Nutraceutical Potential of the Low Deciduous Forest to Improve Small Ruminant Nutrition and Health: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
Plant(s) | Family | Type of Solvent | PSC Type | GIN Species (Isolate(s) Origin) | Type of Assay | Salient Results | Reference |
---|---|---|---|---|---|---|---|
Acacia pennatula Leucaena leucocephala Lysiloma latisiliquum Piscidia piscipula | Fabaceae | Acetone–Water (70:30) | CT PVPP | Haemonchus contortus (French isolate) | LMIT LEIT | The four extracts showed good results in LEIT. In LMIT, P. piscipula did not show activity. | [42] |
Havardia albicans Senegalia gaumeri | Fabaceae | Acetone–Water (70:30) | CT | H. contortus (Mexican temperate isolate) | LMIT | S. gaumeri did not have an effect against larvae motility. | [43] |
A. pennatula L. leucocephala L. latisiliquum P. piscipula | Fabaceae | Acetone–Water (70:30) | CT PVPP | Trichostrongylus colubriformis (French isolate) | LMIT LEIT | The four extracts showed good results in LEIT. In LMIT, P. piscipula did not show activity. | [44] |
A. pennatula L. leucocephala L. latisiliquum P. piscipula | Fabaceae | Acetone–Water (70:30) | CT PVPP | H. contortus (Temperate and tropical Mexican isolates) | LMIT | Sensitivity of H. contortus strains was related with their origin as well as the contact with tannin-rich plants. | [45] |
H. albicans L. leucocephala S. gaumeri | Fabaceae | Acetone–Water (70:30) | CT | H. contortus (French isolate) | LMIT LEIT | S. gaumeri and H. albicans were more potent inhibitors of larvae biology. | [46] |
Brosimum alicastrum | Moraceae | ||||||
Phytolacca icosandra | Phytolaccaceae | E, DCM, n-H | F, St, T, A, C, Sp ¤ | H. contortus (Temperate Mexican isolate) | EHT LMIT | Extracts’ bioactivity on both assays was E > DCM > n-H. | [47] |
L. latisiliquum | Fabaceae | Acetone–Water (70:30) | CT | H. contortus (Mexican and French isolates) | ANM | CTs formed aggregates in the buccal capsule, female vulva, and anus. | [48] |
L. latisiliquum | Fabaceae | Acetone–Water (70:30) | CT PVPP | H. contortus (Temperate Mexican isolate) | EHT | Blocking CTs with PVPP increased the AH effect of the extract. First work using EC50 values. | [49] |
A. pennatula | Fabaceae | Acetone–Water (70:30) | CT PVPP | 10 isolates of H. contortus § | EHT | A tropical Mexican—but not local—strain was the least susceptible against extract. | [50] |
A. pennatula | Fabaceae | Acetone–Water (70:30) | CT | H. contortus L3 from 1 to 7 weeks of age (Tropical Mexican isolate) | LMIT LEIT LMOT | EC50 and EC90 of L3 were different: w1 < w2 = w3 = w4 = w5 < w6 = w7. | [51] |
Acacia collinsi A. pennatula H. albicans L. leucocephala L. latisiliquum Mimosa bahamensis P. piscipula S. gaumeri | Fabaceae | M–W 70:30 | CT, PP PVPP | H. contortus (Tropical Mexican isolate) | EHT LEIT | Positive correlations were found between the EC50 of extracts and their CT and TP contents in the EHT. | [52] |
Bunchosia swartziana Gymnopodium floribundum | Malpighiaceae Polygonaceae | ||||||
A. pennatula | Fabaceae | Acetone–Water (70:30) | CT PVPP | 10 isolates of H. contortus § | LEIT | Lowest and highest EC50 were from a Mexican and a French isolate, respectively (36.44 vs. 501.40 μg/mL). | [53] |
L. latisiliquum | Fabaceae | Acetone–Water, M–W, M, E, MChl, DCMSE, EASE, and MSE | FG, quercitrin, arbutin | H. contortus (Tropical Mexican isolate) | LEIT | The AH activity against L3 was A–W > M–W = M = MSE. | [54] |
A. collinsi A. pennatula H. albicans L. leucocephala L. latisiliquum M. bahamensis P. piscipula S. gaumeri | Fabaceae | Acetone–Water (70:30) | CT | H. contortus (Tropical Mexican isolate) | EHT LEIT | Despite their low CT quantities, S. gaumeri showed the highest AH effect against GIN eggs and larvae. | [55] |
B. swartziana G. floribundum | Malpighiaceae Polygonaceae | ||||||
L. latisiliquum | Fabaceae | Acetone–Water, and then compared FR, OD, and LP | CT | H. contortus | LEIT | The AH activity against L3 was OD > LP = FR. | [56] |
S. gaumeri | Fabaceae | M–W 70:30 | F, Sp, 3T, A | H. contortus (Tropical Mexican isolate) | EHT | Although p-coumaric acid was suggested as a bioactive, it failed to show effects alone. | [57] |
Scenario | Species | n | Age | Type of Infection. (Isolate(s) Origin) | Plant(s) | PSC Type | Nutritional Effect | Parasitological Effect | Reference |
---|---|---|---|---|---|---|---|---|---|
Controlled | Goat | 18 | 6 m | Mixed Hc, Tc (Mexican and French isolates) | L. latisiliquum | CT PEG | NR | Total counts of adult GINs were reduced by 70% after L. latisiliquum consumption. | [58] |
Controlled | Sheep | 22 | 2 m | Monospecific Hc. (Temperate Mexican isolate) | L. latisiliquum | CT | Higher consumption of L. latisiliquum in infected animals. | Lower GIN female size, fecundity, and EPG excretion in infected animals †. | [59] |
Controlled | Sheep | 21 | 3 m | Monospecific Hc. (Temperate Mexican isolate) | H. albicans | CT PEG | Lower DMD for animals consuming H. albicans. | H. albicans inclusion reduced the length of female GIN †. | [60] |
Controlled | Goat | 12 | 3 m | Monospecific Hc. (Temperate Mexican isolate) | P. icosandra | C, F, Sp St, T | NR | Significant reduction (72%) of EPG excretion in the treated group. | [61] |
Controlled | Sheep | 28 | 3 m | Monospecific Hc | H. albicans | CT PEG | Lower DMD for animals consuming H. albicans. | Significant reduction (58.8%) of EPG excretion in the treated group. | [62] |
Controlled | Goat | 4 | NR | Monospecific Hc. (Mexican and French isolates) | L. latisiliquum | CT | NR | Changes in the cuticle, buccal capsule, and cephalic region (assessed by SEM†). | [48] |
Cafeteria | Goat | 12 | 3–5y | Natural | L. leucocephala G. floribundum M. bahamensis Viguiera dentata | CT | Neither intake nor selection were modified between experimental groups (infected vs. non-infected). | Reduction of 91.1% of EPG excretion in infected goats during the trial. | [63] |
Cafeteria | Goat | 12 | 3–5y | Monospecific Hc. (Tropical Mexican isolate) | A. pennatula B. alicastrum G. floribundum H. albicans L. latisiliquum L. leucocephala M. bahamensis P. piscipula | CT | Neither intake nor selection were modified between experimental groups (infected vs. non-infected). | Reductions of 28.08% and 13.61% of EPG during two experimental periods (5 days each period). | [64] |
Cafeteria | Goat | 22 | NR | Monospecific Hc. (Tropical Mexican isolate) | H. albicans G. floribundum L. leucocephala P. piscipula | CT PEG | GIN infection increased CT consumption. PEG administration reduced L. leucocephala and CP consumption. | Reduction of 70% of EPG excretion for infected and non-infected goats during the trial. | [65] |
Controlled | Goat | 4 | NR | Monospecific Hc. (Tropical Mexican isolate) | L. latisiliquum | PP | NR | PP diet caused ultrastructural changes in muscular and intestinal cells, assessed by SEM †. | [66] |
Controlled | Sheep | 30 | 3–4 m | Monospecific Hc. (Tropical Mexican isolate) | G. floribundum | CT | G. floribundum inclusion reduced DMD and OMD. | Inclusion of plant at 40% reduced TFEC and number of adult female GINs. | [67] |
Species | Age | n | GIN Infection Composition | Max EPG Mean | Duration (Months) | Number of Plants Consumed | % CT in Diet | Salient Results | Reference |
---|---|---|---|---|---|---|---|---|---|
Goat | 5–9 y | 12 | 15.3% Hc 46.1% Tc 38.4% Oc | 450 | 3 | 35 | 1.5 | Anthelmintic treatment did not modify the macronutrient or CT intake. | [68] |
Sheep and goat | 4–5 m | 24 | Hc, Tc, Oc † | NR | 3 | 37 | NR | Kids consumed less low-stratum plants and more medium-stratum plants, resulting in lower GIN infections. | [69] |
Goat | Adult | 36 | 44% Hc 30% Tc 26% Oc | 2450 | 3.5 | 45 | 5–9 PEG | Reduction of 78% of EPG during the first experimental stage. Higher selectivity towards grass species. | [70] |
Goat | Adult | 12 | 44% Hc 30% Tc 26% Oc | 1300 | 1 | NR | NR | Reduction of 81.2% of EPG during experiment. All goats consumed more grass species in the early mornings. | [71] |
Plant Species | Family | In Vitro Tests 2 | Reduction of EPG Counts in In Vivo Trials 3 | ||
---|---|---|---|---|---|
Eggs | Larvae | Adult GIN | |||
Acacia collinsi | Fabaceae | ✓ | ✓ | nsy | nsy |
Acacia pennatula | Fabaceae | ✓ | ✓ | nsy | |
Brosimum alicastrum | Moraceae | nsy | ✓ | nsy | |
Bunchosia swartsiana | Malpighiaceae | ✓ | ✓ | nsy | nsy |
Gymnopodium floribundum | Polygonaceae | ✓ | ✓ | nsy | ✓ |
Havardia albicans | Fabaceae | ✓ | ✓ | ✓ | ✓ |
Leucaena leucocephala | Fabaceae | ✓ | ✓ | nsy | |
Lysiloma latisiliquum | Fabaceae | ✓ | ✓ | ✓ | ✓ |
Mimosa bahamanesis | Fabaceae | ✓ | ✓ | nsy | |
Phytolacca icosandra | Phytolaccaceae | ✓ | ✓ | nsy | ✓ |
Piscidia piscipula | Fabaceae | ✓ | ✓ | nsy | |
Senegalia gaumeri | Fabaceae | ✓ | ✓ | nsy | nsy |
Viguiera dentata | Asteraceae | nsy | nsy | nsy |
4. Discussion
4.1. The In Vitro Experiences
4.2. The In Vivo Experiences
5. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trejo Vázquez, I. El clima de la selva baja caducifolia en México. Investig. Geogr. 1999, 1. [Google Scholar] [CrossRef]
- Torres-Acosta, J.F.J.; González-Pech, P.G.; Ortiz-Ocampo, G.I.; Rodríguez-Vivas, I.; Tun-Garrido, J.; Ventura-Cordero, J.; Castañeda-Ramírez, G.S.; Hernández-Bolio, G.I.; Sandoval-Castro, C.A.; Chan-Pérez, J.I.; et al. Revalorizando el uso de la selva baja caducifolia para la producción de rumiantes. Trop. Subtrop. Agroecosyst. 2016, 19, 73–80. [Google Scholar]
- Gutiérrez, C.; Zamora, P. Especies Leñosas de la Selva Baja Caducifolia de Xmatkuil, Yucatán, México. For. Veracruzana 2012, 14, 9–14. [Google Scholar]
- Flores-Guido, J.; Durán, R.; Ortiz, J. Comunidades terrestres. Comunidades vegetales terrestres. In Biodiversidad y Desarrollo Humano en Yucatán; Duran, R., Méndez, M., Eds.; CICY, PPD-FMAN, CONABIO, SEDUMA: Mexico, 2010; pp. 125–129. Available online: https://www.cicy.mx/Documentos/CICY/Sitios/Biodiversidad/pdfs/Cap3/01%20Comunidades%20vegetales.pdf (accessed on 15 May 2021).
- Arellano-Rodríguez, J.A.; Flores, J.S.; Tun-Garrido, J.; Cruz-Bojórquez, M.J. Nomenclatura, Forma de Vida, Uso, Manejo y Distribución de las Especies Vegetales de la Península de Yucatán; Flores, J.S., Ed.; Universidad Autónoma de Yucatán: Mérida, Mexico, 2003; ISBN 9709680385. [Google Scholar]
- Trejo, I. Caracteristicas del medio fisico de la selva baja caducifolia. Investig. Geogr. 1996, 4, 95–110. [Google Scholar]
- Flores, J.S.; Vermont, R.; Kantún, J. Leguminosae diversity in the Yucatán Peninsula and its importance for sheep and goat production. In Herbivores: The Assessment of Intake, Digestibility and the Roles of Secondary Compounds; Sandoval-Castro, C.A., Deb Hovell, F.V., Torres-Acosta, J.F.d.J., Ayala-Burgos, A., Eds.; University Press: Nottingham, UK, 2006; pp. 291–299. [Google Scholar]
- González-Pech, P.G.; de Jesús Torres-Acosta, J.F.; Sandoval-Castro, C.A.; Tun-Garrido, J. Feeding behavior of sheep and goats in a deciduous tropical forest during the dry season: The same menu consumed differently. Small Rumin. Res. 2015, 133, 128–134. [Google Scholar] [CrossRef]
- Ventura-Cordero, J.; González-Pech, P.G.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Tun-Garrido, J. Sheep and goat browsing a tropical deciduous forest during the rainy season: Why does similar plant species consumption result in different nutrient intake? Anim. Prod. Sci. 2019, 59, 66–72. [Google Scholar] [CrossRef]
- Ríos, G.; Riley, J.C. Preliminary studies on the utilization of the natural vegetation in the henequen zone of Yucatan for the production of goats. I. Selection and nutritive value of native plants. Trop. Anim. Health Prod. 1985, 10, 1–10. [Google Scholar]
- Ventura-Cordero, J.; Sandoval-Castro, C.A.; González-Pech, P.G.; Torres-Acosta, J.F.d.J. El follaje de la selva baja caducifolia como alimento nutracéutico y su potencial antihelmíntico en pequeños rumiantes. Av. Investig. Agropecu. 2017, 21, 55–67. [Google Scholar]
- Ortega-Reyes, L. Composición química y digestibilidad de la dieta de ovinos pelibuey bajo con- diciones de libre pastoreo en un henequenal de Yucatán, México. Rev. Mex. Ciencias Pecu. 1985, 48, 17–23. [Google Scholar]
- Hoste, H.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Mueller-Harvey, I.; Sotiraki, S.; Louvandini, H.; Thamsborg, S.M.; Terrill, T.H. Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Vet. Parasitol. 2015, 212, 5–17. [Google Scholar] [CrossRef]
- Andlauer, W.; Fürst, P. Nutraceuticals: A piece of history, present status and outlook. Food Res. Int. 2002, 35, 171–176. [Google Scholar] [CrossRef]
- Sauer, S.; Plauth, A. Health-beneficial nutraceuticals—Myth or reality? Appl. Microbiol. Biotechnol. 2017, 101, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Muir, J.P. The multi-faceted role of condensed tannins in the goat ecosystem. Small Rumin. Res. 2011, 98, 115–120. [Google Scholar] [CrossRef]
- Moore, B.D.; Wiggins, N.L.; Marsh, K.J.; Dearing, M.D.; Foley, W.J. Translating physiological signals to changes in feeding behaviour in mammals and the future effects of global climate change. Anim. Prod. Sci. 2015, 55, 272–283. [Google Scholar] [CrossRef]
- Stear, M.J.; Singleton, D.; Matthews, L. An evolutionary perspective on gastrointestinal nematodes of sheep. J. Helminthol. 2011, 85, 113–120. [Google Scholar] [CrossRef]
- Wang, S.; Alseekh, S.; Fernie, A.R.; Luo, J. The Structure and Function of Major Plant Metabolite Modifications. Mol. Plant 2019, 12, 899–919. [Google Scholar] [CrossRef] [PubMed]
- Iason, G. The role of plant secondary metabolites in mammalian herbivory: Ecological perspectives. Proc. Nutr. Soc. 2005, 64, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.A.; Weber, M.G. On the study of plant defence and herbivory using comparative approaches: How important are secondary plant compounds. Ecol. Lett. 2015, 18, 985–991. [Google Scholar] [CrossRef]
- Matsuura, H.N.; Fett-Neto, A.G. Plant Alkaloids: Main Features, Toxicity, and Mechanisms of Action. Plant Toxins 2015, 1–15. [Google Scholar] [CrossRef]
- Zhou, F.; Pichersky, E. More is better: The diversity of terpene metabolism in plants. Curr. Opin. Plant Biol. 2020, 55, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Spiegler, V.; Liebau, E.; Hensel, A. Medicinal plant extracts and plant-derived polyphenols with anthelmintic activity against intestinal nematodes. Nat. Prod. Rep. 2017, 34, 627–643. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Ramírez-Restrepo, C.A.; Muir, J.P. Developing a conceptual model of possible benefits of condensed tannins for ruminant production. Animal 2014, 8, 1095–1105. [Google Scholar] [CrossRef] [Green Version]
- Mlambo, V.; Mapiye, C. Towards household food and nutrition security in semi-arid areas: What role for condensed tannin-rich ruminant feedstuffs? Food Res. Int. 2015, 76, 953–961. [Google Scholar] [CrossRef]
- Distel, R.A.; Villalba, J.J. Use of unpalatable forages by ruminants: The influence of experience with the biophysical and social environment. Animals 2018, 8, 56. [Google Scholar] [CrossRef] [Green Version]
- Mueller-Harvey, I.; Bee, G.; Dohme-Meier, F.; Hoste, H.; Karonen, M.; Kölliker, R.; Lüscher, A.; Niderkorn, V.; Pellikaan, W.F.; Salminen, J.P.; et al. Benefits of condensed tannins in forage legumes fed to ruminants: Importance of structure, concentration, and diet composition. Crop Sci. 2019, 59, 861–885. [Google Scholar] [CrossRef] [Green Version]
- Hoste, H.; Martinez-Ortiz-De-Montellano, C.; Manolaraki, F.; Brunet, S.; Ojeda-Robertos, N.; Fourquaux, I.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A. Direct and indirect effects of bioactive tannin-rich tropical and temperate legumes against nematode infections. Vet. Parasitol. 2012, 186, 18–27. [Google Scholar] [CrossRef]
- Burke, J.M.; Miller, J.E. Sustainable Approaches to Parasite Control in Ruminant Livestock. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 89–107. [Google Scholar] [CrossRef]
- Aboagye, I.A.; Beauchemin, K.A. Potential of molecular weight and structure of tannins to reduce methane emissions from ruminants: A review. Animals 2019, 9, 856. [Google Scholar] [CrossRef] [Green Version]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef] [PubMed]
- Ku-Vera, J.C.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J.; Gómez-Bravo, C.A.; Aguilar-Pérez, C.F.; Solorio-Sánchez, F.J. Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Front. Vet. Sci. 2020, 7, 1–14. [Google Scholar] [CrossRef]
- Poulin, R. Explaining variability in parasite aggregation levels among host samples. Parasitology 2013, 140, 541–546. [Google Scholar] [CrossRef] [Green Version]
- Torres-Acosta, J.F.J.; Hoste, H.; Sandoval-Castro, C.A.; Torres-Fajardo, R.A.; Ventura-Cordero, J.; González-Pech, P.G.; Mancilla-Montelongo, G.; Ojeda-Robertos, N.F.; Martínez-Ortíz-de-Montellano, C. El “Arte de la Guerra” contra los nematodos gastrointestinales en rebaños de ovinos y caprinos en el trópico. Rev. Acadêmica Ciência Anim. 2019, 17, 39–46. [Google Scholar]
- Arsenopoulos, K.V.; Fthenakis, G.C.; Katsarou, E.I.; Papadopoulos, E. Haemonchosis: A challenging parasitic infection of sheep and goats. Animals 2021, 11, 363. [Google Scholar] [CrossRef]
- Kenyon, F.; Hutchings, F.; Morgan-Davies, C.; van Dijk, J.; Bartley, D.J. Worm Control in Livestock: Bringing Science to the Field. Trends Parasitol. 2017, 33, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Zajac, A.M.; Garza, J. Biology, Epidemiology, and Control of Gastrointestinal Nematodes of Small Ruminants. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Torres-Fajardo, R.A.; González-Pech, P.G.; Sandoval-Castro, C.A.; de Jesús Torres-Acosta, J.F. Small ruminant production based on rangelands to optimize animal nutrition and health: Building an interdisciplinary approach to evaluate nutraceutical plants. Animals 2020, 10, 1799. [Google Scholar] [CrossRef]
- Agreil, C.; Meuret, M. An improved method for quantifying intake rate and ingestive behaviour of ruminants in diverse and variable habitats using direct observation. Small Rumin. Res. 2004, 54, 99–113. [Google Scholar] [CrossRef]
- Bonnet, O.J.F.; Meuret, M.; Tischler, M.R.; Cezimbra, I.M.; Azambuja, J.C.R.; Carvalho, P.C.F. Continuous bite monitoring: A method to assess the foraging dynamics of herbivores in natural grazing conditions. Anim. Prod. Sci. 2015, 55, 339–349. [Google Scholar] [CrossRef]
- Alonso-Díaz, M.A.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Aguilar-Caballero, A.J.; Hoste, H. In vitro larval migration and kinetics of exsheathment of Haemonchus contortus larvae exposed to four tropical tanniniferous plant extracts. Vet. Parasitol. 2008, 153, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Orduño, G.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Aguilar-Caballero, A.J.; Reyes-Ramírez, R.; Hoste, H.; Calderón-Quintal, J.A. In vitro Anthelmintic effec of Acacia gaumeri, Havardia albicans and quebracho tannin extract on a mexican strain of Haemonchus contortus L3 larvae. Trop. Subtrop. Agroecosyst. 2008, 8, 191–197. [Google Scholar]
- Alonso-Díaz, M.A.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Capetillo-Leal, C.; Brunet, S.; Hoste, H. Effects of four tropical tanniniferous plant extracts on the inhibition of larval migration and the exsheathment process of Trichostrongylus colubriformis infective stage. Vet. Parasitol. 2008, 153, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Quintal, J.; Torres-Acosta, J.; Sandoval-Castro, C.; Alonso, M.; Hoste, H.; Aguilar-Caballero, A. Adaptation of Haemonchus contortus to condensed tannins: Can it be possible? Arch. Med. Vet. 2010, 42, 165–171. [Google Scholar] [CrossRef]
- Alonso-Díaz, M.A.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Hoste, H. Comparing the sensitivity of two in vitro assays to evaluate the anthelmintic activity of tropical tannin rich plant extracts against Haemonchus contortus. Vet. Parasitol. 2011, 181, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Villegas, M.M.; Borges-Argáez, R.; Rodriguez-Vivas, R.I.; Torres-Acosta, J.F.J.; Méndez-Gonzalez, M.; Cáceres-Farfan, M. Ovicidal and larvicidal activity of the crude extracts from Phytolacca icosandra against Haemonchus contortus. Vet. Parasitol. 2011, 179, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ortíz-de-Montellano, C.; Arroyo-López, C.; Fourquaux, I.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Hoste, H. Scanning electron microscopy of Haemonchus contortus exposed to tannin-rich plants under in vivo and in vitro conditions. Exp. Parasitol. 2013, 133, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Magaña, J.J.; Torres-Acosta, J.F.J.; Aguilar-Caballero, A.J.; Sandoval-Castro, C.A.; Hoste, H.; Chan-Pérez, J.I. Anthelmintic activity of acetone-water extracts against Haemonchus contortus eggs: Interactions between tannins and other plant secondary compounds. Vet. Parasitol. 2014, 206, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Chan-Pérez, J.I.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Hoste, H.; Castañeda-Ramírez, G.S.; Vilarem, G.; Mathieu, C. In vitro susceptibility of ten Haemonchus contortus isolates from different geographical origins towards acetone:water extracts of two tannin rich plants. Vet. Parasitol. 2016, 217, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Castañeda-Ramírez, G.S.; Mathieu, C.; Vilarem, G.; Hoste, H.; Mendoza-de-Gives, P.; González-Pech, P.G.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A. Age of Haemonchus contortus third stage infective larvae is a factor influencing the in vitro assessment of anthelmintic properties of tannin containing plant extracts. Vet. Parasitol. 2017, 243, 130–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castañeda-Ramírez, G.S.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; González-Pech, P.G.; Parra-Tabla, V.P.; Mathieu, C. Is there a negative association between the content of condensed tannins, total phenols, and total tannins of tropical plant extracts and in vitro anthelmintic activity against Haemonchus contortus eggs? Parasitol. Res. 2017, 116, 3341–3348. [Google Scholar] [CrossRef]
- Chan-Pérez, J.I.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Castañeda-Ramírez, G.S.; Vilarem, G.; Mathieu, C.; Hoste, H. Susceptibility of ten Haemonchus contortus isolates from different geographical origins towards acetone:water extracts of polyphenol-rich plants. Part 2: Infective L3 larvae. Vet. Parasitol. 2017, 240, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Bolio, G.I.; Kutzner, E.; Eisenreich, W.; de Jesús Torres-Acosta, J.F.; Peña-Rodríguez, L.M. The use of 1H–NMR Metabolomics to Optimise the Extraction and Preliminary Identification of Anthelmintic Products from the Leaves of Lysiloma latisiliquum. Phytochem. Anal. 2018, 29, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Ramírez, G.S.; Rodríguez-Labastida, M.; Ortiz-Ocampo, G.I.; González-Pech, P.G.; Ventura-Cordero, J.; Borges-Argáez, R.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Mathieu, C. An in vitro approach to evaluate the nutraceutical value of plant foliage against Haemonchus contortus. Parasitol. Res. 2018, 117, 3979–3991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Bolio, G.I.; García-Sosa, K.; Escalante-Erosa, F.; Castañeda-Ramírez, G.S.; Sauri-Duch, E.; de Jesús Torres-Acosta, J.F.; Peña-Rodríguez, L.M. Effects of polyphenol removal methods on the in vitro exsheathment inhibitory activity of Lysiloma latisiliquum extracts against Haemonchus contortus larvae. Nat. Prod. Res. 2018, 32, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Ramírez, G.S.; de Jesús Torres-Acosta, J.F.; Sandoval-Castro, C.A.; Borges-Argáez, R.; Cáceres-Farfán, M.; Mancilla-Montelongo, G.; Mathieu, C. Bio-guided fractionation to identify Senegalia gaumeri leaf extract compounds with anthelmintic activity against Haemonchus contortus eggs and larvae. Vet. Parasitol. 2019, 270, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunet, S.; de Montellano, C.M.O.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Aguilar-Caballero, A.J.; Capetillo-Leal, C.; Hoste, H. Effect of the consumption of Lysiloma latisiliquum on the larval establishment of gastrointestinal nematodes in goats. Vet. Parasitol. 2008, 157, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ortíz-de-Montellano, C.; Vargas-Magaña, J.J.; Canul-Ku, H.L.; Miranda-Soberanis, R.; Capetillo-Leal, C.; Sandoval-Castro, C.A.; Hoste, H.; Torres-Acosta, J.F.J. Effect of a tropical tannin-rich plant Lysiloma latisiliquum on adult populations of Haemonchus contortus in sheep. Vet. Parasitol. 2010, 172, 283–290. [Google Scholar] [CrossRef]
- Galicia-Aguilar, H.H.; Rodríguez-González, L.A.; Capetillo-Leal, C.M.; Cámara-Sarmiento, R.; Aguilar-Caballero, A.J.; Sandoval-Castro, C.A.; Torres-Acosta, J.F.J. Effects of Havardia albicans supplementation on feed consumption and dry matter digestibility of sheep and the biology of Haemonchus contortus. Anim. Feed Sci. Technol. 2012, 176, 178–184. [Google Scholar] [CrossRef]
- Hernández-Villegas, M.M.; Borges-Argáez, R.; Rodríguez-Vivas, R.I.; Torres-Acosta, J.F.J.; Méndez-González, M.; Cáceres-Farfán, M. In vivo anthelmintic activity of Phytolacca icosandra against Haemonchus contortus in goats. Vet. Parasitol. 2012, 189, 284–290. [Google Scholar] [CrossRef]
- Méndez-Ortíz, F.A.; Sandoval-Castro, C.A.; Torres-Acosta, J.F.d.J. Short term consumption of Havardia albicans tannin rich fodder by sheep: Effects on feed intake, diet digestibility and excretion of Haemonchus contortus eggs. Anim. Feed Sci. Technol. 2012, 176, 185–191. [Google Scholar] [CrossRef]
- Ventura-Cordero, J.; González-Pech, P.G.; Jaimez-Rodriguez, P.R.; Ortíz-Ocampo, G.I.; Sandoval-Castro, C.A.; Torres-Acosta, J.F.J. Gastrointestinal nematode infection does not affect selection of tropical foliage by goats in a cafeteria trial. Trop. Anim. Health Prod. 2017, 49, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Ventura-Cordero, J.; González-Pech, P.G.; Jaimez-Rodriguez, P.R.; Ortiz-Ocampo, G.I.; Sandoval-Castro, C.A.; Torres-Acosta, J.F.J. Feed resource selection of Criollo goats artificially infected with Haemonchus contortus: Nutritional wisdom and prophylactic self-medication. Animal 2018, 12, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Torres-Fajardo, R.A.; González-Pech, P.G.; Ventura-Cordero, J.; Ortíz-Ocampo, G.I.; Sandoval-Castro, C.A.; Torres-Acosta, J.F.J. Feed resource selection of Criollo goats is the result of an interaction between plant resources, condensed tannins and Haemonchus contortus infection. Appl. Anim. Behav. Sci. 2018, 208, 49–55. [Google Scholar] [CrossRef]
- Martínez-Ortiz-De-Montellano, C.; Torres-Acosta, J.F.D.J.; Fourquaux, I.; Sandoval-Castro, C.A.; Hoste, H. Ultrastructural study of adult Haemonchus contortus exposed to polyphenol-rich materials under in vivo conditions in goats. Parasite 2019, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Méndez-Ortiz, F.A.; Sandoval-Castro, C.A.; Ventura-Cordero, J.; Sarmiento-Franco, L.A.; Santos-Ricalde, R.H.; Torres-Acosta, J.F.J. Gymnopodium floribundum fodder as a model for the in vivo evaluation of nutraceutical value against Haemonchus contortus. Trop. Anim. Health Prod. 2019, 51, 1591–1599. [Google Scholar] [CrossRef] [PubMed]
- Novelo-Chi, L.K.; González-Pech, P.G.; Ventura-Cordero, J.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Cámara-Sarmiento, R. Gastrointestinal nematode infection and feeding behaviour of goats in a heterogeneous vegetation: No evidence of therapeutic self-medication. Behav. Process. 2019, 162, 7–13. [Google Scholar] [CrossRef]
- Jaimez-Rodríguez, P.R.; González-Pech, P.G.; Ventura-Cordero, J.; Brito, D.R.B.; Costa-Júnior, L.M.; Sandoval-Castro, C.A.; Torres-Acosta, J.F.J. The worm burden of tracer kids and lambs browsing heterogeneous vegetation is influenced by strata harvested and not total dry matter intake or plant life form. Trop. Anim. Health Prod. 2019, 51, 2243–2251. [Google Scholar] [CrossRef] [PubMed]
- Torres-Fajardo, R.A.; Navarro-Alberto, J.A.; Ventura-Cordero, J.; González-Pech, P.G.; Sandoval-Castro, C.A.; Chan-Pérez, J.I.; Torres-Acosta, J.F.d.J. Intake and Selection of Goats Grazing Heterogeneous Vegetation: Effect of Gastrointestinal Nematodes and Condensed Tannins. Rangel. Ecol. Manag. 2019, 72, 946–953. [Google Scholar] [CrossRef]
- Torres-Fajardo, R.A.; González-Pech, P.G.; Sandoval-Castro, C.A.; Ventura-Cordero, J.; Torres-Acosta, J.F.J. Criollo goats limit their grass intake in the early morning suggesting a prophylactic self-medication behaviour in a heterogeneous vegetation. Trop. Anim. Health Prod. 2019, 51, 2473–2479. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.M. Biology, Epidemiology, Diagnosis, and Management of Anthelmintic Resistance in Gastrointestinal Nematodes of Livestock. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 17–30. [Google Scholar] [CrossRef]
- Sangster, N.C.; Cowling, A.; Woodgate, R.G. Ten Events That Defined Anthelmintic Resistance Research. Trends Parasitol. 2018, 34, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Jackson, F.; Varady, M.; Bartley, D.J. Managing anthelmintic resistance in goats-Can we learn lessons from sheep? Small Rumin. Res. 2012, 103, 3–9. [Google Scholar] [CrossRef]
- Salgado, J.A.; de Santos, C.P. Panorama da resistência anti-helmíntica em nematoides gastrointestinais de pequenos ruminantes no Brasil. Rev. Bras. Parasitol. Vet. 2016, 25, 3–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlier, J.; van der Voort, M.; Kenyon, F.; Skuce, P.; Vercruysse, J. Chasing helminths and their economic impact on farmed ruminants. Trends Parasitol. 2014, 30, 361–367. [Google Scholar] [CrossRef]
- Charlier, J.; Rinaldi, L.; Musella, V.; Ploeger, H.W.; Chartier, C.; Vineer, H.R.; Hinney, B.; von Samson-Himmelstjerna, G.; Băcescu, B.; Mickiewicz, M.; et al. Initial assessment of the economic burden of major parasitic helminth infections to the ruminant livestock industry in Europe. Prev. Vet. Med. 2020, 182, 105103. [Google Scholar] [CrossRef] [PubMed]
- Torres-Acosta, J.F.J.; Molento, M.; Mendoza de Gives, P. Research and implementation of novel approaches for the control of nematode parasites in Latin America and the Caribbean: Is there sufficient incentive for a greater extension effort? Vet. Parasitol. 2012, 186, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Zeineldin, M.M.; Sabek, A.A.; Barakat, R.A.; Elghandour, M.M.M.Y.; Salem, A.Z.M.; de Oca Jiménez, R.M. Potential contribution of plants bioactive in ruminant productive performance and their impact on gastrointestinal parasites elimination. Agrofor. Syst. 2020, 94, 1415–1432. [Google Scholar] [CrossRef]
- Oliveira Santos, F.; Ponce Morais Cerqueira, A.; Branco, A.; José Moreira Batatinha, M.; Borges Botura, M. Anthelmintic activity of plants against gastrointestinal nematodes of goats: A review. Parasitology 2019, 146, 1233–1246. [Google Scholar] [CrossRef] [PubMed]
- Kearney, P.E.; Murray, P.J.; Hoy, J.M.; Hohenhaus, M.; Kotze, A. The “Toolbox” of strategies for managing Haemonchus contortus in goats: What’s in and what’s out. Vet. Parasitol. 2016, 220, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Benell, M.; Hobbs, T.; Hughes, S.; Revell, D.K. Selecting Potential Woody Forage Plants that Contain Beneficial Bioactives. In In-Vitro Screening of Plant Resources for Extra-Nutritional Attributes in Ruminants: Nuclear and Related Methodologies; Vercoe, P.E., Makkar, H.P., Schlinck, A.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–14. [Google Scholar]
- Peña-Espinoza, M.; Valente, A.; Thamsborg, S.M.; Simonsen, H.T.; Boas, U.; Enemark, H.L.; Lopez-Munoz, R.; Williams, A. Anti-parasitic activity of chicory (Cichorium intybus) and the role of its natural bioactive compounds: A review. Parasites Vectors 2018, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Marie-Magdeleine, C.; Ceriac, S.; Barde, D.J.; Minatchy, N.; Periacarpin, F.; Pommier, F.; Calif, B.; Philibert, L.; Bambou, J.C.; Archimède, H. Evaluation of nutraceutical properties of Leucaena leucocephala leaf pellets fed to goat kids infected with Haemonchus contortus. BMC Vet. Res. 2020, 16, 280. [Google Scholar] [CrossRef]
- Oliveira, M.; Hoste, H.; Custódio, L. A systematic review on the ethnoveterinary uses of mediterranean salt-tolerant plants: Exploring its potential use as fodder, nutraceuticals or phytotherapeutics in ruminant production. J. Ethnopharmacol. 2021, 267. [Google Scholar] [CrossRef] [PubMed]
- Perry, R.N. Hatching. In The Biology of Nematodes; Donald, L., Ed.; Taylor & Francis: London, UK; New York, NY, USA, 2002; pp. 147–169. [Google Scholar]
- von Son-de Fernex, E.; Alonso-Díaz, M.Á.; Mendoza-de Gives, P.; Valles-de la Mora, B.; González-Cortazar, M.; Zamilpa, A.; Castillo Gallegos, E. Elucidation of Leucaena leucocephala anthelmintic-like phytochemicals and the ultrastructural damage generated to eggs of Cooperia spp. Vet. Parasitol. 2015, 214, 89–95. [Google Scholar] [CrossRef]
- Mancilla-Montelongo, G.; Castañeda-Ramírez, G.S.; Can-Celis, A.; Chan-Pérez, J.I.; Sandoval-Castro, C.A.; Torres-Acosta, J.F.d.J. Optimal age of Trichostrongylus colubriformis larvae (L3) for the in vitro larval exsheathment inhibition test under tropical conditions. Vet. Parasitol. 2020, 278, 109027. [Google Scholar] [CrossRef]
- Wood, I.B.; Amaral, N.K.; Bairden, K.; Duncan, J.L.; Kassai, T.; Malone, J.B.; Pankavich, J.A.; Reinecke, R.K.; Slocombe, O.; Taylor, S.M.; et al. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) second edition of guidelines for evaluating the efficacy of anthelmintics in ruminants (bovine, ovine, caprine). Vet. Parasitol. 1995, 58, 181–213. [Google Scholar] [CrossRef]
- Bauhaud, D.; Ortiz-de Montellano, C.; Chauveau, S.; Prevot, F.; Torres-Acosta, J.F.J.; Fouraste, I.; Hoste, H. Effects of four tanniferous plant extracts on the in vitro exsheathment of third-stage larvae of parasitic nematodes. Parasitology 2006, 132, 545–554. [Google Scholar] [CrossRef]
- Sandoval-Castro, C.A. Do condensed tannins from Lysiloma latisiliquum have a role in its anthelmintic activity? Nat. Prod. Res. 2019, 33, 773–775. [Google Scholar] [CrossRef]
- Min, B.; Barry, T.; Attwood, G.; McNabb, W. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Anim. Feed Sci. Technol. 2003, 106, 3–19. [Google Scholar] [CrossRef]
- Landau, S.Y.; Provenza, F.D. Of browse, goats, and men: Contribution to the debate on animal traditions and cultures. Appl. Anim. Behav. Sci. 2020, 232, 105127. [Google Scholar] [CrossRef]
- Torres-Acosta, J.F.; Jacobs, D.E. Duration of activity of oral moxidectin against Haemonchus contortus, Teladorsagia circumcincta and Trichostrongylus colubriformis in goats. Vet. Rec. 1999, 144, 648–649. [Google Scholar] [CrossRef]
- Hoste, H.; Torres-Acosta, J.F.J.; Quijada, J.; Chan-Perez, I.; Dakheel, M.M.; Kommuru, D.S.; Mueller-Harvey, I.; Terrill, T.H. Interactions Between Nutrition and Infections with Haemonchus Contortus and Related Gastrointestinal Nematodes in Small Ruminants; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; Volume 93, ISBN 9780128103951. [Google Scholar]
- Hoste, H.; Sotiraki, S.; Landau, S.Y.; Jackson, F.; Beveridge, I. Goat-Nematode interactions: Think differently. Trends Parasitol. 2010, 26, 376–381. [Google Scholar] [CrossRef]
- Estell, R.E. Coping with shrub secondary metabolites by ruminants. Small Rumin. Res. 2010, 94, 1–9. [Google Scholar] [CrossRef]
- Mlambo, V.; Marume, U.; Gajana, C.S. Utility of the browser’s behavioural and physiological strategies in coping with dietary tannins: Are exogenous tannin-inactivating treatments necessary? S. Afr. J. Anim. Sci. 2015, 45, 441–451. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Fajardo, R.A.; González-Pech, P.G.; Torres-Acosta, J.F.d.J.; Sandoval-Castro, C.A. Nutraceutical Potential of the Low Deciduous Forest to Improve Small Ruminant Nutrition and Health: A Systematic Review. Agronomy 2021, 11, 1403. https://doi.org/10.3390/agronomy11071403
Torres-Fajardo RA, González-Pech PG, Torres-Acosta JFdJ, Sandoval-Castro CA. Nutraceutical Potential of the Low Deciduous Forest to Improve Small Ruminant Nutrition and Health: A Systematic Review. Agronomy. 2021; 11(7):1403. https://doi.org/10.3390/agronomy11071403
Chicago/Turabian StyleTorres-Fajardo, Rafael Arturo, Pedro Geraldo González-Pech, Juan Felipe de Jesús Torres-Acosta, and Carlos Alfredo Sandoval-Castro. 2021. "Nutraceutical Potential of the Low Deciduous Forest to Improve Small Ruminant Nutrition and Health: A Systematic Review" Agronomy 11, no. 7: 1403. https://doi.org/10.3390/agronomy11071403
APA StyleTorres-Fajardo, R. A., González-Pech, P. G., Torres-Acosta, J. F. d. J., & Sandoval-Castro, C. A. (2021). Nutraceutical Potential of the Low Deciduous Forest to Improve Small Ruminant Nutrition and Health: A Systematic Review. Agronomy, 11(7), 1403. https://doi.org/10.3390/agronomy11071403