Crop Production and Phosphorus Legacy with Long-Term Phosphorus- and Nitrogen-Based Swine Manure Applications under Corn-Soybean Rotation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site and Preparation
2.2. Manure Sampling and Determination of Chemical Composition
2.3. Experimental Design
2.4. Yield Determination and Soil and Plant Sampling for P Analyses
2.5. Calculation of Phosphorus Source Availability Coefficients
2.6. Statistical Analysis
3. Results and Discussion
3.1. Crop Yield
3.2. Grain P Removal and Above-Ground-P Uptake
3.3. Postharvest STP Content in the Soil Profile
3.4. Manure Phosphorus Source Availability Coefficients
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bakhsh, A.; Kanwar, R.S.; Baker, J.L.; Sawyer, J.; Malarino, A. Annual swine manure applications to soybean under corn-soybean rotation. Trans. ASABE 2009, 52, 751–757. [Google Scholar] [CrossRef] [Green Version]
- Reijnders, L. Phosphorus resources, their depletion and conservation, a review. Resour. Conserv. Recy. 2014, 93, 32–49. [Google Scholar] [CrossRef]
- Chowdhury, R.B.; Moore, G.A.; Weatherley, A.J.; Arora, M. Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation. J. Clean. Prod. 2017, 140, 945–963. [Google Scholar] [CrossRef]
- Hamilton, H.A.; Brod, E.; Hanserud, O.; Müller, D.B.; Brattebø, H.; Haraldsen, T.K. Recycling potential of secondary phosphorus resources as assessed byintegrating substance flow analysis and plant-availability. Sci. Total Environ. 2017, 575, 1546–1555. [Google Scholar] [CrossRef] [PubMed]
- Ajiboye, B.; Akinremi, O.O.; Hu, Y.; Flaten, D.N. Phosphorus Speciation of Sequential Extracts of Organic Amendments Using Nuclear Magnetic Resonance and X-ray Absorption Near-Edge Structure Spectroscopies. J. Environ. Qual. 2007, 36, 1563–1576. [Google Scholar] [CrossRef]
- Campbell, K.L.; Edwards, D.R. Phosphorus and water quality impacts. In Agricultural Nonpoint Source Pollution: Watershed Management and Hydrology; Ritter, W.F., Shirmohammadi, A., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2001; pp. 91–109. [Google Scholar]
- Sharpley, A.N.; McDowell, R.W.; Kleinman, P.J.A. Amounts, forms, and solubility of phosphorus in soils receiving manure. Soil. Sci. Soc. Am. J. 2004, 68, 2048–2049. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.T.; Zhang, T.Q.; Hu, Q.C.; Tan, C.S. Phosphorus source coefficient determination for quantifying phosphorus loss risk of various animal manures. Geoderma 2016, 278, 23–31. [Google Scholar] [CrossRef]
- Canada-Ontario Lake Erie action plan. Available online: https://www.canada.ca/en/environment-climate-change/services/great-lakes-protection/action-plan-reduce-phosphorus-lake-erie.html (accessed on 3 March 2020).
- Michalak, A.M.; Anderson, E.J.; Beletsky, D.; Boland, S.; Bosch, N.S.; Bridgeman, T.B.; Chaffin, J.D.; Cho, K.; Confesor, R.; Daloglu, I.; et al. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 6448–6452. [Google Scholar] [CrossRef] [Green Version]
- Scavia, D.; Allan, J.D.; Arend, K.K.; Bartell, S.; Beletsky, D.; Bosch, N.S.; Brand, S.B.; Briland, R.D.; Daloglu, I.; Depinto, J.V.; et al. Assessing and addressing the re-eutrophication of Lake Erie: Central basin hypoxia. J. Great Lakes Res. 2014, 40, 226–246. [Google Scholar] [CrossRef]
- Scavia, D.; Kalcic, M.; Muenich, R.L.; Aloysius, N.; Boles, C.; Confesor, R.; Depinto, J.; Gildow, M.; Martin, J.; Read, J.; et al. Informing Lake Erie Agriculture Nutrient Management via Scenario Evaluation; University of Michigan: Ann Arbor, MI, USA, 2016; pp. 1–84. Available online: http://graham.umich.edu/water (accessed on 4 March 2020).
- Ohio’s Concentrated Animal Feeding Facilities: A Review of Statewide Manure Management and Phosphorus Applications in the Western Lake Erie Watershed. Available online: https://theoec.org/wp-content/uploads/2019/09/Manure-Report.pdf (accessed on 1 March 2020).
- Eghball, B.; Power, J.F. Phosphorus and nitrogen-based manure and compost application: Corn production and soil phosphorus. Soil. Sci. Soc. Am. J. 1999, 63, 895–901. [Google Scholar] [CrossRef] [Green Version]
- Eghball, B.; Gilley, J.E. Phosphorus and N in runoff following beef cattle manure or compost application. J. Environ. Qual. 1999, 28, 1201–1210. [Google Scholar] [CrossRef]
- Maguire, R.O.; Muilins, G.L.; Brosius, M. Evaluating long-term nitrogen- versus phosphorus-based nutrient management of poultry litter. J. Environ. Qual. 2008, 37, 1810–1816. [Google Scholar] [CrossRef]
- Sadeghpour, A.; Ketterings, Q.M.; Godwin, G.S.; Czymmek, K.J. Nitrogen- vs. Phosphorus-Based Manure and Compost Management of Corn. Agron. J. 2016, 108, 185–195. [Google Scholar] [CrossRef]
- ASAE D384. 2 MAR2005 (R2014). Manure Production and Characteristics. In ASABE STANDARDS, ASABE: American Society of Agricultural and Biologycal Engineers; ASABE: St. Joseph, MI, USA, 2014; pp. 29–30. [Google Scholar]
- Chastain, J.P.; Camberato, J.J.; Albrecht, J.E.; Adams, J. Swine Manure Production and Nutrient Content. In Chapter 3a in Confined Animal Manure Managers Certification Program Manual B Swine, Version 3; 2003; Available online: https://www.clemson.edu/extension/camm/manuals/swine/sch3a_03.pdf (accessed on 4 March 2020).
- Ye, W.; Lorimor, J.C.; Hurburgh, C.; Zhang, H.; Hattey, J. Application of near-infrared reflectance spectroscopy for determination of nutrient contents in liquid and solid manures. T. ASAE 2005, 48, 1911–1918. [Google Scholar] [CrossRef]
- Karlen, D.L.; Cambardella, C.A.; Kanwar, R.S. Challenges of managing liquid swine manure. Appl. Eng. Agric. 2004, 20, 693–699. [Google Scholar] [CrossRef]
- Güsewell, S. N: P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Gilbertson, C.B.; Norstadt, F.A.; Mathers, A.C.; Holt, R.F.; Shuyler, L.R.; Barnett, A.P.; McCalla, T.M.; Onstad, C.A.; Young, R.A.; Christensen, L.A.; et al. Animal Waste Utilization on Cropland and Pastureland: A Manual for Evaluating Agronomic and Environmental Effects; US Governmental Printing Office: Washington, DC, USA, 1979.
- Olson, B.M.; McKenzie, R.H.; Larney, F.J.; Bremer, E. Nitrogen- and phosphorus-based applications of cattle manure and compost for irrigated cereal silage. Can. J. Soil Sci. 2010, 90, 619–635. [Google Scholar] [CrossRef]
- Eghball, B. Phosphorus and nitrogen-based beef cattle manure or compost application to corn. Neb. Beef Cattle Rep. 2001, Agricultural Research Division, University of Nebraska Cooperative Extension, and Institute of Agricultural and Natural Resources; University of Nebraska-Lincoln: Lincoln, NE, USA, 2001; pp. 89–91. [Google Scholar]
- Qian, P.; Schoenau, J.J.; Wu, T.; Mooleki, P. Phosphorus amounts and distribution in a Saskatchewan soil after five years of swine and cattle manure application. Can. J. Soil. Sci. 2004, 84, 275–281. [Google Scholar] [CrossRef]
- MnKeni, P.N.S.; MacKenzie, A.F. Retention of ortho- and polyphosphates in some Quebec soils as affected by added organic residues and calcium carbonate. Can. J. Soil. Sci. 1985, 65, 575–585. [Google Scholar] [CrossRef]
- Dormaar, J.F.; Chang, C. Effect of 20 annual applications of excess feedlot manure on labile soil phosphorus. Can. J. Soil. Sci. 1995, 75, 507–512. [Google Scholar] [CrossRef]
- Eghball, B.; Wienhold, B.J.; Woodbury, B.L.; Eigenberg, R.A. Plant availability of phosphorus in swine slurry and cattle feedlot manure. Agron. J. 2005, 97, 542–548. [Google Scholar] [CrossRef] [Green Version]
- Carter, M.R.; Campbell, A.J. Influence of tillage and liquid swine manure on productivity of a soybean-barley rotation and some properties of a fine sandy loam in Prince Edward Island. Can. J. Soil. Sci. 2006, 86, 741–748. [Google Scholar] [CrossRef]
- Chantigny, M.H.; Angers, D.A.; Bélanger, G.; Rochette, P.; Hamel, N.E.; Bittman, S.; Buckley, K.; Massé, D.; Gasser, M.O. Yield and nutrient export of grain corn fertilized with raw and treated liquid swine manure. Agron. J. 2008, 100, 1303–1309. [Google Scholar] [CrossRef]
- Laboski, C.A.M.; Lamb, J.A. Changes in soil test phosphorus concentration after application of manure or fertilizer. Soil. Sci. Soc. Am. J. 2003, 67, 544–554. [Google Scholar] [CrossRef]
- Karimi, R.; Akinremi, W.; Flaten, D. Nitrogen- or phosphorus-based pig manure application rates affect soil test phosphorus and phosphorus loss risk. Nutr. Cycl. Agroecosyst. 2018, 111, 217–230. [Google Scholar] [CrossRef]
- Ceretta, C.A.; Girotto, E.; Lourenzi, C.R.; Trentin, G.; Vieira, R.C.B.; Brunetto, G. Nutrient transfer by runoff under no tillage in a soil treated with successive applications of pig slurry. Agr. Ecosyst. Environ. 2010, 139, 689–699. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Liang, X.Q.; Ye, Y.S.; Zhao, Y.; Zhang, Y.X.; Jin, Y.; Yuan, J.L.; Chen, Y.X. Effects of repeated swine manure applications on legacy phosphorus and phosphomonoesterase activities in a paddy soil. Biol. Fertil. Soils 2015, 51, 167–181. [Google Scholar] [CrossRef]
- Nash, D.M.; Halliwell, D.J. Fertilizers and phosphorus loss from productive grazing system. Aust. J. Soil. Res. 1999, 37, 403–429. [Google Scholar] [CrossRef]
- De Conti, L.; Ceretta, C.A.; Ferreira, P.A.A.; Lorensini, F.; Lourenzi, C.R.; Vidal, R.F.; Tassinari, A.; Brunetto, G. Effects of pig slurry application and crops on phosphorus content in soil and the chemical species in solution. R. Bras. Ci. Solo. 2015, 39, 774–787. [Google Scholar] [CrossRef] [Green Version]
- Sinaj, S.; Stamm, C.; Toor, G.S.; Condron, L.M.; Hendry, T.; Di, H.J.; Cameron, K.C.; Frossard, E. Phosphorus exchangeability and leaching losses from two grassland soils. J. Environ. Qual. 2002, 31, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Andersson, H.; Bergström, L.; Djodjic, F.; Ulén, B.; Kirchmann, H. Topsoil and subsoil properties influence phosphorus leaching from four agricultural soils. J. Environ. Qual. 2013, 42, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Andersson, H.; Bergström, L.; Ulén, B.; Djodjic, F.; Kirchmann, H. The role of subsoil as a source or sink for phosphorus leaching. J. Environ. Qual. 2015, 44, 535–544. [Google Scholar] [CrossRef]
- Syers, J.K.; Johnston, A.E.; Curtin, D. Efficiency of soil and fertilizer phosphorus use. In FAO Fertilizer and Plant Nutrition Bulletin 18; FAO: Rome, Italy, 2008; pp. 27–45. [Google Scholar]
- Johnston, A.E.; Poulton, P.R.; Fixen, P.E.; Curtin, D. Phosphorus: Its efficient use in agriculture. Adv. Agron. 2014, 123, 177–228. [Google Scholar] [CrossRef]
- Johnston, A.E.; Syers, J.K. A New Approach to Assessing Phosphorus Use Efficiency in Agriculture. Better Crops 2009, 93, 14–16. [Google Scholar]
- Eghball, B.; Ginting, D.; Gilley, J.E. Residual effects of manure and compost applications on corn production and soil properties. Agron. J. 2004, 96, 442–447. [Google Scholar] [CrossRef] [Green Version]
- Hedley, M.; McLaughlin, M.; Michael, J. Reactions of phosphate fertilizers and by-products in soils. In Phosphorus: Agriculture and the Environment; Sims, J.T., Sharpley, A.N., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 2005; pp. 181–252. [Google Scholar]
- Hao, X.J.; Zhang, T.Q.; Wang, Y.T.; Tan, C.S.; Qi, Z.M.; Welacky, T.; Hong, J.P. Soil Test Phosphorus and Phosphorus Availability of Swine Manures with Long-Term Application. Agron. J. 2018, 110, 1–8. [Google Scholar] [CrossRef]
- Hao, X.J.; Zhang, T.Q.; Tan, C.S.; Welacky, T.; Wang, Y.T.; Lawrence, D.; Hong, J.P. Crop yield and phosphorus uptake as affected by phosphorus-based swine manure application under long-term corn-soybean rotation. Nutr. Cycl. Agroecosyst. 2015, 103, 217–228. [Google Scholar] [CrossRef]
- USEPA. Method 258.1, 351.2, 365.4, Methods for the Chemical Analysis of Water and Wastes; EPA-600/4-79-020; USEPA: Washington, DC, USA, 1983.
- Ontario Ministry of Agriculture, Food, and Rural Affairs (OMAFRA). Agronomy Guide for Field Crops; Pub 811; Queen’s Printer for Ontario: Toronto, ON, Canada, 2002.
- Thomas, R.L.; Sheard, R.W.; Moyer, J.R. Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion. Agron. J. 1967, 59, 240–243. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Sims, J.T. Soil test phosphorus: Olsen, P. In Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters Southern Cooperative Series Bulletin no. 396; North Carolina State University: Raleigh, NC, USA, 2000; pp. 20–21. [Google Scholar]
- Ribey, M.A.; O’Halloran, I.P. Consequences of Ontario P index recommendations for reduced manure and fertilizer phosphorus applications on corn yields and soil phosphorus. Can. J. Soil. Sci. 2016, 96, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Celestina, C.; Wood, J.L.; Manson, J.B.; Wang, X.; Sale, P.; Tang, C.; Franks, A. Microbial communities in top- and subsoil of repacked soil columns respond differently to amendments but their diversity is negatively correlated with plant productivity. Sci. Rep. 2019, 9, 8890. [Google Scholar] [CrossRef]
- Miller, J.J.; Beasley, B.W.; Yanke, L.J.; Larney, F.J.; McAllister, T.A.; Olson, B.M.; Selinger, L.B.; Chanasyk, D.S.; Hasselback, P. Bedding and Seasonal Effects on Chemical and Bacterial Properties of Feedlot Cattle Manure. J. Environ. Qual. 2003, 32, 1887–1894. [Google Scholar] [CrossRef] [PubMed]
- Calderón, F.J.; Mccarty, G.W.; Reeves III, J.B. Analysis of manure and soil nitrogen mineralization during incubation. Biology & Fertility of Soils. Biol. Fertil. Soils 2005, 41, 328–336. [Google Scholar] [CrossRef]
- Wilhelm, W.W.; Wortmann, C.S. Tillage and Rotation Interactions for Corn and Soybean Grain Yield as Affected by Precipitation and Air Temperature. Agron. J. 2004, 96, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Buyanovsky, G. Climate Effects on Corn Yield in Missouri. J. Appl. Meteorol. 2003, 42, 1626–1635. [Google Scholar] [CrossRef]
- Hollinger, S.E.; Hoeft, R.G. Influence of weather on year-to-year yield response of corn to ammonia fertilization. Agron.J. 1986, 78, 818–823. [Google Scholar] [CrossRef]
- Yamoah, C.F.; Walters, D.T.; Shapiro, C.A.; Francis, C.A.; Hayes, M.J. Standardized precipitation index and nitrogen rate effects on crop yields and risk distribution in maize. Agric. Ecosyst. Environ. 2000, 80, 113–120. [Google Scholar] [CrossRef]
- Schmidt, J.P.; Schmidt, M.A.; Randall, G.W.; Lamb, J.A.; Orf, J.H.; Gollany, H.T. Swine manure application to nodulating and nonnodulating soybean. Agron. J. 2000, 92, 987–992. [Google Scholar] [CrossRef]
- Killorn, R. Effect of Frequency of Swine Manure Application on the Yield of Corn and Soybean. In 1998 Swine Research Report. AS-640; Iowa State Univ.: Ames, LA, USA, 1998; pp. 161–163. [Google Scholar]
- Mallarino, A.P.; Prater, J. Corn and soybean grain yield, phosphorus removal, and soil-test responses to long-term phosphorus fertilization strategies. In Proceedings of the 2007 Integrated Crop Management Conference, Iowa State University, Ames, IA, USA, 29 November 2007; pp. 241–254. Available online: https://lib.dr.iastate.edu/icm/2007/proceedings/35 (accessed on 1 August 2021).
- Römheld, V. Chapter 11: Diagnosis of Deficiency and Toxicity of Nutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Marschner, H., Eds.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2011; pp. 301–312. [Google Scholar]
- Ritchie, S.W.; Hanway, J.J.; Benson, G.O. How a Corn Plant Develops? Iowa State University of Science and Technology/Cooperative Extention Service: Ames, IA, USA, 1986; pp. 19–20. [Google Scholar]
- Sims, J.T.; Simard, R.R.; Joern, B.C. Phosphorus loss in agricultural drainage: Historical perspective and current research. J. Environ. Qual. 1998, 27, 77–293. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Whalen, J.K.; Hao, X. Increase in phosphorus concentration of a clay loam surface soil receiving repeated annual feedlot cattle manure applications in southern Alberta. Can. J. Soil Sci. 2005, 85, 589–597. [Google Scholar] [CrossRef]
- Wienhold, B.J. Changes in soil attributes following low phosphorus swine slurry application to no-tillage sorghum. Soil. Sci. Soc. Am. J. 2005, 69, 206–214. [Google Scholar] [CrossRef]
- Eghball, B.; Binford, G.D.; Baltensperger, D.D. Phosphorus movement and adsorption in a soil receiving long-term manure and fertilizer application. J. Environ. Qual. 1996, 25, 1339–1343. [Google Scholar] [CrossRef]
- Lamandé, M.; Hallaire, V.; Curmi, P.; Guénola Pérès, G.; Cluzeau, D. Changes of pore morphology, infiltration and earthworm community in a loamy soil under different agricultural managements. Catena 2003, 54, 637–649. [Google Scholar] [CrossRef]
- Wang, Y.T.; Zhang, T.Q.; Tan, C.S.; Qi, Z.M.; Welacky, T. Solid cattle manure less prone to phosphorus loss in tile drainage water. J. Environ. Qual. 2018, 47, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.Q.; MacKenzie, A.F.; Liang, B.C.; Drury, I.F. Soil test phosphorus and phosphorus fractions with long-term phosphorus addition and depletion. Soil. Sci. Soc. Am. J. 2004, 68, 519–528. [Google Scholar] [CrossRef]
- Zhang, T.Q.; Mackenzie, A.F. Changes in soil phosphorous fractions under long-term corn (Zea mays L.) monoculture. Soil. Sci. Soc. Am. J. 1997, 61, 485–493. [Google Scholar] [CrossRef]
- Wang, Y.T.; O’Halloran, I.P.; Zhang, T.Q.; Hu, Q.C.; Tan, C.S. Phosphorus sorption parameters of soils and their relationships with soil test phosphorus. Soil. Sci. Soc. Am. J. 2015, 79, 672–680. [Google Scholar] [CrossRef]
- Wang, Y.T.; Zhang, T.Q.; O’Halloran, I.P.; Tan, C.S.; Hu, Q.C.; Reid, D.K. Soil tests as risk indicators for leaching of dissolved phosphorus from agricultural soils in Ontario. Soil. Sci. Soc. Am. J. 2012, 76, 220–229. [Google Scholar] [CrossRef]
- Leytem, A.B.; Sims, J.T.; Coale, F.J. Determination of Phosphorus Source Coefficients for Organic Phosphorus Sources: Laboratory Studies. J. Environ. Qual. 2004, 33, 380–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharpley, A.N.; Weld, J.L.; Beegle, D.B.; Kleinman, P.J.A.; Gburek, W.J.; Moore, P.A.; Mullins, G. Development of phosphorus indices for nutrient management planning strategies in the United States. J. Soil. Water Conserv. 2003, 58, 1983–1993. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.C.; White, J.W.; Coale, F.J. Evaluation of phosphorus source coefficients as predictors of runoff phosphorus concentrations. J. Environ. Qual. 2009, 38, 587–597. [Google Scholar] [CrossRef]
- Shober, A.L.; Sims, J.T. Integrating phosphorus source and soil properties into risk assessments for phosphorus loss. Soil. Sci. Soc. Am. J. 2007, 71, 551–560. [Google Scholar] [CrossRef]
- Zhang, T.Q.; Hu, Q.C.; Wang, Y.T.; Tan, C.S.; O’ Halloran, I.P.; Drury, C.F.; Reid, D.K.; Ball-Coelho, B.; Ma, B.L.; Welacky, T.W.; et al. Determination of Some Key Factors for Ontario Soil P Index and Effectiveness of Manure Application Practices for Mitigating Risk to Water Resource; Report NM8002 to the Nutrient Management Joint Research Program of Ontario Ministry of Agriculture; Food and Rural Affairs and Ontario Ministry of Environment: Toronto, ON, Canada, 2009. [Google Scholar]
- OMAFRA. Publication 611: Soil Fertility Handbook. 2018. Available online: http://www.omafra.gov.on.ca/english/crops/pub611/pub611.pdf (accessed on 20 October 2020).
- Watkins, M.; Castlehouse, H.; Hannah, M.; Nash, D.M. Nitrogen and phosphorus changes in soil and soil water after cultivation. Appl. Environ. Soil. Sci. 2012, 2012, 1–10. [Google Scholar] [CrossRef]
- Zvomuya, F.; Helgason, B.L.; Larney, F.J.; Janzen, H.H.; Akinremi, O.O.; Olson, B.M. Predicting Phosphorus Availability from Soil-Applied Composted and Non-Composted Cattle Feedlot Manure. J. Environ. Qual. 2006, 35, 928–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Month | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
---|---|---|---|---|---|---|---|---|---|---|
March | 46.3 | 8.2 | 54.2 | 69 | 68.8 | 96.8 | 36.4 | 84.8 | 63.4 | 19.6 |
April | 47.5 | 62.2 | 57.4 | 66.8 | 36.8 | 114 | 61.2 | 128.4 | 30.4 | 106.4 |
May | 166 | 22.4 | 104.4 | 53 | 54.4 | 45 | 107.8 | 193 | 83.4 | 47.0 |
June | 79.4 | 22.8 | 66.8 | 58 | 186.2 | 85.6 | 113.2 | 62.6 | 16.8 | 162.8 |
July | 89.8 | 61.6 | 108.2 | 36 | 85.6 | 63.8 | 148.4 | 120 | 102.2 | 185.9 |
August | 124.2 | 51 | 76 | 111.2 | 12.8 | 90.6 | 9.2 | 104.8 | 109.6 | 36.6 |
September | 20 | 66.4 | 59.6 | 62.2 | 124.6 | 20.8 | 90.4 | 180.6 | 30.8 | 107.9 |
October | 56 | 8.6 | 108.2 | 58.6 | 28.8 | 75.8 | 63 | 112 | 58 | 64.0 |
November | 68.8 | 60.8 | 101.4 | 61.6 | 94.8 | 17.4 | 85.2 | 179 | 11.7 | 40.1 |
Total | 698 | 364 | 736.2 | 576.4 | 692.8 | 609.8 | 714.8 | 1165.2 | 506.3 | 521.7 |
Month | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|
March | 3.7 | 0.4 | 2.8 | 3.4 | 0.4 | 2.3 | 4.3 | 0.7 | 8.8 | 0.5 | 2.7 |
April | 8.8 | 9.5 | 10.2 | 8.4 | 9.6 | 8.1 | 11 | 6.7 | 8.2 | 7.1 | 8.8 |
May | 14.9 | 13.1 | 15.1 | 15.7 | 13 | 14.8 | 17.1 | 14.4 | 16.8 | 16 | 15.1 |
June | 19.2 | 22.9 | 20.1 | 21.4 | 20.7 | 19.4 | 21.9 | 20.3 | 21.5 | 20.2 | 20.8 |
July | 21.5 | 24.3 | 23.9 | 22 | 23.1 | 20.5 | 24.8 | 24.8 | 24.7 | 22.4 | 23.2 |
August | 20 | 23.8 | 22.4 | 22.9 | 21.7 | 21.6 | 23.6 | 22.2 | 22.2 | 21.4 | 22.2 |
September | 19.5 | 19.2 | 17.1 | 20.3 | 19 | 18.5 | 18.4 | 17.9 | 17.7 | 18.6 | 18.6 |
October | 12.7 | 12.9 | 10.2 | 15 | 11.1 | 10.1 | 12.3 | 11.8 | 11.6 | 13.5 | 12.1 |
November | 7.9 | 6.4 | 6 | 5 | 4.3 | 7.5 | 6.1 | 7.3 | 4.4 | 3.3 | 5.8 |
Factor | Corn | Soybean | ||||
---|---|---|---|---|---|---|
Grain Yield | Grain P Removal | Above-Ground-P Uptake | Grain Yield | Grain P Removal | Above-Ground-P Uptake | |
Treat § (T) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Year (Y) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 |
T × Y | 0.012 | 0.038 | 0.105 | 0.105 | 0.258 | 0.398 |
Corn | Soybean | |||
---|---|---|---|---|
Factor | Above-Ground-P Uptake, kg ha−1 | Factor | Above-Ground-P Uptake, kg ha−1 | |
Treatment | CK | 13.2 ± 2.2 c | CK | 11.8 ± 1.8 c |
CFP | 19.8 ± 1.0 b | CFP | 18.2 ± 0.8 b | |
LMP | 20.7 ± 0.1 b | LMP | 19.4 ± 0.6 b | |
LMN | 19.3 ± 1.1 b | LMN | 18.5 ± 0.4 b | |
SMP | 20.1 ± 1.1 b | SMP | 19.8 ± 0.9 b | |
SMN | 25.5 ± 0.8 a | SMN | 24.1 ± 2.7 a | |
Year | 2004 | 20.6 ± 1.4 a | 2005 | 18.1 ± 1.5 ab |
2006 | 19.6 ± 1.1 a | 2007 | 16.6 ± 0.8 b | |
2008 | 16.4 ± 1.1b | 2009 | 17.9 ± 0.9 ab | |
2010 | 20.1 ± 1.0 a | 2011 | 19.7 ± 0.8 ab | |
2012 | 22.1 ± 1.0 a | 2013 | 20.8 ± 1.5 a |
Liquid Manure | Solid Manure | |||
---|---|---|---|---|
Cropping year | 0–15 cm | 0–30 cm | 0–15 cm | 0–30 cm |
2013 | 1.06 (0.01) † | 1.06 (0.01) | 1.07 (0.03) | 1.08 (0.05) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, T.; Wang, Y.; Tan, C.; Zhang, L.; He, X.; Welacky, T.; Che, X.; Tang, X.; Wang, Z. Crop Production and Phosphorus Legacy with Long-Term Phosphorus- and Nitrogen-Based Swine Manure Applications under Corn-Soybean Rotation. Agronomy 2021, 11, 1548. https://doi.org/10.3390/agronomy11081548
Zhang Y, Zhang T, Wang Y, Tan C, Zhang L, He X, Welacky T, Che X, Tang X, Wang Z. Crop Production and Phosphorus Legacy with Long-Term Phosphorus- and Nitrogen-Based Swine Manure Applications under Corn-Soybean Rotation. Agronomy. 2021; 11(8):1548. https://doi.org/10.3390/agronomy11081548
Chicago/Turabian StyleZhang, Yan, Tiequan Zhang, Yutao Wang, Chinsheng Tan, Lei Zhang, Xinhua He, Tom Welacky, Xiulan Che, Xiaodong Tang, and Zhengyin Wang. 2021. "Crop Production and Phosphorus Legacy with Long-Term Phosphorus- and Nitrogen-Based Swine Manure Applications under Corn-Soybean Rotation" Agronomy 11, no. 8: 1548. https://doi.org/10.3390/agronomy11081548
APA StyleZhang, Y., Zhang, T., Wang, Y., Tan, C., Zhang, L., He, X., Welacky, T., Che, X., Tang, X., & Wang, Z. (2021). Crop Production and Phosphorus Legacy with Long-Term Phosphorus- and Nitrogen-Based Swine Manure Applications under Corn-Soybean Rotation. Agronomy, 11(8), 1548. https://doi.org/10.3390/agronomy11081548