Weeds Spectrum, Productivity and Land-Use Efficiency in Maize-Gram Intercropping Systems under Semi-Arid Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Treatments Details
2.2. Site Physico-Chemical Properties
2.3. Planting Material and Crop Husbandry
2.4. Weeds Dynamics
2.5. Land Use Efficiency
2.6. Statistical Analysis
3. Results
3.1. Weeds Infestation
3.2. Yield Attributes, Grain and Biological Yields and Harvest Index of Maize
3.3. Grain Yield of Sole and Intercropped Black and Green Gram Crops
3.4. Land Equivalent Ratios and Intercropping Advantage
3.5. Correlation of Weeds Infestation and Gram Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Iqbal, M.A.; Hamid, A.; Imtiaz, H.; Muzammil, H.S.; Tanveer, A.; Abdul, K.; Zahoor, A. Competitive indices in cereal and legume mixtures in a South Asian environment. Agron. J. 2019, 111, 242–249. [Google Scholar] [CrossRef]
- Maqsood, Q.; Rana, N.A.; Iqbal, M.A.; Serap, K.A.; Asif, I.; Ayman, S. Overviewing of weed management practices to reduce weed seed bank and to increase maize yield. Planta Daninha. 2020, 38, e020199716. [Google Scholar] [CrossRef]
- Yap, V.Y.; Xaphokhame, P.; de Neergaard, A.; Bech Bruun, T. Barriers to agro-ecological intensification of smallholder upland farming systems in Lao PDR. Agronomy 2019, 9, 375. [Google Scholar] [CrossRef] [Green Version]
- Madembo, O.; Blessing, M.; Christian, T. Productivity or stability? Exploring maize-legume intercropping strategies for smallholder conservation agriculture farmers in Zimbabwe. Agric. Syst. 2020, 185, 102921. [Google Scholar] [CrossRef]
- Tadele, Z. Raising Crop Productivity in Africa through intensification. Agronomy 2017, 7, 22. [Google Scholar] [CrossRef]
- Xu, Z.; Chunjie, L.; Chaochun, Z.; Yang, Y.; Wopke, W.; Fusuo, Z. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis. Field Crops Res. 2020, 246, 107661. [Google Scholar] [CrossRef]
- Harun, I.G.; Shadrack, O.N.; Solomon, K.; Nancy, N.K.; Charles, K.K.G.; Muhammad, A.R.; Sagar, M.; Elmar, S. Revisiting intercropping indices with respect to potato-legume intercropping systems. Field Crops Res. 2020, 258, 107957. [Google Scholar] [CrossRef]
- Costa, N.D.; Carlos, A.C.C.; Paulo, C.O.T.; Cristiano, M.P.; Ciniro, C.; André, M.C.; Daniel, M.S.; João, W.B.; Marcelo, A.; Paulo, R.L.M.; et al. Recovery of 15N fertilizer in intercropped maize, grass and legume and residual effect in black oat under tropical conditions. Agric. Eco. Environ. 2021, 310, 107226. [Google Scholar] [CrossRef]
- Ngwira, A.R.; Vernon, K.; Pacsu, S.; Kondwani, M.; Kefasi, K. Productivity and profitability of maize-legume cropping systems under conservation agriculture among smallholder farmers in Malawi. Acta Agric. Scand. Sec. B. 2020, 70, 241–251. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Hamid, A.; Tanveer, A.; Imtiaz, H.; Sajid, A.; Ansar, A.; Zahoor, A. Forage sorghum-legumes intercropping: Effect on growth, yields, nutritional quality and economic returns. Bragantia 2019, 78, 82–95. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Muzammil, H.S.; Sher, A.; Zahoor, A.; Qaiser, M.; Rana, D.K. Forage productivity of cowpea [Vigna unguiculata (L.) Walp] cultivars improves by optimization of spatial arrangements. Rev. Mex. Cienc. Pec. 2018, 9, 203–219. [Google Scholar] [CrossRef] [Green Version]
- Amos, R.N.; Aune, J.B.; Mkwinda, S. On farm evaluation of yield and economic benefits of short term maize legume intercropping systems under conservation Agriculture in Malawi. Field Crops Res. 2012, 132, 149–157. [Google Scholar]
- Blanchart, E.; Villenave, C.; Viallatoux, A.; Barthes, B.; Girardin, C.; Azontonde, A.; Feller, C. Long-term effect of a legume cover crop (Mucuna pruriens var. utilis) on the communities of soil macrofauna and nematofauna, under maize cultivation, in southern Benin. Eur. J. Soil Biol. 2006, 42, 136–144. [Google Scholar] [CrossRef]
- Hakim, M.A.; Juraimi, A.S.; Rezaul, K.S.M.; Khan, M.S.I.; Islam, M.S.; Choudhury, M.K.; Soufan, W.; Alharby, H.; Bamagoos, A.; Iqbal, M.A.; et al. Effectiveness of herbicide to control rice weeds in diverse saline environments. Sustainability 2021, 13, 2053. [Google Scholar] [CrossRef]
- Malik, M.S.; Norsworthy, J.K.; Culpepper, A.S.; Riley, M.B.; Bridges, B. Use of wild radish (Raphanusraphanistrum) and rye cover crops for weed suppression in sweet corn. Weed Sci. 2008, 56, 588–595. [Google Scholar] [CrossRef]
- Weerarathne, L.V.Y.; Marambe, B.; Chauhan, B.S. Intercropping as an effective component of integrated weed management in tropical root and tuber crops: A review. Crop. Protec. 2017, 95, 89–100. [Google Scholar] [CrossRef]
- Xu, G.; Shen, S.; Zhang, Y.; Clements, D.R.; Yang, S.; Li, J.; Dong, L.; Zhang, F.; Jin, G.; Gao, Y. Designing cropping systems to improve the management of the invasive weed Phalaris minor Retz. Agronomy 2019, 9, 809. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.A.; King, J.R. Above and below-ground competition between Kura clover (Trifolium ambiguum) and meadow bromegrass (Bromus biebersteinii): Greenhouse study. Can. J. Plant. Sci. 2009, 89, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Loureiro, I.; Santin-Montanyá, I.; Escorial, M.-C.; García-Ruiz, E.; Cobos, G.; Sánchez-Ramos, I.; Pascual, S.; González-Núñez, M.; Chueca, M.C. Glyphosate as a tool for the incorporation of new herbicide options in integrated weed management in maize: A weed dynamics evaluation. Agronomy 2019, 9, 876. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.A. Comparative performance of forage cluster bean accessions as companion crops with sorghum under varied harvesting times. Bragantia 2018, 77, 476–484. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Asif, I.; Rana, N.A. Spatio-temporal reconciliation to lessen losses in yield and quality of forage soybean (Glycine max L.) in soybean-sorghum intercropping systems. Bragantia 2018, 77, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Addis, H.; Andreas, K.; Theib, O.; Stefan, S. Linking selected soil properties to land use and hill slope- A watershed case study in the Ethiopian highlands. Soil Water Res. 2016, 11, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Leoppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, G.T.; Sumner, M.E. Methods of Soil Analysis; Soil Science Society of America: Madison, WI, USA, 1996. [Google Scholar]
- Naresh, R.K.; Tomar, S.S.; Kumar, D.; Samsher, P.; Singh, S.; Dwivedi, P.; Kumar, A. Experiences with rice grown on permanent raised beds: Effect of crop establishment techniques on water use, productivity, profitability and soil physical properties. Rice Sci. 2014, 21, 170–180. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Iqbal, A.; Maqbool, Z.; Ahmad, Z.; Ali, E.; Siddiqui, M.H.; Ali, S. Revamping soil quality and correlation studies for yield and yield attributes in sorghum-legumes intercropping systems. Biosci. J. 2018, 34, 1165–1176. [Google Scholar] [CrossRef] [Green Version]
- AOAC. AOAC-Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists, Inc.: Arlington, VA, USA, 2003. [Google Scholar]
- Iqbal, M.A.; Brandon, J.B.; Asif, I.; Rana, N.A.; Zubair, A.; Haroon, Z.K.; Bilal, A. Agro-botanical response of forage sorghum-soybean intercropping systems under atypical spatio-temporal patterns. Pak. J. Bot. 2017, 49, 987–994. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall, Inc.: Englewood Cliffs, NJ, USA, 1962. [Google Scholar]
- Black, C.A. Methods of Soil Analysis, Part II; American Society of Agronomy: Madison, WI, USA, 1965. [Google Scholar]
- Piper, C.S. Soil and Plant. Analysis; The University of Adelaide, Press Adelaide: Adelaide, Australia, 1950. [Google Scholar]
- Steel, R.G.; Jhdickey, D.A. Principles and Procedures of Statistics a Biometrical Approach; McGraw-Hill: New York, NY, USA, 1986; pp. 223–241. [Google Scholar]
- Nurk, L.; Grab, R.; Pekrun, C.; Wachendorf, M. Effect of sowing method and weed control on the performance of maize (Zea mays L.) intercropped with climbing beans (Phaseolus vulgaris L.). Agriculture 2017, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Berdjour, A.; Dugje, I.Y.; Israel, K.D.; Nurudeen, A.R. Maize–soybean intercropping effect on yield productivity, weed control and diversity in northern Ghana. Weeds Biol. Manag. 2020, 20, 69–81. [Google Scholar] [CrossRef]
- Rad, S.V.; Valadabadi, S.A.R.; Pouryousef, M.; Saifzadeh, S.; Zakrin, H.R.; Mastinu, A. Quantitative and qualitative evaluation of Sorghum bicolor L. under intercropping with legumes and different weed control methods. Horticulturae 2020, 6, 78. [Google Scholar] [CrossRef]
- Gerhards, R. Weed suppression ability and yield impact of living mulch in cereal crops. Agriculture 2018, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Verret, V.; Antoine, G.; Elise, P.; Safia, M.; David, M.; Muriel, V. Can legume companion plants control weeds without decreasing crop yield? A meta-analysis. Field Crops Res. 2017, 204, 158–168. [Google Scholar] [CrossRef]
- Kermah, M.; Angelinus, C.F.; Samuel, A.; Benjamin, D.K.A.; Robert, C.A.; Ken, E.G. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana. Field Crops Res. 2017, 213, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Duchene, O.; Jean-François, V.; Florian, C. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric. Ecosyst. Environ. 2017, 240, 148–161. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, G.; Bian, X.; Zhao, Q. Effects of root interaction and nitrogen fertilization on the chlorophyll content, root activity, photosynthetic characteristics of intercropped soybean and microbial quantity in the rhizosphere. Plant. Soil Environ. 2013, 59, 80–88. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhang, F. Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. A review. Agron. Sustain. Dev. 2009, 29, 63–71. [Google Scholar] [CrossRef]
- Mariotti, M.; Masoni, A.; Ercoli, L.; Arduini, I. Above-and below-ground competition between barley, wheat, lupin and vetch in a cereal and legume intercropping system. Grass Forage Sci. 2009, 64, 401–412. [Google Scholar] [CrossRef]
- Mushagalusa, G.N.; Ledent, J.F.; Draye, X. Shoot and root competition in potato/maize intercropping: Effects on growth and yield. Environ. Exp. Bot. 2008, 64, 180–188. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhang, F.; Li, X.A.; Cao, Y. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant. Soil. 2000, 220, 13–25. [Google Scholar] [CrossRef]
- Zhang, F.; Li, L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant. Soil. 2003, 248, 305–312. [Google Scholar] [CrossRef]
- Schulz, V.S.; Schumann, C.; Weisenburger, S.; Müller-Lindenlauf, M.; Stolzenburg, K.; Möller, K. Row-intercropping maize (Zea mays L.) with biodiversity-enhancing flowering-partners-effect on plant growth, silage yield, and composition of harvest material. Agriculture 2020, 10, 524. [Google Scholar] [CrossRef]
- Nassary, E.K.; Baijukya, F.; Ndakidemi, P.A. Assessing the productivity of common bean in intercrop with maize across agro-ecological zones of smallholder farms in the Northern Highlands of Tanzania. Agriculture 2020, 10, 117. [Google Scholar] [CrossRef] [Green Version]
- Gecaitė, V.; Arlauskienė, A.; Cesevičienė, J. Competition effects and productivity in oat–forage legume relay intercropping systems under organic farming conditions. Agriculture 2021, 11, 99. [Google Scholar] [CrossRef]
- Njira, K.O.W.; Semu, E.; Mrema, J.P. Productivity of pigeon pea, cowpea and maize under sole cropping, legume–legume and legume–cereal intercrops on Alfisols in Central Malawi. Agroforest Syst. 2021, 95, 279–291. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Iqbal, A.; Siddiqui, M.H.; Maqbool, Z. Bio- agronomic evaluation of forage sorghum-legumes binary crops on Haplic Yermosol soil of Pakistan. Pak. J. Bot. 2018, 50, 1991–1997. [Google Scholar]
- Namatsheve, T.; Regis, C.; Marc, C.; Claire, M.; Icard-Vernière, C.; Rémi, C. Maize-cowpea intercropping as an ecological intensification option for low input systems in sub-humid Zimbabwe: Productivity, biological N2-fixation and grain mineral content. Field Crops Res. 2021, 263, 108052. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Asif, I.; Ayub, M.; Akhtar, J. Comparative study on temporal and spatial complementarity and profitability of forage sorghum-soybean intercropping systems. Cust. Agronegocio 2016, 12, 2–18. [Google Scholar]
- Islam, A.K.M.M.; Nasir, M.; Akter Mou, M.; Yeasmin, S.; Islam, M.S.; Ahmed, S.; Anwar, M.P.; Hadifa, A.; Baazeem, A.; Iqbal, M.A.; et al. Preliminary reports on comparative weed competitiveness of Bangladeshi monsoon and winter rice varieties under puddled transplanted conditions. Sustainability 2021, 13, 5091. [Google Scholar] [CrossRef]
- Karim, S.M.R.; Iqbal, T.M.T.; Islam, N. Relátive Yields of crops and crop losses due to weed competition in Bangladesh. Pak. J. Sci. Ind. Res. 1998, 41, 318–324. [Google Scholar]
- Buhler, D.D.; Liebman, M.; Obrycki, J.J. Theoretical and practical challenges to an IPM approach to weed management. Weed Sci. 2000, 48, 274–280. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Sajid, A.; Sabagh, A.; Ahmad, Z.; Siddiqui, M.H. Changing climate and advances on weeds utilization as forage: Provisions, nutritional quality and implications. In Invasive Species—Introduction Pathways, Economic Impact, and Possible Management Options; Intechopen Ltd.: London, UK, 2020. [Google Scholar]
Treatments | WD (m−2) | WFW (g m−2) | WDW (g m−2) | |||
---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |
T1 | 60 ± 0.93 b | 61 ± 1.13 b | 112 ± 1.23 b | 113 ± 0.54 b | 27 ± 0.09 b | 27 ± 0.62 b |
T2 | 85 ± 0.18 a | 84 ± 0.94 a | 121 ± 0.65 a | 120 ± 0.19 a | 33 ± 0.84 a | 32 ± 1.27 a |
T3 | 53 ± 1.01 c | 53 ± 0.14 bc | 68 ± 0.18 c | 69 ± 1.01 c | 20 ± 0.39 c | 21 ± 0.75 bc |
T4 | 46 ± 0.62 d | 45 ± 019 c | 64 ± 0.53 c | 65 ± 0.34 cd | 17 ± 0.91 cd | 16 ± 0.91 c |
T5 | 37 ± 0.81 e | 38 ± 1.05 d | 49 ± 0.74 c | 48 ± 0.66 d | 14 ± 0.84 de | 14 ± 0.28 d |
T6 | 31 ± 0.15 f | 30 ± 0.24 e | 41 ± 0.08 e | 40 ± 1.14 e | 13 ± 0.22 e | 13 ± 1.05 de |
T7 | 27 ± 1.11 f | 28 ± 0.81 e | 39 ± 1.27 e | 39 ± 0.29 ef | 12 ± 1.11 e | 12 ± 0.22 e |
T8 | 16 ± 0.43 g | 15 ± 1.17 f | 20 ± 0.17 f | 20 ± 1.25 f | 5 ± 0.35 f | 5 ± 1.27 f |
Treatments | GW (g) | BY (t ha−1) | GY (t ha−1) | HI (%) | ||||
---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |
T1 | 242.67 ± 1.71 a | 244.31 ± 0.21 a | 16.91 ± 0.37 a | 16.51 ± 1.12 a | 6.97 ± 1.04 a | 6.84 ± 0.24 a | 41.02 | 41.42 |
T2 | 238.67 ± 0.94 ab | 239.05 ± 0.31 b | 16.19 ± 0.18 b | 16.10 ± 1.05 b | 6.56 ± 0.99 b | 6.49 ± 0.24 b | 40.48 | 40.31 |
T3 | - | - | - | - | - | - | - | - |
T4 | - | - | - | - | - | - | - | - |
T5 | 227.33 ± 0.19 cd | 225.08 ± 1.05 cd | 15.19 ± 0.55 cd | 15.23 ± 0.98 | 6.00 ± 1.12 cd | 6.10 ± 0.29 cd | 39.16 | 0.40 |
T6 | 221.33 ± 0.84 cd | 223.64 ± 0.16 cd | 14.82 ± 0.81 cd | 14.76 ± 0.43 cd | 5.72 ± 0.67 cd | 5.66 ± 0.17 cd | 38.58 | 38.32 |
T7 | 216.67 ± 0.71 d | 213.991.14 d | 14.78 ± 0.52 d | 14.61 ± 1.18 d | 5.69 ± 0.53 d | 5.61 ± 1.15 d | 38.49 | 38.11 |
T8 | 231.00 ± 1.13 c | 2.290.34 c | 15.32 ± 1.10 c | 15.16 ± 0.55 | 6.06 ± 0.94 c | 6.00 ± 0.15 c | 39.86 | 38.76 |
Treatments | GY (t ha−1) | |
---|---|---|
2018 | 2019 | |
T3 | 0.81 ± 1.14 a | 0.80 ± 0.34 a |
T5 | 0.51 ± 0.34 c | 0.52 ± 1.01 c |
T7 | 0.62 ± 0.97 b | 0.61 ± 0.18 b |
Treatments | GY (t ha−1) | |
---|---|---|
2018 | 2019 | |
T4 | 0.86 ± 0.67 a | 0.84 ± 1.18 a |
T6 | 0.53 ± 0.18 c | 0.51 ± 0.93 c |
T8 | 0.65 ± 0.73 b | 0.66 ± 0.23 b |
Intercropping Systems | Maize LER | Black Gram LER | Green GramLER | Total LER | IA (%) |
---|---|---|---|---|---|
T5 | 0.86 | 0.63 | - | 1.49 | 49 |
T6 | 0.87 | - | 0.63 | 1.50 | 50 |
T7 | 0.87 | 0.76 | - | 1.63 | 63 |
T8 | 0.87 | - | 0.77 | 1.64 | 64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, R.N.; Arshad, M.A.; Iqbal, A.; Iqbal, M.A.; Imran, M.; Raza, A.; Chen, J.-T.; Alyemeni, M.N.; Hefft, D.I. Weeds Spectrum, Productivity and Land-Use Efficiency in Maize-Gram Intercropping Systems under Semi-Arid Environment. Agronomy 2021, 11, 1615. https://doi.org/10.3390/agronomy11081615
Abbas RN, Arshad MA, Iqbal A, Iqbal MA, Imran M, Raza A, Chen J-T, Alyemeni MN, Hefft DI. Weeds Spectrum, Productivity and Land-Use Efficiency in Maize-Gram Intercropping Systems under Semi-Arid Environment. Agronomy. 2021; 11(8):1615. https://doi.org/10.3390/agronomy11081615
Chicago/Turabian StyleAbbas, Rana Nadeem, Muhammad Awais Arshad, Asif Iqbal, Muhammad Aamir Iqbal, Muhammad Imran, Ali Raza, Jen-Tsung Chen, Mohammed Nasser Alyemeni, and Daniel Ingo Hefft. 2021. "Weeds Spectrum, Productivity and Land-Use Efficiency in Maize-Gram Intercropping Systems under Semi-Arid Environment" Agronomy 11, no. 8: 1615. https://doi.org/10.3390/agronomy11081615
APA StyleAbbas, R. N., Arshad, M. A., Iqbal, A., Iqbal, M. A., Imran, M., Raza, A., Chen, J. -T., Alyemeni, M. N., & Hefft, D. I. (2021). Weeds Spectrum, Productivity and Land-Use Efficiency in Maize-Gram Intercropping Systems under Semi-Arid Environment. Agronomy, 11(8), 1615. https://doi.org/10.3390/agronomy11081615