Improvement of Soil Health and System Productivity through Crop Diversification and Residue Incorporation under Jute-Based Different Cropping Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Treatments
2.3. Soil Sampling and Analysis
2.4. System Productivity and Sustainable Yield Index (SYI)
2.5. Soil Quality Index (SQI) Calculation
2.6. Statistical Analysis
3. Results and Discussion
3.1. System Productivity and Sustainable Yield Index
3.2. Soil pH and Bulk Density (BD)
3.3. Soil Organic Carbon and Available N, P and K
3.4. Soil Microbial Properties
3.5. Soil Enzyme Activities
3.6. Soil Quality Index (SQI)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Particulars | Jute | Rainy Rice | Winter Rice | Wheat | Baby Corn | Vegetable Pea | Mustard | Mungbean |
---|---|---|---|---|---|---|---|---|
Land preparation | One harrowing and one rotavator to incorporate residues in case of residue application and while no-residue was there then only one rotavator | Puddling | Puddling | One rotavator | One rotavator | One rotavator | No tillage | No tillage |
Sowing/transplanting time (same for all the years of study) | 15 April | 12 August | 24 January | 25 November | 15 November | 25 November | 11 November | 5 February |
Variety | JRO-204 | Khitish | Khitish | PBW 343 | G-5414 | Azad P-3 | B-54 | Pant mung-5 |
Crop duration (Days) | 110 | 120 | 140 | 130 | 90 | 100 | 85 | 70 |
Spacing (cm) | 25 × 7 cm | 20 × 15 cm | 20 × 15 cm | 20 cm | 50 × 15 cm | 40 × 10 cm | 35 × 5cm | 35 × 10 cm |
Harvesting | 5 August | 12 November | 13 June | 5 April | 15 March | 5 March | 4 February | 10 April |
100 % Recommended doses of fertilizer (RDF) with crop residue | ||||||||
Fertilizer−N (kg/ha) | 80 | 120 | 80 | 120 | 100 | 40 | 60 | 25 |
Fertilizer−P2O5 (kg/ha) | 40 | 60 | 40 | 60 | 60 | 60 | 30 | 60 |
Fertilizer−K2O (kg/ha) | 40 | 60 | 40 | 40 | 40 | 40 | 30 | 40 |
75% RDF with or without crop residue | ||||||||
Fertilizer−N (kg/ha) | 60 | 90 | 60 | 90 | 75 | 30 | 45 | 18.75 |
Fertilizer−P (kg/ha) | 30 | 45 | 30 | 45 | 45 | 45 | 22.5 | 45 |
Fertilizer−K (kg/ha) | 30 | 45 | 30 | 30 | 30 | 30 | 22.5 | 30 |
References
- Timsina, J.; Connor, D.J. Productivity and management of rice-wheat cropping systems: Issues and challenges. Field Crops Res. 2001, 69, 93–132. [Google Scholar] [CrossRef]
- Biswas, B.; Ghosh, D.C.; Dasgupta, M.K.; Trivedi, N.; Timsina, J.; Dobermann, A. Integrated assessment of cropping systems in the Eastern Indo-Gangetic plain. Field Crop Res. 2006, 99, 35–47. [Google Scholar] [CrossRef]
- Kumar, M.; Singh, S.R.; Jha, S.K.; Shamna, A.; Mazumdar, S.P.; Singh, A.; Kundu, D.K.; Mahapatra, B.S. System productivity, profitability and resource use efficiency of jute based cropping systems in the eastern Indo-Gangetic plain. Ind. J. Agric. Sci. 2014, 84, 209–213. [Google Scholar]
- UN-Pop. World Population Prospects: The 2017 Revision, Online Demographic Profiles. 2017. Available online: http://www.population.un.org/wpp/Graphs/DemographicProfiles/ (accessed on 12 March 2020).
- Chaudhury, J.; Mandal, U.K.; Sharma, K.L.; Ghosh, H.; Mandal, B. Assessing soil quality under long-term rice-based cropping system. Commun. Soil Sci. Plant Anal. 2005, 36, 1141–1161. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Gupta, R.K. Rice–wheat cropping systems in the Indo-Gangetic plains: Issues of water productivity in relation to new resource-conserving technologies. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; Kijne, J.W., Barker, R., Molden, D., Eds.; CAB International: Wallingford, UK, 2003; pp. 239–253. [Google Scholar]
- Bhattacharyya, R.; Prakash, V.; Kundu, S.; Srivastva, A.K.; Gupta, H.S. Soil aggregation and organic matter in a sandy clay loam soil of the Indian Himalayas under different tillage and crop regimes. Agric. Ecosyst. Environ. 2009, 132, 126–134. [Google Scholar] [CrossRef]
- Ramesh, P.; Panwar, N.R.; Singh, A.B.; Ramana, S.; Rao, A.S. Impact of organic manure combinations on the productivity and soil quality in different cropping systems in central India. J. Plant Nutr. Soil Sci. 2009, 172, 577–585. [Google Scholar] [CrossRef]
- Kar, S.; Pramanick, B.; Brahmachari, K.; Saha, G.; Mahapatra, B.S.; Saha, A.; Kumar, A. Exploring the best tillage option in rice based diversified cropping systems in alluvial soil of eastern India. Soil Tillage Res. 2021, 205, 104761. [Google Scholar] [CrossRef]
- Yang, X.M.; Kay, B.D. Rotation and tillage effects on soil organic carbon sequestration in a typicHapludalf in Southern Ontario. Soil Tillage Res. 2001, 59, 107–114. [Google Scholar] [CrossRef]
- Shafi, M.; Bakht, J.; Jan, M.T.; Shah, Z. Soil C and N dynamics and maize (Zea mays) yield as affected by cropping systems and residue management in North western Pakistan. Soil and Tillage Res. 2007, 94, 520–529. [Google Scholar] [CrossRef]
- Bakht, J.; Shafi, M.; Jan, M.T.; Shah, Z. Influence of crop residue management, cropping system and N fertilizer on soil N and C dynamics and sustainable wheat (Triticumaestivum) production. Soil Tillage Res. 2009, 104, 233–240. [Google Scholar] [CrossRef]
- Singh, Y.; Gupta, R.K.; Singh, J.; Singh, G.; Singh, G.; Ladha, J.K. Placement effects on rice residue decomposition and nutrient dynamics on two soil types during wheat cropping in rice–wheat system in north Western India. Nutr. Cycl. Agroecosyst. 2010, 88, 471–480. [Google Scholar] [CrossRef]
- Kumar, T.K.; Rana, D.S.; Nain, L. Legume residue and N management for improving productivity and N economy and soil fertility in wheat (Triticum aestivum)-based cropping systems. Natl. Acad. Sci. Lett. 2019, 42, 297–307. [Google Scholar] [CrossRef]
- Islam, K.R.; Weil, R.R. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agric. Ecosys. Environ. 2000, 79, 9–16. [Google Scholar] [CrossRef]
- Lobe, I.; Amelung, W.; Du Preez, C.C. Losses of carbon and nitrogen with prolonged arable cropping from sandy soils of the South African Highveld. Eur. J. Soil Sci. 2001, 52, 93–101. [Google Scholar] [CrossRef]
- Jaskulska, I.; Romaneckas, K.; Jaskulski, D.; Galezewski, L.; Breza-Boruta, B.; Debska, B.; Lemanowicz, J. Soil properties after eight years of the use of strip-till one-pass technology. Agronomy 2020, 10, 1596. [Google Scholar] [CrossRef]
- Karlen, D.L.; Mausbach, J.W.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil quality: A concept, definition and framework for evaluation. Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Bastida, F.; Moreno, J.L.; Hernández, T.; García, C. Microbiological degradation index of soils in a semi aridsemi-arid climate. Soil Biol. Biochem. 2006, 38, 3463–3473. [Google Scholar] [CrossRef]
- Cluzeau, D.; Guernion, M.; Chaussod, R.; Martin-Laurent, F.; Villenave, C.; Cortet, J.; Ruiz-Camacho, N.; Pernin, C.; Mateille, T.; Philippot, L.; et al. Integration of biodiversity in soil quality monitoring: Baselines for microbial and soil fauna parameters for different land-use types. Eur. J. Soil Biol. 2012, 49, 63–72. [Google Scholar] [CrossRef]
- Sharma, K.L.; Mandal, U.K.; Srinivas, K.; Vittal, K.P.R.; Mandal, B.; Grace, J.K.; Ramesh, V. Long-term soil management effects on crop yields and soil quality in a drylandAlfisol. Soil Tillage. Res. 2005, 83, 246–259. [Google Scholar] [CrossRef]
- Bhaduri, D.; Purakayastha, T.J. Long-term tillage, water and nutrient management in rice–wheat cropping system: Assessment and response of soil quality. Soil Tillage Res. 2014, 144, 83–95. [Google Scholar] [CrossRef]
- Andrews, S.S.; Mitchel, J.P.; Mancinelli, R.; Larlen, D.I.; Hartz, T.K.; Horwarth, W.R.; Pettygrove, G.S.; Scow, K.M.; Munk, D.S. On farm assessment of soil quality in California’s central valley. Agron. J. 2002, 94, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Brejda, J.J.; Moorman, T.B.; Karlen, D.L.; Dao, T.H. Identification of regional soil quality factors and indicators I.Central and Southern High Plains. Soil Sci. Soc. Am. J. 2000, 64, 2115–2124. [Google Scholar] [CrossRef]
- Masto, R.E.; Chhonkar, P.K.; Singh, D.; Patra, A.K. Soil quality response to long-term nutrient and crop management on a semi-arid Inceptisol. Agric. Ecosyst. Environ. 2007, 118, 130–142. [Google Scholar] [CrossRef]
- Manna, M.C.; Swarup, A.; Wanjari, R.H.; Ravankar, H.N.; Mishra, B.; Saha, M.N. Long term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under subhumid and semi-arid tropical India. Field Crop Res. 2005, 93, 264–280. [Google Scholar] [CrossRef]
- Bhaduri, D.; PurakayasthaPurakayastha, T.J.; Patra, A.K.; Chakraborty, D. Evaluating soil quality under a long-term integrated tillage–water–nutrient experiment with intensive rice–wheat rotation in a semi-arid Inceptisol. India. Environ. Monit. Assess. 2014, 186, 2535–2547. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.; Jat, H.S.; Datta, A.; Yadav, A.K.; Sapkota, T.B.; Mondal, S.; Meena, R.P.; Sharma, P.C.; Jat, M.L. Sustainable intensification influences soil quality, biota, and productivity in cereal-based agroecosystems. Appl. Soil Ecol. 2018, 126, 189–198. [Google Scholar] [CrossRef]
- Sinha, N.K.; Chopra, U.K.; Singh, A.K. Cropping system effects on soil quality for three agro-ecosystems in india. Expl Agric. 2014, 50, 321–342. [Google Scholar] [CrossRef]
- Sofi, J.A.; Bhat, A.G.; Kirmai, N.A.; Wani, J.A.; Lone, A.H.; Ganie, M.A.; Dar, G.I.H. Soil quality index as affected by different cropping systems in northwestern Himalayas. Environ. Monit. Assess. 2016, 188, 161–174. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1934, 63, 251–263. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for assessment of available nitrogen in soils. Curr. Sci. 1956, 31, 196–260. [Google Scholar]
- Olsen, S.; Cole CWatanabe, F.; Dean, L. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. In United States Department of Agriculture Circular No. 939; USDA: Washington, DC, USA, 1954. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt., Ltd.: New Delhi, India, 1973. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Parkinson, D.; Gray, T.R.G.; Williams, S.T. Methods for studying the ecology of soil microorganisms. In International Biological Programme Handbook 19; Blackwell Scientist Publications: Oxford, UK, 1971. [Google Scholar]
- Pikovskaya, A.I. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology 1948, 17, 362–370. [Google Scholar]
- Tabatabai, M.A. Soil enzymes. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Academic Press: New York, NY, USA, 1982; pp. 903–947. [Google Scholar]
- Schnurer, J.; Rosswall, T. Fluorescein di-acetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microb. 1982, 43, 1256–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabatabai, M.A.; Bremner, J.M. Assay of Urease Activity in Soils. Am. J. Soil Sci. Soc. 1972, 41, 350–352. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Singh, R.P.; Das, S.K.; BhaskaraRao, U.M.; Narayana Reddy, M. Towards Sustainable Dryland Agricultural Practices, Technical Bulletin; Central Research Institute for Dryland Agriculture: Hyderabad, India, 1990; p. 106. [Google Scholar]
- Andrews, S.S.; Karlen, D.I.; Mitchell, J.P. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons Inc.: New York, NY, USA, 1984. [Google Scholar]
- Gangwar, K.S.; Singh, K.K.; Sharma, S.K.; Tomar, O.K. Alternative tillage and crop residue management in wheat after rice in sandy loam soils of Indo-Gangetic plains. Soil Tillage Res. 2006, 88, 242–252. [Google Scholar] [CrossRef]
- Sharma, A.R.; Behera, U.K. Recycling of legume residue for nitrogen economy and higher productivity in maize (Zea mays)–wheat (Triticumaestivum) cropping system. Nutr. Cycl. Agroecosyst. 2009, 83, 197–210. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Venkatesh, M.S.; Hazra, K.K.; Kumar, N. Long term effect of pulses and nutrient management on soil organic carbon dynamics and sustainability on an Inceptisol of Indo-Gangetic Plains of India. Exp. Agric. 2012, 48, 473–487. [Google Scholar] [CrossRef]
- Latif, M.A.; Mehuys, G.R.; Mackenzie, A.F.; Alli, I.; Faris, M.A. Effects of legumes on soil physical quality in maize crops. Plant Soil 1992, 140, 15–23. [Google Scholar] [CrossRef]
- Das, T.K.; Bhattacharyya, R.; Sharma, A.R.; Das, S.; Saad, A.A.; Pathak, H. Impacts of conservation agriculture on total soil organic carbon retention potential under an irrigated agro-ecosystem of the western Indo-Gangetic Plains. Eur. J. Agron. 2013, 51, 34–42. [Google Scholar] [CrossRef]
- Hutchinson, J.J.; Campbell, C.A.; Desjardins, R.L. Some perspectives on carbon sequestration in agriculture. Agric. For. Meteorol. 2007, 142, 288–302. [Google Scholar] [CrossRef]
- Peoples, M.B.; Herridge, D.F.; Ladha, J.K. Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production. Plant Soil 1995, 174, 3–28. [Google Scholar] [CrossRef]
- Gupta, R.K.; Yadvinder-Singh Ladha, J.K.; Singh, J.; Bijay-Singh Singh, G.; Pathak, H. Yield and phosphorus transformations in a rice–wheat system with crop residueand phosphorus management. Soil Sci. Soc. Am. J. 2007, 71, 1500–1507. [Google Scholar] [CrossRef]
- Kundu, B.S.; Nehra KYadav, R.; Tomar, M. Biodiversity of phosphate solubilizing bacteria in rhizosphere of chickpea, mustard and wheat grown in different regions of Haryana. Ind. J. Microbiol. 2009, 49, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Mishra, P.K.; Mishra, S.; Selvakumar, G.; Bisht, J.K.; Kundu, S.; Gupta, H.S. Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisumsativum L.) and lentil (Lens culinaris L.). World J. Microbiol. Biotechnol. 2009, 25, 753–761. [Google Scholar] [CrossRef]
- Zhao, S.; Li, K.; Zhou, W.; Qiu, S.; Huang, S.; He, P. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agric. Ecosyst. Environ. 2016, 216, 82–88. [Google Scholar] [CrossRef]
- Arcand, M.; Helgason, B.; Lemke, R. Microbial crop residue decomposition dynamics in organic and conventionally managed soils. Appl. Soil Ecol. 2016, 107, 347–359. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Follstad Shah, J.J. Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: The growth rate hypothesis in reverse. Biogeochemistry 2011, 102, 31–43. [Google Scholar] [CrossRef]
- Singh, G.; Bhattacharyyaa, R.; Das, T.K.; Sharma, A.R.; Ghosh, A.; Das, S.; Jha, P. Crop rotation and residue management effects on soil enzyme activities, glomalin and aggregate stability under zero tillage in the Indo-Gangetic Plains. Soil Tillage. Res. 2018, 184, 291–300. [Google Scholar] [CrossRef]
- Gianfreda, L.; Ruggiero, P. Enzyme activities in soil. In Nucleic Acids and Proteins in Soil; Nannipieri, P., Smalla, K., Eds.; Springer: Berlin, Germany, 2006; pp. 257–311. [Google Scholar]
- Chang, E.H.; Chung, R.S.; Tsai, Y.W. Effect of application rates of organic fertilizers on soil enzymes activities and microbial counts. Soil Sci. Plant Nutr. 2007, 53, 132–140. [Google Scholar] [CrossRef]
- Singh, S.R.; Kundu, D.K.; Tripathi, M.K.; Dey, P.; Saha, A.R.; Kumar, M.; Singh, I.; Mahapatra, B.S. Impact of balanced fertilization on nutrient acquisition, fibre yield of jute and soil quality in New Gangetic alluvial soils of India. Appl. Soil Ecol. 2015, 92, 24–34. [Google Scholar] [CrossRef]
- Chander, K.; Goyal, S.; Mundra, M.C.; Kapoor, K.K. Organic matter, microbial biomass and enzyme activity of soils under different crop rotations in the tropics. Biol. Fertil. Soils 1997, 24, 306–310. [Google Scholar] [CrossRef]
- Wander, M.M.; Bollero, G.A. Soil quality assessment of tillage impacts to Illinois. Soil Sci. Soc. Am. J. 1999, 63, 961–971. [Google Scholar] [CrossRef]
- Biswas, S.; Hazra, G.C.; Purakayastha, T.J.; Saha, N.; Mitran, T.; Roy, S.S.; Basak, N.; Mandal, B. Establishment of critical limits of indicators and indices of soil quality in rice-rice cropping systems under different soil orders. Geoderma 2017, 292, 34–48. [Google Scholar] [CrossRef]
- Masto, R.E.; Chhonkar, P.K.; PurakayasthaTJPatra, A.K.; Singh, D. Soil quality indices for evaluation of long term land use and soil management practices in semi-arid sub-tropical India. Land Degrad. Dev. 2008, 19, 1–14. [Google Scholar] [CrossRef]
- Shahid, M.; Nayak, A.K.; Shukla, A.K.; Tripathi, R.; Kumar, A.; Mohanty, S.; Bhattacharyya, P.; Raja, R.; Panda, B.B. Long-term effects of fertilizer and manure applications on soil quality and yields in a sub-humid tropical rice-rice system. Soil Use Manag. 2013, 29, 322–332. [Google Scholar] [CrossRef]
- Sharma, K.L.; Ramachandrappa, B.K.; Suma Chandrika, D.; Sathish, A.; Dhanpal, G.N.; Rao, C.S.; Shankar, M.A.; Grace, J.K.; Sankar, G.M.; Chary, G.R.; et al. Effect of organic manure and crop residue based long-term nutrient management systems on soil quality changes under sole finger millet (Eleusinecoracana (L.) Gaertn.) and Groundnut (Arachishypogaea L.)–Finger millet rotation in rainfed Alfisol. Commun. Soil Sci. Plant Anal. 2016, 47, 899–914. [Google Scholar]
Cropping Systems (CS) | System Productivity (Mg·ha−1) | SYI | |||||
---|---|---|---|---|---|---|---|
2012–2013 | 2013–2014 | 2014–2015 | 2015–2016 | 2016–2017 | Pooled | ||
Cropping system | |||||||
FRR | 4.64 | 4.80 | 4.74 | 3.81 | 3.96 | 4.41 | 0.79 |
JRW | 6.29 | 7.21 | 7.83 | 5.89 | 6.05 | 6.65 | 0.75 |
JRBc | 18.3 | 15.3 | 13.7 | 17.8 | 11.5 | 15.3 | 0.71 |
JRGp | 8.94 | 8.80 | 9.41 | 7.87 | 9.10 | 8.81 | 0.88 |
JRMMu # | 8.13 | 8.51 | 8.13 | 7.23 | 7.10 | 7.61 | 0.82 |
SEm (±) | 0.42 | 0.29 | 0.34 | 0.31 | 0.12 | 0.29 | |
LSD (p ≤ 0.05) | 1.16 | 0.85 | 0.98 | 0.91 | 0.37 | 0.84 | |
Nutrient and residue management practices (NRCM) | |||||||
F1R0 | 9.10 | 8.72 | 8.41 | 7.86 | 7.21 | 8.26 | 0.76 |
F1R1 | 9.12 | 8.80 | 8.67 | 8.30 | 7.40 | 8.51 | 0.80 |
F2R0 | 9.40 | 9.91 | 8.95 | 8.38 | 7.54 | 8.67 | 0.79 |
F2R1 | 9.41 | 9.12 | 9.05 | 8.77 | 8.04 | 8.78 | 0.83 |
SEm (±) | 0.25 | 0.18 | 0.21 | 0.15 | 0.10 | 0.18 | |
LSD (p < 0.05) | NS | NS | NS | 0.42 | 0.30 | 0.36 | |
CS × NRCM | NS | NS | NS | NS | NS | NS |
Cropping System/Soil Attributes | pH | BD (Mg/m3) | SOC (g/kg) | Av N (mg/kg) | Av P (mg/kg) | Av K (mg/kg) |
---|---|---|---|---|---|---|
Cropping system (CS) | ||||||
FRR | 7.11 | 1.47 | 6.94 | 109.7 | 22.5 | 83.8 |
JRW | 7.13 | 1.46 | 6.57 | 108.5 | 18.9 | 88.1 |
JRBc | 7.16 | 1.49 | 6.48 | 103.8 | 16.4 | 99.3 |
JRGp | 7.11 | 1.43 | 7.37 | 111.4 | 25.1 | 101.6 |
JRMMu # | 7.07 | 1.55 | 7.27 | 111.4 | 22.7 | 104.5 |
SEm (±) | 0.06 | 0.04 | 0.23 | 6.10 | 2.18 | 5.26 |
LSD (p ≤ 0.05) | NS | 0.10 | 0.55 | NS | 5.03 | 12.35 |
Nutrients and crop residue management practices (NCRM) | ||||||
F1R0 | 7.07 | 1.52 | 6.65 | 103.2 | 20.1 | 92.2 |
F1R1 | 7.13 | 1.46 | 6.90 | 110.6 | 21.3 | 95.1 |
F2R0 | 7.15 | 1.51 | 6.84 | 106.4 | 20.9 | 94.8 |
F2R1 | 7.11 | 1.43 | 7.32 | 115.7 | 22.4 | 99.8 |
SEm (±) | 0.06 | 0.03 | 0.22 | 3.02 | 0.77 | 2.53 |
LSD (p ≤ 0.05)) | NS | 0.08 | 0.50 | 6.16 | 1.56 | 6.50 |
CS × NCRM | NS | NS | NS | NS | NS | NS |
Treatments | SMBN (mg/kg Soil) | SMBC (mg/kg Soil) | Bacteria (106 cfu/g Soil) | Azotobacter (104 cfu/g Soil) | PSB (106 cfu/g Soil) |
---|---|---|---|---|---|
Cropping system (CS) | |||||
FRR | 19.1 | 174.4 | 34.2 | 25.6 | 15.3 |
JRW | 20.3 | 173.8 | 43.9 | 28.3 | 15.5 |
JRBc | 20.5 | 171.3 | 42.4 | 43.7 | 17.5 |
JRGp | 22.0 | 180.8 | 42.8 | 35.3 | 20.7 |
JRMMu # | 23.5 | 190.6 | 37.5 | 38.7 | 20.8 |
SEm (±) | 0.66 | 2.77 | 1.87 | 3.52 | 0.88 |
LSD (p ≤ 0.05) | 1.90 | 7.99 | 5.39 | 10.04 | 2.55 |
Nutrients and crop residue management practices (NCRM) | |||||
F1R0 | 17.4 | 173.2 | 33.5 | 33.4 | 15.5 |
F1R1 | 20.6 | 177.5 | 42.0 | 35.3 | 18.9 |
F2R0 | 21.7 | 176.7 | 38.7 | 33.9 | 18.1 |
F2R1 | 24.6 | 185.2 | 46.40 | 40.5 | 19.0 |
SEm (±) | 0.49 | 0.91 | 1.55 | 2.11 | 0.86 |
LSD (p ≤ 0.05) | 1.40 | 2.62 | 4.48 | NS | 2.48 |
CS × NCRM | NS | * | * | NS | * |
Treatments | DHA (µg TPF/g/h) | FDA (µg Fluorescein/g/h) | AcP (µg pNP/g/h) | AlP (µg pNP/g/h) | Urease (µg NH4+/g/h) |
---|---|---|---|---|---|
Cropping system (CS) | |||||
FRR | 3.51 | 16.56 | 367.39 | 674.18 | 33.3 |
JRW | 3.51 | 14.78 | 402.08 | 542.35 | 34.52 |
JRBc | 3.40 | 15.26 | 359.38 | 736.55 | 37.45 |
JRGp | 3.36 | 16.46 | 513.75 | 793.75 | 59.79 |
JRMMu # | 3.86 | 16.67 | 488.04 | 810.60 | 42.02 |
SEm (±) | 0.08 | 0.39 | 43.40 | 37.98 | 5.69 |
LSD (p ≤ 0.05) | 0.23 | 1.14 | NS | 109.67 | 16.43 |
Nutrients and crop residue management practices (NCRM) | |||||
F1R0 | 3.06 | 14.52 | 400.74 | 653.49 | 33.88 |
F1R1 | 3.40 | 15.73 | 414.95 | 730.74 | 35.51 |
F2R0 | 3.52 | 16.42 | 440.78 | 726.28 | 34.88 |
F2R1 | 4.14 | 17.12 | 448.95 | 735.28 | 45.45 |
SEm (±) | 0.06 | 0.17 | 17.67 | 28.32 | 3.079 |
LSD (p ≤ 0.05) | 0.18 | 0.49 | 34.5 | 32.64 | 8.89 |
CS × NCRM | * | * | NS | NS | NS |
Principle Components | PC-1 | PC-2 | PC-3 | PC-4 |
---|---|---|---|---|
Eigenvalue | 3.862 | 1.932 | 1.332 | 1.103 |
Variance (%) | 32.18 | 16.10 | 11.09 | 9.19 |
Cumulative variance (%) | 32.18 | 48.28 | 59.38 | 68.57 |
Eigen vector | ||||
BD | 0.236 | 0.198 | 0.437 | 0.766 |
SOC | 0.641 | 0.243 | 0.205 | −0.033 |
AvN | 0.569 | −0.348 | −0.244 | 0.035 |
AvP | 0.575 | 0.299 | −0.552 | 0.06 |
AvK | −0.127 | −0.308 | 0.722 | −0.258 |
SMBC | 0.752 | −0.223 | 0.106 | 0.313 |
SMBN | 0.630 | −0.404 | 0.325 | −0.184 |
DHA | 0.616 | −0.557 | −0.185 | −0.18 |
FDA | 0.698 | −0.432 | −0.084 | 0.111 |
AcP | 0.546 | 0.442 | 0.205 | −0.414 |
AlP | 0.544 | 0.541 | 0.071 | −0.294 |
UA | 0.548 | 0.575 | 0.092 | 0.097 |
BD | SOC | SMBC | FDA | AvK | DHA | Alphos | Urease | |
---|---|---|---|---|---|---|---|---|
BD | 1.00 | |||||||
SOC | 0.18 | 1.00 | ||||||
SMBC | 0.301 * | 0.418 ** | 1.00 | |||||
FDA | 0.10 | 0.355 ** | 0.611 ** | 1.00 | ||||
AvK | 0.012 | −0.02 | −0.093 | −0.018 | 1.00 | |||
DHA | −0.128 | 0.211 | 0.494 ** | 0.578 ** | −0.024 | 1.00 | ||
Alphos | 0.282* | 0.390 ** | 0.313 * | 0.063 | −0.099 | 0.051 | 1.00 | |
UA | 0.072 | 0.412 ** | 0.216 | 0.196 | −0.143 | 0.014 | 0.460 ** | 1.00 |
Soil Indicator | Lower Threshold | Upper Threshold | A/Basline | Slope | References |
---|---|---|---|---|---|
SMBC | 0 | 350 | 150 | 0.029 | Masto et al. [66] |
DHA | 0 | 5.5 | 1.5 | 1.260 | Masto et al. [66] |
UA | 12 | 74 | 24 | 0.10 | Biswas et al. [65] |
AvK | 20 | 180 | 90 | 0.095 | Masto et al. [66] |
BD | 1.2 | 2.1 | 1.5 | −13.5 | Bhaduri et al. [27] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, M.; Mitra, S.; Mazumdar, S.P.; Majumdar, B.; Saha, A.R.; Singh, S.R.; Pramanick, B.; Gaber, A.; Alsanie, W.F.; Hossain, A. Improvement of Soil Health and System Productivity through Crop Diversification and Residue Incorporation under Jute-Based Different Cropping Systems. Agronomy 2021, 11, 1622. https://doi.org/10.3390/agronomy11081622
Kumar M, Mitra S, Mazumdar SP, Majumdar B, Saha AR, Singh SR, Pramanick B, Gaber A, Alsanie WF, Hossain A. Improvement of Soil Health and System Productivity through Crop Diversification and Residue Incorporation under Jute-Based Different Cropping Systems. Agronomy. 2021; 11(8):1622. https://doi.org/10.3390/agronomy11081622
Chicago/Turabian StyleKumar, Mukesh, Sabyasachi Mitra, Sonali Paul Mazumdar, Bijan Majumdar, Amit Ranjan Saha, Shiv Ram Singh, Biswajit Pramanick, Ahmed Gaber, Walaa F. Alsanie, and Akbar Hossain. 2021. "Improvement of Soil Health and System Productivity through Crop Diversification and Residue Incorporation under Jute-Based Different Cropping Systems" Agronomy 11, no. 8: 1622. https://doi.org/10.3390/agronomy11081622
APA StyleKumar, M., Mitra, S., Mazumdar, S. P., Majumdar, B., Saha, A. R., Singh, S. R., Pramanick, B., Gaber, A., Alsanie, W. F., & Hossain, A. (2021). Improvement of Soil Health and System Productivity through Crop Diversification and Residue Incorporation under Jute-Based Different Cropping Systems. Agronomy, 11(8), 1622. https://doi.org/10.3390/agronomy11081622