Tolerance of Wheat to Soil Sodicity Can Be Better Detected through an Incremental Crop Tolerance Approach and Ascertained through Multiple Sowing Times
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Plant Materials
2.3. Experiment Design and Layout
2.4. Field Phenotypic Data
2.5. Leaf Tissue Analyses
2.6. Analysis of Sodicity Tolerance
2.7. Changes in Leaf Counts through Time
3. Results
3.1. Soil Conditions
3.2. Grain Yields and Genotypic Tolerance to Sodicity
3.3. Relation of Yield-ICT with Other Trait Values
3.4. Relation of Yield-ICT with Yield Components-ICT Values
3.5. Leaf Mineral Concentration Relations with Yield
3.6. Leaf Counts
4. Discussion
4.1. The Sodic and Non-Sodic Soil Sites Used Here
4.2. Genetic Diversity for Grain Yield in Sodic Soil
4.3. Methods Used to Evaluate Sodicity Tolerance of Wheat Based on a Stressed and Non-Stressed Field Site
4.4. Methods Used to Valuate Sodicity Tolerance of Wheat Based on a Single Field Site
4.5. Physiological Traits Associated with Sodicity Tolerance
4.6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CIMMYT. The Wheat and Nutrition Series: A Compilation of Studies on Wheat and Health; CDMS, CIMMYT: Mexico City, Mexico, 2017. [Google Scholar]
- Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database. [Rome], Wheat Production Countries; Food and Agriculture Organization: Rome, Italy, 2020. [Google Scholar]
- Dowla, M.; Islam, S.; Stefanova, K.; Hara, G.; Ma, W.; Edwards, I. Phenology and Dwarfing Gene Interaction Effects on the Adaptation of Selected Wheat (Triticum aestivum L.) Advanced Lines across Diverse Water-Limited Environments of Western Australia. Agriculture 2020, 10, 470. [Google Scholar] [CrossRef]
- Turner, N.C.; Nicholas, M.; Sen, Y.; You-Cai, X.; Siddique, K.H.M. Climate change in south-west Australia and north-west China: Challenges and opportunities for crop production. Crop Pasture Sci. 2011, 62, 445–456. [Google Scholar] [CrossRef]
- Doherty, A.; Sadras, V.O.; Rodriguez, D.; Potgieter, A. Quantification of wheat water-use efficiency at the shire-level in Australia. Crop Pasture Sci. 2009, 61, 1–11. [Google Scholar] [CrossRef]
- Passioura, J.B.; Angus, J.F. Chapter 2—Improving Productivity of Crops in Water-Limited Environments. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2010; pp. 37–75. [Google Scholar]
- Bray, E.A.; Bailey-Serres, J.; Weretilnyk, E. Responses to abiotic stress. In Biochemistry and Molecular Biology of Plants; Buchanan, B.B., Ggrussem, W., Jones, R.L., Eds.; American Society of Plant Physiologists: Rockville, MD, USA, 2000. [Google Scholar]
- Shahid, S.A.; Zaman, M.; Heng, L. Soil Salinity: Historical Perspectives and a World Overview of the Problem, in Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer International Publishing: Cham, Switzerland, 2018; pp. 43–53. [Google Scholar]
- FAO. Status of the World’s Soil Resources (SWSR)–Main Report; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015; p. 650. [Google Scholar]
- Boyer, J.S. Plant Productivity and Environment. Science 1982, 218, 443–448. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Application of Soil Electrical Conductivity to Precision Agriculture. Agron. J. 2003, 95, 455–471. [Google Scholar]
- Sheldon, A.R.; Dalal, R.C.; Kirchhof, G.; Kopittke, P.M.; Menzies, N.W. The effect of salinity on plant-available water. Plant Soil 2017, 418, 477–491. [Google Scholar] [CrossRef]
- Letey, J. Relationship between Soil Physical Properties and Crop Production. In Advances in Soil Science; Springer: Berlin/Heidelberg, Germany, 1958; pp. 277–294. [Google Scholar]
- Loveday, J.; Bridge, B.J. Management of salt-affected soils. In Soils: An Australian Viewpoint; CSIRO/Academic Press: Melbourne, Australia, 1983; pp. 843–855. [Google Scholar]
- Staff, U. Diagnosis and improvement of saline and alkali soils. In U.S. Departmentof Agriculture Handbook 60; Allison, L.E., Richards, L.A., Eds.; Soil and Water Conservative Research Branch, Agricultural Research Service: Washington, DC, USA, 1954. [Google Scholar]
- Rengasamy, P.; Olsson, K. Irrigation and sodicity. Soil Res. 1993, 31, 821–837. [Google Scholar] [CrossRef]
- Dodd, K.; Guppy, C.; Lockwood, P.; Rochester, I. The effect of sodicity on cotton: Plant response to solutions containing high sodium concentrations. Plant Soil 2009, 330, 239–249. [Google Scholar] [CrossRef]
- Naidu, R.; Rengasamy, P. Ion interactions and constraints to plant nutrition in Australian sodic soils. Soil Res. 1993, 31, 801–819. [Google Scholar] [CrossRef]
- Curtin, D.; Naidu, R. Fertility constraints to plant production. In Sodic Soils: Distribution, Properties, Management, and Environmental Consequences; Naidu, R., Sumner, M.E., Eds.; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Grattan, S.; Grieve, C. Salinity–mineral nutrient relations in horticultural crops. Sci. Hortic. 1998, 78, 127–157. [Google Scholar] [CrossRef]
- Mengel, K.; Kirkby, E.A.; Kosegarten, H.; Appel, T. Nutrient Uptake and Assimilation. In Principles of Plant Nutrition; Springer: Berlin/Heidelberg, Germany, 2001; pp. 111–179. [Google Scholar]
- Gupta, R.; Abrol, I. Reclamation and management of alkali soils. Indian J. Agric. Sci. 1990, 60, 1–16. [Google Scholar]
- Choudhary, O.; Bajwa, M.; Josan, A. Tolerance of wheat and triticale to sodicity. Crop. Improv. India 1996, 23, 238–246. [Google Scholar]
- Mehrotra, C.; Das, S. Influence of exchangeable sodium on the chemical composition of important crops at different stages of growth. J. Indian Soc. Soil Sci. 1973, 21, 355–365. [Google Scholar]
- Gardner, W.; Fawcett, R.; Steed, G.; Pratley, J.; Whitfield, D.; Rees, H.; Van, R.H. Crop production on duplex soils in south-eastern Australia. Aust. J. Exp. Agric. 1992, 32, 915–927. [Google Scholar] [CrossRef]
- Singh, Y.; Mishra, V.; Singh, S.; Sharma, D.; Singh, D.; Singh, U.; Singh, R.; Haefele, S.; Ismail, A. Productivity of sodic soils can be enhanced through the use of salt tolerant rice varieties and proper agronomic practices. Field Crop. Res. 2016, 190, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Genc, Y.; Taylor, J.; Lyons, G.; Li, Y.; Cheong, J.; Appelbee, M.; Oldach, K.; Sutton, T. Bread Wheat With High Salinity and Sodicity Tolerance. Front. Plant Sci. 2019, 10, 1280. [Google Scholar] [CrossRef] [Green Version]
- Richards, R.A. Current and emerging environmental challenges in Australian agriculture—the role of plant breeding. Aust. J. Agric. Res. 2002, 53, 881. [Google Scholar] [CrossRef]
- Noble, C.L.; Rogers, M.E. Arguments for the use of physiological criteria for improving the salt tolerance in crops. Plant Soil 1992, 146, 99–107. [Google Scholar] [CrossRef]
- Shahbaz, M.; Ashraf, M. Improving Salinity Tolerance in Cereals. Crit. Rev. Plant Sci. 2013, 32, 237–249. [Google Scholar] [CrossRef]
- Iqbal, N.; Umar, S.; Nazar, R. Manipulating Osmolytes for Breeding Salinity-Tolerant Plants, in Emerging Technologies and Management of Crop Stress Tolerance; Elsevier: Amsterdam, The Netherlands, 2014; pp. 385–404. [Google Scholar]
- Volkov, V.; Beilby, M.J. Editorial: Salinity Tolerance in Plants: Mechanisms and Regulation of Ion Transport. Front. Plant Sci. 2017, 8, 1795. [Google Scholar] [CrossRef]
- Flowers, T. Improving crop salt tolerance. J. Exp. Bot. 2004, 55, 307–319. [Google Scholar] [CrossRef]
- Colmer, T.D.; Munns, R.; Flowers, T.J. Improving salt tolerance of wheat and barley: Future prospects. Aust. J. Exp. Agric. 2005, 45, 1425–1443. [Google Scholar] [CrossRef]
- Genc, Y.; Oldach, K.; Taylor, J.; Lyons, G.H. Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops. New Phytol. 2015, 210, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Almeida, D.M.; Oliveira, M.M.; Saibo, N.J.M. Regulation of Na+ and K+ homeostasis in plants: Towards improved salt stress tolerance in crop plants. Genet. Mol. Biol. 2017, 40, 326–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, K.; Mosa, K.A. Ion Transporters: A Decisive Component of Salt Stress Tolerance in Plants. In Managing Salt Tolerance in Plants; Wani, S.H., Hossain, M.A., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 373–389. [Google Scholar]
- Yau, S.-K. Terminal drought and subsoil boron on barley root growth and water use—an examination of possible interactions. Commun. Soil Sci. Plant Anal. 2001, 32, 379–387. [Google Scholar] [CrossRef]
- Nuttall, J.; Armstrong, R.; Connor, D. Understanding subsoil water use by cereals on southern Mallee soils I Spatial characteristics of subsoil constraints. In Proceedings of the 10th Australian Agronomy Conference, Hobart, Australia, 28 January–1 February 2001. [Google Scholar]
- Mardeh, A.S.-S.; Ahmadi, A.; Poustini, K.; Mohammadi, V. Evaluation of drought resistance indices under various environmental conditions. Field Crop. Res. 2006, 98, 222–229. [Google Scholar] [CrossRef]
- Cousens, R.D.; Mokhtari, S. Seasonal and site variability in the tolerance of wheat cultivars to interference fromLolium rigidum. Weed Res. 1998, 38, 301–307. [Google Scholar] [CrossRef]
- Lemerle, D.; Smith, A.; Verbeek, B.; Koetz, E.; Lockley, P.; Martin, P. Incremental crop tolerance to weeds: A measure for selecting competitive ability in Australian wheats. Euphytica 2006, 149, 85–95. [Google Scholar] [CrossRef]
- Gilmour, A.R.; Cullis, B.R.; Verbyla, A.P. Accounting for Natural and Extraneous Variation in the Analysis of Field Experiments. J. Agric. Biol. Environ. Stat. 1997, 2, 269. [Google Scholar] [CrossRef] [Green Version]
- Raman, A.; Verulkar, S.; Mandal, N.; Variar, M.; Shukla, V.; Dwivedi, J.; Singh, B.; Singh, O.; Swain, P.; Mall, A.; et al. Drought yield index to select high yielding rice lines under different drought stress severities. Rice 2012, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rosielle, A.A.; Hamblin, J. Theoretical Aspects of Selection for Yield in Stress and Non-Stress Environment 1. Crop. Sci. 1981, 21, 943–946. [Google Scholar] [CrossRef]
- Patterson, H.D.; Thompson, R. Recovery of Inter-Block Information when Block Sizes are Unequal. Biometrika 1971, 58, 545–554. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Butler, D.; Cullis, B.; Gilmour, A.; Gogel, B.; Thompson, R. ASReml-R Reference Manual Version 4; VSN International: Hemel Hempstead, UK, 2018. [Google Scholar]
- Vu, V.Q. Ggbiplot: A Ggplot2 Based Biplot. 2011. Available online: https://github.com/vqv/ggbiplot (accessed on 5 July 2021).
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix (Version 0.84). 2017. Available online: https://cran.microsoft.com/snapshot/2020-04-20/web/packages/corrplot/index.html (accessed on 5 July 2021).
- Sharma, D. Guidlines for wheat Yield loss. Agric. Sci. 2017, 29, 27–40. [Google Scholar]
- Rengasamy, P. Soil processes affecting crop production in salt-affected soils. Funct. Plant Biol. 2010, 37, 613–620. [Google Scholar] [CrossRef]
- McDonald, G.; O’Leary, R. Characterising varietal responses of wheat to drought tolerance. Grains Research Update. 2016, p. 6. Available online: https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2016/02/drought-tolerance-fo-wheat-varieties (accessed on 5 July 2021).
- Dolferus, R.; Thavamanikumar, S.; Sangma, H.; Kleven, S.; Wallace, X.; Forrest, K.; Rebetzke, G.; Hayden, M.; Borg, L.; Smith, A.; et al. Determining the Genetic Architecture of Reproductive Stage Drought Tolerance in Wheat Using a Correlated Trait and Correlated Marker Effect Model. Genes Genomes Genet. 2019, 9, 473–489. [Google Scholar] [CrossRef] [Green Version]
- Raman, H.; Raman, R.; Mathews, K.; Diffey, S.; Salisbury, P. QTL mapping reveals genomic regions for yield based on an incremental tolerance index to drought stress and related agronomic traits in canola. Crop. Pasture Sci. 2020, 71, 562. [Google Scholar] [CrossRef]
- Fischer, R.; Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res. 1978, 29, 897–912. [Google Scholar] [CrossRef]
- Fernandez, G.C. Effective selection criteria for assessing plant stress tolerance. In Proceedings of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Shanhua, Taiwan, 13–16 August 1992. [Google Scholar]
- Sharma, D.; Anderson, W.K. Success of diagnostic approach to rainfed, wheat-based cropping systems in Western Australia. Agric. Syst. 2014, 123, 22–33. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munns, R.; Rawson, H.M. Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Funct. Plant Biol. 1999, 26, 459–464. [Google Scholar] [CrossRef]
- Wright, D.; Rajper, I. An assessment of the relative effects of adverse physical and chemical properties of sodic soil on the growth and yield of wheat (Triticum aestivum L.). Plant Soil 2000, 223, 279–287. [Google Scholar] [CrossRef]
- Roy, S.J.; Negrao, S.; Tester, M. Salt resistant crop plants. Curr. Opin. Biotechnol. 2014, 26, 115–124. [Google Scholar] [CrossRef]
- Chaves, M.M.; Marôco, J.; Pereira, J. Understanding plant responses to drought—From genes to the whole plant. Funct. Plant Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef] [PubMed]
- Bray, E.A. Plant responses to water deficit. Trends Plant Sci. 1997, 2, 48–54. [Google Scholar] [CrossRef]
- Bohnert, H.J.; Nelson, D.E.; Jensen, R.G. Adaptations to Environmental Stresses. Plant Cell 1995, 7, 1099. [Google Scholar] [CrossRef]
- Bray, E.A. Molecular Responses to Water Deficit. Plant Physiol. 1993, 103, 1035–1040. [Google Scholar] [CrossRef] [Green Version]
- Borrell, A.K.; Incoll, L.D.; Simpson, R.J.; Dalling, M.J. Partitioning of Dry Matter and the Deposition and Use of Stem Reserves in a Semi-dwarf Wheat Crop. Ann. Bot. 1989, 63, 527–539. [Google Scholar] [CrossRef]
- Dang, Y.P.; Christopher, J.T.; Dalal, R.C. Genetic Diversity in Barley and Wheat for Tolerance to Soil Constraints. Agronomy 2016, 6, 55. [Google Scholar] [CrossRef] [Green Version]
- Genc, Y.; McDonald, G.K.; Tester, M. Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ. 2007, 30, 1486–1498. [Google Scholar] [CrossRef]
Properties | Unit | Site | |||
---|---|---|---|---|---|
Sodic | Non-Sodic | ||||
0–30 cm | 30–70 cm | 0–30 cm | 30–70 cm | ||
Texture | 3.375 | 3.5 | 2.5 | 2.5 | |
ESP Exchangeable | % | 11.75 | 25.625 | 2.3 | 4.15 |
pH Level (CaCl2) | 6.725 | 8.05 | 5 | 5.45 | |
pH Level (H2O) | 7.75 | 9.15 | 6 | 6.05 | |
Ammonium Nitrogen | mg/kg | 9.75 | 1.5 | 5 | 1 |
Nitrate Nitrogen | mg/kg | 16.25 | 13.5 | 15.5 | 8 |
Phosphorus Colwell | mg/kg | 21.25 | 3 | 28 | 4 |
Potassium Colwell | mg/kg | 256.5 | 277.25 | 87.5 | 49 |
Sulfur | mg/kg | 11.725 | 56.85 | 5.5 | 42.4 |
Organic Carbon | % | 0.4425 | 0.115 | 0.44 | 0.12 |
Conductivity | dS/m | 0.16825 | 0.456 | 0.0455 | 0.069 |
DTPA Copper | mg/kg | 0.865 | 0.915 | 0.57 | 0.07 |
DTPA Iron | mg/kg | 20.365 | 11.3375 | 21.41 | 6.455 |
DTPA Manganese | mg/kg | 17.315 | 3.8775 | 8.015 | 0.86 |
DTPA Zinc | mg/kg | 0.5575 | 0.1725 | 0.42 | 0.71 |
Exc. Aluminium | meq/100 g | 0.168 | 0.17375 | 0.232 | 0.2125 |
Exc. Calcium | meq/100 g | 7.5025 | 7.6475 | 2.045 | 2.29 |
Exc. Magnesium | meq/100 g | 4.7725 | 7.7575 | 0.37 | 1.03 |
Exc. Potassium | meq/100 g | 0.645 | 0.7125 | 0.19 | 0.09 |
Exc. Sodium | meq/100 g | 1.8125 | 5.5875 | 0.065 | 0.15 |
Boron Hot CaCl2 | mg/kg | 4.505 | 17.915 | 0.685 | 0.94 |
Calcium Carbonate | % | 0.8225 | 8.38 | 0.25 | 0.28 |
Dispersion Index | 10.25 | 11 | 0.5 | 0 | |
Prewash exch. Ca | meq/100 g | 6.35 | 9.155 | 1.555 | 1.95 |
Prewash exch. K | meq/100 g | 0.5775 | 0.5475 | 0.12 | 0.065 |
Prewash exch. Mg | meq/100 g | 4.3225 | 6.4575 | 0.285 | 0.77 |
Prewash exch. Na | meq/100 g | 0.8475 | 1.87 | 0.1 | 0.1 |
Predicted Mean Grain Yields (t/ha) | Sodicity Tolerance Indices | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sodic | Non-Sodic | Ratio of Relative Predicted Yields | Yield TI | Yield-ICT | |||||||||||
Line/Trial | 2018 | 2019 TOS1 | 2019 TOS2 | 2018 | 2019 TOS1 | 2019 TOS2 | 2018 | 2019 TOS1 | 2019 TOS2 | 2018 | 2019 TOS1 | 2019 TOS2 | 2018 | 2019 TOS1 | 2019 TOS2 |
Condo | 1.832 | 1.802 | 1.954 | 1.576 | 1.388 | 1.458 | 1.125 | 1.120 | 1.060 | 0.211 | 0.269 | 0.184 | 0.204 | 0.034 | 0.045 |
Krichauff | 1.683 | 1.789 | 1.731 | 1.368 | 1.437 | 1.326 | 1.191 | 1.074 | 1.033 | 0.271 | 0.207 | 0.093 | 0.271 | −0.054 | 0.021 |
Magenta | 1.333 | 1.476 | 1.781 | 1.459 | 1.095 | 1.405 | 0.884 | 1.164 | 1.003 | −0.170 | 0.237 | 0.064 | −0.174 | 0.159 | −0.049 |
Ninja | 1.892 | 1.991 | 1.864 | 1.834 | 1.557 | 1.482 | 0.998 | 1.103 | 0.995 | 0.013 | 0.289 | 0.070 | −0.003 | −0.036 | −0.081 |
Scepter | 2.089 | 2.208 | 2.028 | 1.966 | 1.639 | 1.487 | 1.028 | 1.163 | 1.079 | 0.079 | 0.425 | 0.229 | 0.059 | 0.056 | 0.075 |
WA005 | 0.909 | 0.707 | 0.919 | 1.081 | 0.738 | 0.780 | 0.814 | 0.827 | 0.931 | −0.216 | −0.175 | −0.174 | −0.207 | −0.063 | 0.031 |
WA034w | 1.106 | 1.105 | 1.545 | 1.237 | 0.863 | 1.175 | 0.865 | 1.105 | 1.039 | −0.176 | 0.098 | 0.057 | −0.172 | 0.143 | 0.061 |
WA134 | 1.969 | 1.897 | 1.676 | 1.613 | 1.452 | 1.303 | 1.181 | 1.128 | 1.017 | 0.311 | 0.301 | 0.060 | 0.303 | 0.031 | 0.000 |
WA143 | 1.599 | 1.547 | 1.102 | 1.708 | 1.248 | 0.966 | 0.906 | 1.071 | 0.902 | −0.154 | 0.156 | −0.176 | −0.166 | −0.004 | −0.066 |
WA194 | 1.362 | 1.525 | 1.461 | 1.157 | 1.255 | 1.141 | 1.139 | 1.049 | 1.013 | 0.161 | 0.126 | 0.007 | 0.167 | −0.038 | 0.029 |
WA250 | 1.669 | 1.536 | 1.711 | 1.498 | 1.210 | 1.332 | 1.078 | 1.096 | 1.016 | 0.127 | 0.182 | 0.067 | 0.122 | 0.042 | −0.008 |
WA325 | 1.562 | 1.641 | 1.763 | 1.478 | 1.410 | 1.371 | 1.023 | 1.004 | 1.017 | 0.040 | 0.087 | 0.080 | 0.035 | −0.160 | −0.015 |
WA332 | 0.830 | 0.155 | 0.301 | 0.988 | 0.392 | 0.439 | 0.812 | 0.341 | 0.543 | −0.203 | −0.381 | −0.450 | −0.191 | −0.084 | −0.073 |
WA345 | 1.662 | 1.449 | 1.440 | 1.469 | 1.149 | 1.102 | 1.095 | 1.089 | 1.034 | 0.149 | 0.156 | 0.025 | 0.145 | 0.049 | 0.067 |
WA377 | 1.215 | 1.168 | 1.174 | 1.423 | 1.145 | 0.995 | 0.826 | 0.881 | 0.933 | −0.252 | −0.121 | −0.134 | −0.255 | −0.226 | −0.038 |
Site Mean | 1.51 ± 0.14 | 1.47 ± 0.19 | 1.5 ± 0.17 | 1.46 ± 0.1 | 1.2 ± 0.12 | 1.18 ± 0.11 |
Line | Head/m2 | Days to Heading | Flag Leaf Length | Plant Height | 1000 Kernels wt | Final Leaf Number | Peduncle Length | Grain Number | Grain Weight | Spike Length | Spikelet No | Tiller No | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TOS: | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Condo | + | + | + | + | + | + | |||||||||||
Krichauff | + | + | |||||||||||||||
Magenta | + | + | + | + | + | + | + | + | |||||||||
Ninja | |||||||||||||||||
Scepter | + | + | + | + | + | + | + | ||||||||||
WA005 | |||||||||||||||||
WA034w | + | + | + | + | + | + | + | + | |||||||||
WA134 | + | + | + | + | + | + | + | + | + | + | + | ||||||
WA143 | |||||||||||||||||
WA194 | + | + | + | + | |||||||||||||
WA250 | + | + | + | + | + | ||||||||||||
WA325 | |||||||||||||||||
WA332 | |||||||||||||||||
WA345 | + | + | + | + | + | + | + | + | + | + | |||||||
WA377 |
LINE | Al | Ca | K | Na | Mg | P | S | B | Zn | Cu | Mn | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Condo | 16.50 | −27.91 | −4.84 | −3.03 | 16.92 | 1.41 | −1.10 | 620.72 | −16.39 | 32.52 | 31.69 | 6.82 |
Krichauff | −5.71 | −8.57 | −6.40 | −15.15 | 6.38 | 0.00 | −4.71 | 199.58 | −19.23 | 16.55 | 44.88 | −5.71 |
Magenta | 18.81 | −13.58 | 0.83 | −37.50 | 9.80 | −6.85 | 8.14 | 341.35 | −8.62 | 61.79 | 94.74 | 6.45 |
Ninja | 38.18 | −43.59 | 12.09 | 4.76 | −8.47 | 1.52 | 7.69 | 1460.44 | −13.79 | 58.04 | 23.31 | 16.13 |
Scepter | 1.94 | −23.68 | 0.24 | −19.61 | 17.76 | 2.22 | 9.14 | 231.62 | −16.00 | 29.64 | 52.84 | 9.09 |
WA005 | 197.01 | −41.43 | 7.07 | −5.00 | −4.35 | 14.89 | −2.56 | 920.76 | −24.00 | 64.55 | 11.71 | 36.33 |
WA034w | 28.68 | −31.69 | 22.31 | 29.41 | 1.69 | 12.00 | 1.20 | 844.70 | −2.08 | 68.18 | 22.22 | 22.42 |
WA134 | −1.44 | −47.22 | 11.11 | 10.00 | −14.06 | 6.12 | −15.29 | 1559.57 | −4.88 | 72.45 | 13.25 | −4.28 |
WA143 | 15.85 | −35.87 | −8.79 | −10.71 | −8.93 | −15.87 | −15.22 | 350.38 | −37.50 | 134.12 | 13.64 | 33.98 |
WA194 | 47.40 | −31.78 | −3.51 | −25.00 | 6.78 | −2.04 | −12.20 | 1037.17 | −28.07 | 91.25 | 22.03 | 29.91 |
WA250 | −35.52 | −42.45 | 6.95 | 29.17 | −12.33 | 0.00 | −8.24 | 470.65 | −23.53 | 66.67 | 3.88 | −17.42 |
WA325 | 17.96 | −32.85 | 19.74 | −8.33 | −20.00 | 0.00 | −11.11 | 549.72 | −5.56 | 76.47 | 41.50 | 0.75 |
WA332 | 8.37 | −50.00 | 8.28 | 36.36 | −13.04 | 5.56 | −18.07 | 720.51 | −16.67 | 55.08 | −26.25 | −2.22 |
WA345 | 33.33 | 23.02 | −23.18 | 60.98 | 29.33 | −24.07 | −7.61 | 336.78 | −45.00 | 46.73 | 131.64 | 44.03 |
WA377 | 14.39 | −33.85 | −3.81 | 28.85 | −10.00 | 11.11 | −9.88 | 567.83 | −16.33 | 113.04 | 48.65 | 4.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dowla, M.A.N.N.U.; Sharma, D.L.; Reeves, K.; Smith, R. Tolerance of Wheat to Soil Sodicity Can Be Better Detected through an Incremental Crop Tolerance Approach and Ascertained through Multiple Sowing Times. Agronomy 2021, 11, 1571. https://doi.org/10.3390/agronomy11081571
Dowla MANNU, Sharma DL, Reeves K, Smith R. Tolerance of Wheat to Soil Sodicity Can Be Better Detected through an Incremental Crop Tolerance Approach and Ascertained through Multiple Sowing Times. Agronomy. 2021; 11(8):1571. https://doi.org/10.3390/agronomy11081571
Chicago/Turabian StyleDowla, Mirza A. N. N. U., Darshan L. Sharma, Karyn Reeves, and Rosemary Smith. 2021. "Tolerance of Wheat to Soil Sodicity Can Be Better Detected through an Incremental Crop Tolerance Approach and Ascertained through Multiple Sowing Times" Agronomy 11, no. 8: 1571. https://doi.org/10.3390/agronomy11081571
APA StyleDowla, M. A. N. N. U., Sharma, D. L., Reeves, K., & Smith, R. (2021). Tolerance of Wheat to Soil Sodicity Can Be Better Detected through an Incremental Crop Tolerance Approach and Ascertained through Multiple Sowing Times. Agronomy, 11(8), 1571. https://doi.org/10.3390/agronomy11081571