun pasture and in a silvopastoral system with eucalyptus. Agrofor. Syst. 2020, 94, 429–440. [Google Scholar] [CrossRef]
- Lima, I.M.A.; Araújo, M.C.A.; Barbosa, R.S. Evaluation of soil physical properties in silvopasture systems. Região Cent. Norte Estado Piauí. 2013, 9, 117–124. [Google Scholar]
- Silva, L.N.E.; Amaral, A.A. Assessment of soil mesophauna and macrophauna using pitfall traps. Rev. Verde 2014, 8, 108–115. [Google Scholar]
Gliricidia † | Mimosa | p Value | |
---|---|---|---|
kg DM ha−1 | |||
January | 1207 c | 977 c | <0.001 |
February | 1287 c | 979 c | <0.001 |
March | 1293 bc | 949 c | <0.001 |
April | 1479 c | 1103 bc | <0.001 |
May | 1491 b | 1120 bc | <0.001 |
June | 1724 a | 1254 ab | <0.001 |
July | 1814 a | 1351 a | <0.001 |
August | 1864 a | 1066 bc | <0.001 |
September | 1327 bc | 1028 c | <0.001 |
October | 1332 bc | 1008 c | <0.001 |
November | 1337 bc | 988 c | <0.001 |
December | 1366 bc | 925 c | <0.001 |
SEM † | 54 |
Evaluation | Green Leaf Mass | p Value | |
---|---|---|---|
One Row * | Double Row | ||
kg DM ha−1 | |||
January | 534 ef† | 550 de | 1.000 |
February | 536 ef | 527 e | 1.000 |
March | 474 f | 538 de | 0.9714 |
April | 529 ef | 589 cde | 0.9875 |
May | 557 def | 580 cde | 1.000 |
June | 1192 a | 1122 a | 0.9341 |
July | 1140 ab | 1125 a | 1.000 |
August | 1049 b | 994 a | 0.9966 |
September | 733 c | 707 bc | 1.000 |
October | 627 cde | 665 bcd | 1.000 |
November | 690 cd | 771 b | 0.7781 |
December | 530 ef | 598 cde | 0.9545 |
SEM | 54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, I.A.G.; Dubeux, J.C.B., Jr.; Santos, M.V.F.; de Mello, A.C.L.; Cunha, M.V.; Apolinário, V.X.O.; de Freitas, E.V. Tree Canopy Management Affects Dynamics of Herbaceous Vegetation and Soil Moisture in Silvopasture Systems Using Arboreal Legumes. Agronomy 2021, 11, 1509. https://doi.org/10.3390/agronomy11081509
da Silva IAG, Dubeux JCB Jr., Santos MVF, de Mello ACL, Cunha MV, Apolinário VXO, de Freitas EV. Tree Canopy Management Affects Dynamics of Herbaceous Vegetation and Soil Moisture in Silvopasture Systems Using Arboreal Legumes. Agronomy. 2021; 11(8):1509. https://doi.org/10.3390/agronomy11081509
Chicago/Turabian Styleda Silva, Izabela A. Gomes, José C. B. Dubeux, Jr., Mércia Virginia Ferreira Santos, Alexandre Carneiro Leão de Mello, Márcio Vieira Cunha, Valéria X. O. Apolinário, and Erinaldo Viana de Freitas. 2021. "Tree Canopy Management Affects Dynamics of Herbaceous Vegetation and Soil Moisture in Silvopasture Systems Using Arboreal Legumes" Agronomy 11, no. 8: 1509. https://doi.org/10.3390/agronomy11081509
APA Styleda Silva, I. A. G., Dubeux, J. C. B., Jr., Santos, M. V. F., de Mello, A. C. L., Cunha, M. V., Apolinário, V. X. O., & de Freitas, E. V. (2021). Tree Canopy Management Affects Dynamics of Herbaceous Vegetation and Soil Moisture in Silvopasture Systems Using Arboreal Legumes. Agronomy, 11(8), 1509. https://doi.org/10.3390/agronomy11081509