Quality Evaluation, Phytochemical Characteristics and Estimation of Beta-Carotene Hydroxylase 2 (Chy2) Alleles of Interspecific Potato Hybrids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
Samples Preparation
2.2. Bioactive Compounds Analysis
2.2.1. Total Phenolic Content
2.2.2. Total Flavonoids Content
2.2.3. Total Carotenoid Content and Analysis of Chy2 Allelic Composition Using a CAPS (Cleaved Amplified Polymorphic Sequence) Assay
2.2.4. Ascorbic Acid Content Estimation
2.2.5. Determination of Total Antioxidants Concentration
2.3. Nutritional Compounds Analysis
2.3.1. Total Protein Content
2.3.2. Total Carbohydrates Content
2.4. Quality Parameters
2.4.1. Starch Content Based on the Specific Gravity
2.4.2. Eating Qualities Estimation
2.4.3. Chip Frying Test
2.5. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic and Flavonoids Contents Estimation
3.2. Total Carotenoids Content and CAPS Assay Results
3.3. Estimation of Ascorbic Acid Content and Total Antioxidants Concentration
3.4. Total Protein and Carbohydrates Contents Determination
3.5. Starch Content Based on the Specific Gravity
3.6. Chip Frying Test and Eating Qualities Estimation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Naikoo, M.I.; Dar, M.I.; Raghib, F.; Jaleel, H.; Ahmad, B.; Raina, A.; Khan, F.A.; Naushin, F. Role and regulation of plants phenolics in abiotic stress tolerance: An overview. In Plant Signaling Molecules; Khan, I., Ferante, A., Reddy, P., Khan, N., Eds.; Woodhead Publishing: Shaxton, UK, 2019; pp. 157–168. [Google Scholar]
- Parr, A.J.; Bolwell, G.P. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 2000, 80, 985–1012. [Google Scholar] [CrossRef]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The influence of growing environment on the antioxidant and mineral content of “early” crop potato. J. Food Compos. Anal. 2013, 32, 28–35. [Google Scholar] [CrossRef]
- Valcarcel, J.; Reilly, K.; Gaffney, M.; O’Brien, N. Total Carotenoids and l-Ascorbic Acid Content in 60 Varieties of Potato (Solanum tuberosum L.) Grown in Ireland. Potato Res. 2014, 58, 29–41. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Horszwald, A.; Andlauer, W. Characterisation of bioactive compounds in berry juices by traditional photometric and modern microplate methods. J. Berry Res. 2011, 1, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Wolters, A.-M.A.; Uitdewilligen, J.G.A.M.L.; Kloosterman, B.A.; Hutten, R.C.B.; Visser, R.G.F.; van Eck, H.J. Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers. Plant Mol. Biol. 2010, 73, 659–671. [Google Scholar] [CrossRef] [Green Version]
- Hosaka, K. An easy, rapid, and inexpensive DNA extraction method, “one-minute DNA extraction,” for PCR in potato. Am. J. Potato Res. 2004, 81, 17–19. [Google Scholar] [CrossRef]
- Silva, C.R.; Simoni, J.A.; Collins, C.H.; Volpe, P.L.O. Ascorbic acid as a standard for iodometric titrations. An analytical experiment for general chemistry. J. Chem. Educ. 1999, 76, 1421. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Negulescu, G.P. Methods for Total Antioxidant Activity Determination: A Review. Biochem. Anal. Biochem. 2011, 1, 106. [Google Scholar] [CrossRef] [Green Version]
- Snyder, J.C.; Desborough, S.L. Rapid estimation of potato tuber total protein content with coomassie brilliant blue G-250. Theor. Appl. Genet. 1978, 52, 135–139. [Google Scholar] [CrossRef] [PubMed]
- BeMiller, J.N. Carbohydrate analysis. Ch. 10. In Food Analysis, 4th ed.; Food Science Text Series; Nielsen, S., Ed.; Springer: New York, NY, USA, 2010; pp. 333–360. [Google Scholar]
- Simon, M.; Hilker, M. Herbivores and pathogens on willow: Do they affect each other? Agric. For. Èntomol. 2003, 5, 275–284. [Google Scholar] [CrossRef]
- Stout, M.J.; Thaler, J.S.; Thomma, B.P. Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu. Rev. Èntomol. 2006, 51, 663–689. [Google Scholar] [CrossRef]
- Yu, X.-Y.; Bi, Y.; Yan, L.; Liu, X.; Wang, Y.; Shen, K.-P.; Li, Y.-C. Activation of phenylpropanoid pathway and PR of potato tuber against Fusarium sulphureum by fungal elicitor from Trichothecium roseum. World J. Microbiol. Biotechnol. 2016, 32, 142. [Google Scholar] [CrossRef] [PubMed]
- Wallis, C.M.; Galarneau, E.R. Phenolic compound induction in plant-microbe and plant-insect interactions: A meta-analysis. Front Plant Sci. 2020, 15, 580753. [Google Scholar] [CrossRef]
- Lachman, J.; Hamouz, K.; Orsák, M.; Pivec, V.; Dvořák, P. The influence of flesh colour and growing locality on polyphenolic content and antioxidant activity in potatoes. Sci. Hortic. 2008, 117, 109–114. [Google Scholar] [CrossRef]
- Keutgen, A.J.; Wszelaczyńska, E.; Pobereżny, J.; Przewodowska, A.; Przewodowski, W.; Milczarek, D.; Tatarowska, B.; Flis, B.; Keutgen, N. Antioxidant properties of potato tubers (Solanum tuberosum L.) as a consequence of genetic potential and growing conditions. PLoS ONE 2019, 14, e0222976. [Google Scholar] [CrossRef]
- Grudzińska, M.; Czerko, Z.; Zarzyńska, K.; Borowska-Komenda, M. Bioactive Compounds in Potato Tubers: Effects of Farming System, Cooking Method, and Flesh Color. PLoS ONE 2016, 11, e0153980. [Google Scholar] [CrossRef] [Green Version]
- Moschella, A.; Camin, F.; Misseli, F.; Parisi, B.; Versini, G.; Ranalli, P.; Bagnaresi, P. Markers of characterization of agricultural regime and geographical origin in potato. Agroindustria 2005, 4, 325–332. [Google Scholar]
- Ngadze, E.; Coutinho, T.; Icishahayo, D.; van der Waals, J. Effect of calcium soil amendments on phenolic compounds and soft rot resistance in potato tubers. Crop. Prot. 2014, 62, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Reddivari, L.; Hale, A.L.; Miller, J.C. Genotype, Location, and Year Influence Antioxidant Activity, Carotenoid Content, Phenolic Content, and Composition in Specialty Potatoes. J. Agric. Food Chem. 2007, 55, 8073–8079. [Google Scholar] [CrossRef]
- Breithaupt, D.E.; Bamedi, A. Carotenoids and Carotenoid Esters in Potatoes (Solanum tuberosum L.): New Insights into an Ancient Vegetable. J. Agric. Food Chem. 2002, 50, 7175–7181. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.M.; Ghislain, M.; Bertin, P.; Oufir, M.; Herrera, M.D.R.; Hoffmann, L.; Hausman, J.-F.; Larondelle, A.Y.; Evers, D. Andean Potato Cultivars (Solanum tuberosum L.) as a Source of Antioxidant and Mineral Micronutrients. J. Agric. Food Chem. 2007, 55, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Burgos, G.; Salas, E.; Amoros, W.; Auqui, M.; Muñoa, L.; Kimura, M.; Bonierbale, M. Total and individual carotenoid profiles in Solanum phureja of cultivated potatoes: I. Concentrations and relationships as determined by spectrophotometry and HPLC. J. Food Compos. Anal. 2009, 22, 503–508. [Google Scholar] [CrossRef]
- Tatarowska, B.; Milczarek, D.; Wszelaczyńska, E.; Pobereżny, J.; Keutgen, N.; Keutgen, A.J.; Flis, B. Carotenoids Variability of Potato Tubers in Relation to Genotype, Growing Location and Year. Am. J. Potato Res. 2019, 96, 493–504. [Google Scholar] [CrossRef] [Green Version]
- Vaitkevičienė, N.; Kulaitienė, J.; Jarienė, E.; Levickienė, D.; Danillčenko, H.; Średnicka-Tober, D.; Rembiałkowska, E.; Hallmann, E. Characterization of Bioactive Compounds in Colored Potato (Solanum Tuberosum L.) Cultivars Grown with Conventional, Organic, and Biodynamic Methods. Sustainability 2020, 12, 2701. [Google Scholar] [CrossRef] [Green Version]
- Hamouz, K.; Pazderu, K.; Lachman, J.; Čepl, J.; Kotíková, Z. Effect of cultivar, flesh colour, locality and year on carotenoid content in potato tubers. Plant Soil Environ. 2016, 62, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Hejtmánková, K.; Kotíková, Z.; Hamouz, K.; Pivec, V.; Vacek, J.; Lachman, J. Influence of flesh colour, year and growing area on carotenoid and anthocyanin content in potato tubers. J. Food Compos. Anal. 2013, 32, 20–27. [Google Scholar] [CrossRef]
- Brown, C.R.; Kim, T.S.; Ganga, Z.; Haynes, K.; De Jong, D.; Jahn, M.; Paran, I.; De Jong, W. Segregation of total carotenoid in high level potato germplasm and its relationship to beta-carotene hydroxylase polymorphism. Am. J. Potato Res. 2006, 83, 365–372. [Google Scholar] [CrossRef]
- Nesterenko, S.; Sink, K.C. Carotenoid Profiles of Potato Breeding Lines and Selected Cultivars. HortScience 2003, 38, 1173–1177. [Google Scholar] [CrossRef] [Green Version]
- Chung, I.-M.; Venkidasamy, B.; Upadhyaya, C.P.; Packiaraj, G.; Rajakumar, G.; Thiruvengadam, M. Alleviation of Phytophthora infestans Mediated Necrotic Stress in the Transgenic Potato (Solanum tuberosum L.) with Enhanced Ascorbic acid Accumulation. Plants 2019, 8, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.H.; Lee, S.G.; Shin, J.S.; Lee, H.Y.; Yoon, K.; Yong, W.J.; Dae, S.J.; Lee, K.T. P-coumaroyl anthocyanin mixture isolated from tuber epidermis of Solanum tuberosum attenuates reactive oxygen species and pro-inflammatory mediators by suppressing nf-κb and stat1/3 signaling in lps-induced raw264.7 macrophages. Biol. Pharm. Bull. 2017, 40, 1894–1902. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Yoshioka, M.; Asai, S.; Nomura, H.; Kuchimura, K.; Mori, H.; Doke, N.; Yoshioka, H. StCDPK5 confers resistance to late blight pathogen but increases susceptibility to early blight pathogen in potato via reactive oxygen species burst. New Phytol. 2012, 196, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.A.; Jones, J.D.G.; Dangl, J.L. Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat. Genet. 2005, 37, 1130–1134. [Google Scholar] [CrossRef] [PubMed]
- Watkins, J.M.; Chapman, J.M.; Muday, G.K. Abscisic Acid-Induced Reactive Oxygen Species Are Modulated by Flavonols to Control Stomata Aperture. Plant Physiol. 2017, 175, 1807–1825. [Google Scholar] [CrossRef] [Green Version]
- Nahirñak, V.; Rivarola, M.; Almasia, N.I.; Barón, M.P.B.; Hopp, H.E.; Vile, D.; Paniego, N.; Rovere, C.V. Snakin-1 affects reactive oxygen species and ascorbic acid levels and hormone balance in potato. PLoS ONE 2019, 14, e0214165. [Google Scholar] [CrossRef]
- Gallie, D.R. Increasing Vitamin C Content in Plant Foods to Improve Their Nutritional Value—Successes and Challenges. Nutrients 2013, 5, 3424–3446. [Google Scholar] [CrossRef] [Green Version]
- Shewry, P.R. Tuber storage proteins. Ann. Bot. 2003, 91, 755–769. [Google Scholar] [CrossRef] [Green Version]
- Pots, A.M.; Grotenhuis, E.T.; Gruppen, H.; Voragen, A.G.J.; De Kruif, K.G. Thermal Aggregation of Patatin Studied in Situ. J. Agric. Food Chem. 1999, 47, 4600–4605. [Google Scholar] [CrossRef]
- Pots, A.M.; Gruppen, H.; De Jongh, H.H.J.; Van Boekel, M.A.J.S.; Walstra, P.; Voragen, A.G.J. Kinetic modeling of the thermal aggregation of patatin. J. Agric. Food Chem. 1999, 47, 4593–4599. [Google Scholar] [CrossRef]
- Zarzecka, K.; Gugała, M.; Mystkowska, I.; Sikorska, A. Total and True Protein Content in Potato Tubers Depending on Herbicides and Biostimulants. Agronomy 2020, 10, 1106. [Google Scholar] [CrossRef]
- Järvan, M.; Edesi, L. The effect of cultivation methods on the yield and biological quality of potato. Agron. Res. 2009, 7, 289–299. [Google Scholar]
- Malone, J.; Mittova, V.; Ratcliffe, R.G.; Kruger, N.J. The Response of Carbohydrate Metabolism in Potato Tubers to Low Temperature. Plant Cell Physiol. 2006, 47, 1309–1322. [Google Scholar] [CrossRef]
- Choi, I.; Chun, J.; Choi, H.-S.; Park, J.; Kim, N.-G.; Lee, S.-K.; Park, C.-H.; Jeong, K.-H.; Nam, J.-W.; Cho, J.; et al. Starch Characteristics, Sugars and Thermal Properties of Processing Potato (Solanum tuberosum L.) Cultivars Developed in Korea. Am. J. Potato Res. 2020, 97, 308–317. [Google Scholar] [CrossRef]
- Šimková, D.; Lachman, J.; Hamouz, K.; Vokál, B. Effect of cultivar, location and year on total starch, amylose, phosphorus content and starch grain size of high starch potato cultivars for food and industrial processing. Food Chem. 2013, 141, 3872–3880. [Google Scholar] [CrossRef] [PubMed]
- Kumlay, A.M.; Kaya, C.; Olgun, M.; Dursun, A.; Pehluvan, M.; Dizikisa, T. Comparison of seasonal change of specific gravity, dry matter accumulation and starch content of four potato (Solanum tuberosum L.) varieties. Acta Hortic. 2002, 579, 255–258. [Google Scholar] [CrossRef]
- Adams, J.B. Raw materials quality and the texture of processed vegetables. In Texture in Foods; Kilcast, D., Ed.; CRC Press: Boca Raton, FL, USA, 2004; Volume 2, pp. 342–363. [Google Scholar]
- John Wiley and Sons, Inc. Handbook of Fruit and Vegetable Flavors; Hui, Y.H., Ed.; Lebensmittelchemie: Garching, Germany, 2010; Volume 64, pp. 171–172. [Google Scholar]
№ | Note | Breeding Number | Origin of Hybrids | Solanum Species in Pedigree | Additional Information (Catalog) |
---|---|---|---|---|---|
1. | SH1 | 144-1-2013 | F28-05 (F4 S. pinnatisectum × Fausta) | S. pinnatisectum, S. tuberosum | Late blight resistance |
2. | SH2 | 141-2-2013 | F272-04 (F4 S. pinnatisectum × Fausta) | S. pinnatisectum, S. tuberosum | Late blight resistance |
3. | SH3 | 167-1-2008 | 159-31 × Latona | S. andigenum, S. microdontum, S. rybinii, S. spegazzinii, S. stoloniferum, S. tuberosum | Relatively resistant to the Colorado potato beetle |
4. | SH4 | 99-4-1 | 180-1 × Hertha | S. stoloniferum, S. tuberosum | Mid-season hybrid. Susceptible to S. endobioticum (pathotype 1) according to laboratory tests. Value 74–84% (average tuber weight 80–85 g). Tubers resistant to common scab, susceptible to silver scab and rhizoctonia. Relatively resistant to the Colorado potato beetle |
5. | SH5 | 99-10-1 | Bobr × S. chacoense k-19759 | S. chacoense, S. tuberosum | Mid-season hybrid. Early tuberization. Susceptible to S. endobioticum (pathotype 1) according to laboratory tests. Value 74–85% (average tuber weight 56–80 g). |
6. | SH6 | 94-5 | Bobr × S. chacoense k-19759 | S. chacoense, S. tuberosum | Mid-season hybrid. Early tuberization. Resistant to S. endobioticum (pathotype 1) according to laboratory tests. Value 47–65% (average tuber weight 48–64 g.). Tubers susceptible to rhizoctonia |
7. | SH7 | 88-2 | 180-2 × Hertha | S. stoloniferum, S. tuberosum | Early hybrid. Early tuberization. Resistant to S. endobioticum (pathotype 1) according to laboratory tests. Value 66–68% (to 87–92% with a high agricultural background) (average tuber weight 60–76 g). Tubers resistant to common scab, susceptible to silver scab and rhizoctonia |
8. | SH8 | 134-6-2006 | 24-2 × Svitanok Kievsky | S. alandiae, S. tuberosum | Middle-early hybrid. Susceptible to S. endobioticum (pathotype 1) according to laboratory tests. Value 70–84% (average tuber weight 71–81 g, more than 100 g with a high agricultural background). Tubers resistant to common scab and rhizoctonia, susceptible to silver scab. |
9. | SH9 | 160-1 | F2 97-155-1 | S. andigenum, S. rybinii, S. tuberosum | Middle-early hybrid. Susceptible to S. endobioticum (pathotype 1) according to laboratory tests. Value 36–95% (average tuber weight 86–113 g). |
10. | SH10 | 160-17 | F2 97-155-1 | S. andigenum, S. rybinii, S. tuberosum | Middle-early hybrid. Susceptible to S. endobioticum (pathotype 1) according to laboratory tests. Value 65–94%, (average tuber weight 100–110 g). Tubers susceptible to common scab |
11. | SH11 | 160-40 | F2 97-155-1 | S. andigenum, S. rybinii, S. tuberosum | Mid-season hybrid. Susceptible to S. endobioticum (pathotype 1) according to laboratory tests. Value 51–78% (average tuber weight 66–67 g). |
12. | SH12 | 34-6 | 97-162-2 × 190-4 | S. andigenum, S. microdontum, S. rybinii, S. spegazzinii, S. stoloniferum, S. tuberosum | Middle-early hybrid. Susceptible to S. endobioticum (pathotype 1) according to laboratory tests. Value 50–84% (average tuber weight 65–96 g). Tubers susceptible to common scab and rhizoctonia |
13. | SH13 | 135-3-2005 | S. okadae k-20921 × S. chacoense k-19759 | S. okadae, S. chacoense | Middle-early hybrid. Resistant to S. endobioticum (pathotype 1) according to laboratory tests. Value 84–96% (average tuber weight 90–105 g). Tubers resistant to common scab and rhizoctonia |
14. | SH14 | 8-1-2004 (137) | S. okadae k-20921 × S. chacoense k-19759 | S. okadae, S. chacoense | Middle-early hybrid. Resistant to S. endobioticum (pathotype 1) according to laboratory tests. Value 73–90% (average tuber weight 74–95 g). Tubers susceptible to rhizoctonia |
15. | SH15 | 123-3-2004 | 97-162-2 × 190-4 | S. andigenum, S. microdontum, S. rybinii, S. spegazzinii, S. stoloniferum, S. tuberosum | Early tuberization. Susceptible to S. endobioticum (pathotype 1) according to laboratory tests. Value 53–88% (average tuber weight 58–81 g). |
16. | SH16 | 135-2-2006 | Svitanok Kievsky × 24-2 | S. alandiae, S. tuberosum | Middle-early hybrid. Resistant to S. endobioticum (pathotype 1) according to laboratory tests. Value 53–79% (average tuber weight 57–73 g). Tubers resistant to common scab and rhizoctonia, susceptible to silver scab |
17. | SH17 | 128-05-02 | 97-155-1 × Najada | S. andigenum, S. rybinii, S. tuberosum | Middle-late hybrid. Resistant to S. endobioticum (pathotype 1) according to laboratory tests. Value 80–843% (average tuber weight 67–78 g). |
18. | SH18 | 194-3 | Zagadka Pitera × 99-6-6 | S. andigenum, S. rybinii, S. tuberosum | Middle-early hybrid. Resistant to S. endobioticum (pathotype 1) according to laboratory tests. Value 62–93% (average tuber weight 60–114 g). Tubers susceptible to rhizoctonia and common scab |
19. | SH19 | 134-2-2006 | 24-2 × Svitanok Kievsky | S. alandiae, S. tuberosum | Middle-early hybrid. Early tuberization. Susceptible to S. endobioticum (pathotype 1) according to laboratory tests. Value 76–90% (average tuber weight 74–92 g). Tubers susceptible to common scab. |
20. | SH20 | 117-2 | Atzimba × S.alandiae k-21240 | S. alandiae, S. tuberosum | Middle-late hybrid. Susceptible to S. endobioticum (pathotype 1) according to laboratory tests. Value 61–81% (average tuber weight 91–111 g). Tubers susceptible to rhizoctonia and common scab |
21. | SH21 | 97-159-3 | k-24517 (90-7-7 × 90-21-1) | S. andigenum, S. rybinii, S. stoloniferum, S. tuberosum | Middle-late hybrid. Resistant to S. endobioticum (pathotype 1) according to laboratory tests. Value 69–87% (average tuber weight 58–66 g). Tubers resistant to common scab, susceptible to silver scab and stem rhizoctonia. |
22. | SH22 | 159-1 | k-24523 (F2 90-7-7) | S. andigenum, S. rybinii, S. stoloniferum, S. tuberosum | Mid-season hybrid. Susceptible to S. endobioticum (pathotype 1) according to laboratory tests. Value 58–88% (average tuber weight 73–78 g). Tubers susceptible to silver scab |
23. | SH23 | 135-1-2006 | Svitanok Kievsky × 24-2 | S. alandiae, S. tuberosum | Mid-season hybrid. Early tuberization. Resistant to S. endobioticum (pathotype 1) according to laboratory tests. Value 78–93% (average tuber weight 65–95 g). Tubers resistant to common scab and rhizoctonia |
24. | SH24 | 25-1-2007 | Elizaveta × (Atzimba × S. alandiae k-21240) | S. alandiae, S. tuberosum | Mid-season hybrid. Value 74–94% (average tuber weight 68–78 g). Tubers resistant to common scab and rhizoctonia |
25. | SH25 | 117-1 | Atzimba × S. alandiae k-21240 | S. alandiae, S. tuberosum | Mid-season hybrid. Early tuberization. Value 60–71% (average tuber weight 72–79 g). |
Quality Indicators | Quality Levels | Point |
---|---|---|
View, shape and size | Even, smooth slices | 9 |
Even, slightly wavy slices | 7 | |
Medium-wavy slices | 5 | |
Strong wavy slices | 3 | |
Corrugated slices | 1 | |
Color | Uniform clear yellow of all shades (pale yellow, bright yellow, etc.) | 9 |
Uniform, less clear, yellow of all shades. No burnt slices | 7 | |
Nonuniform unclear yellow of all shades | 5 | |
Nonuniform with light brown, brown spots and burnt slices | 3 | |
Nonuniform, most slices are burnt | 1 | |
Texture | Crunchy, tender | 9 |
Crunchy, less tender | 7 | |
Crunchy, slightly hard | 5 | |
Hard, slightly solid | 3 | |
Hard, Solid | 1 |
№ | Note | Breeding Number | Total Phenolic Content, mg/100 g DW | Total Flavonoids Content, mg/100 g DW |
---|---|---|---|---|
1 | SH1 | 144-1-2013 | 18.022.55 bcd | 2.130.28 bcde |
2 | SH2 | 141-2-2013 | 8.45449 a | 0.640.2 2a |
3 | SH3 | 167-1-2008 | 69.975.77 k | 6.830.91 j |
4 | SH4 | 99-4-1 | 26.816.50 ef | 2.120.86 bcde |
5 | SH5 | 99-10-1 | 39.074.85 ghi | 3.690.58 fg |
6 | SH6 | 94-5 | 28.524.70 ef | 1.470.35 abc |
7 | SH7 | 88-2 | 63.327.13 k | 6.921.60 j |
8 | SH8 | 134-6-2006 | 34.351.12 fg | 2.850.27 ef |
9 | SH9 | 160-1 | 48.289.23 j | 2.180.51 bcde |
10 | SH10 | 160-17 | 12.214.03 ab | 1.470.92 abc |
11 | SH11 | 160-40 | 35.511.61 fgh | 4.050.67 g |
12 | SH12 | 34-6 | 44.141.62 hij | 2.610.35 cde |
13 | SH13 | 135-3-2005 | 34.934.971 fgh | 4.740.47 gh |
14 | SH14 | 8-1-2004 | 35.4012.38 fgh | 5.581.33 hi |
15 | SH15 | 123-3-2004 | 24.371.34 de | 6.220.75 ij |
16 | SH16 | 135-2-2006 | 38.455.82 ghi | 3.801.44 fg |
17 | SH17 | 128-05-02 | 22.084.80 cde | 2.720.47 def |
18 | SH18 | 194-3 | 62.746.86 k | 4.061.40 g |
19 | SH19 | 134-2-2006 | 80.7517.41 l | 1.900.74 bcde |
20 | SH20 | 117-2 | 15.533.35 abc | 1.650.07 abcd |
21 | SH21 | 97-159-3 | 82.7526.80 l | 9.671.28 k |
22 | SH22 | 159-1 | 40.947.26 ghij | 4.440.65 g |
23 | SH23 | 135-1-2006 | 13.323.24 abc | 1.870.28 bcde |
24 | SH24 | 25-1-2007 | 9.204.18 ab | 4.490.00 g |
25 | SH25 | 117-1 | 45.525.48 ij | 1.340.94 ab |
№ | Breeding Number | Genotype | Total Carotenoid Content, mg/kg DW | Flesh Color | Skin Color | |
---|---|---|---|---|---|---|
CHY2 Presence | chy2 Presence | |||||
1 | SH1 | + | 2.150.13 d | creamy | yellow | |
2 | SH2 | + | 0.550.15 ab | white | violet | |
3 | SH3 | + | + | 10.370.80 j | yellow | yellow |
4 | SH4 | + | + | 0.920.65 bc | light yellow | yellow |
5 | SH5 | + | + | 4.880.17 fg | yellow | yellow |
6 | SH6 | + | + | 0.380.02 ab | light yellow | yellow |
7 | SH7 | + | 0.540.03 ab | light yellow | yellow | |
8 | SH8 | + | + | 3.120.74 e | yellow | yellow |
9 | SH9 | + | + | 0.340.07 ab | light yellow | yellow |
10 | SH10 | + | + | 0.460.23 ab | light yellow | yellow |
11 | SH11 | + | + | 4.740.27 f | yellow | yellow |
12 | SH12 | + | + | 5.470.24 h | yellow | white |
13 | SH13 | + | + | 4.760.06 f | yellow | creamy |
14 | SH14 | + | + | 0.260.04 a | light yellow | yellow |
15 | SH15 | + | + | 7.810.43 i | yellow | yellow |
16 | SH16 | + | + | 0.280.16 ab | light yellow | violet |
17 | SH17 | + | 2.620.49 de | creamy | yellow | |
18 | SH18 | + | 0.460.12 ab | white | pink | |
19 | SH19 | + | + | 1.220.26 c | light yellow | yellow |
20 | SH20 | + | 0.470.21 ab | creamy | yellow | |
21 | SH21 | + | + | 9.960.55 j | yellow | red |
22 | SH22 | + | + | 5.390.47 gh | yellow | red |
23 | SH23 | + | 1.250.14 c | creamy | yellow | |
24 | SH24 | + | 1.170.21 abc | creamy | yellow | |
25 | SH25 | + | 0.410.20 a | creamy | yellow |
№ | Breeding Number | Total Antioxidant Content, mg eq. HA/g. | Total Ascorbic Acid Content, mg/100 g of DW |
---|---|---|---|
1 | SH1 | 0.15 ± 0.01 | 11 ± 1 |
2 | SH2 | 0.16 ± 0.01 | 18 ± 2 |
3 | SH3 | 0.22 ± 0.01 | 19 ± 2 |
4 | SH4 | 0.17 ± 0.01 | 18 ± 2 |
5 | SH5 | 0.16 ± 0.01 | 16 ± 2 |
6 | SH6 | 0.18 ± 0.01 | 18 ± 2 |
7 | SH7 | 0.21 ± 0.01 | 14 ± 1 |
8 | SH8 | 0.27 ± 0.01 | 21 ± 2 |
9 | SH9 | 0.17 ± 0.01 | 17 ± 2 |
10 | SH10 | 0.17 ± 0.01 | 22 ± 2 |
11 | SH11 | 0.22 ± 0.01 | 16 ± 2 |
12 | SH12 | 0.15 ± 0.01 | 18 ± 2 |
13 | SH13 | 0.18 ± 0.01 | 13 ± 1 |
14 | SH14 | 0.27 ± 0.01 | 14 ± 1 |
15 | SH15 | 0.19 ± 0.01 | 16 ± 2 |
16 | SH16 | 0.40 ± 0.02 | 16 ± 2 |
17 | SH17 | 0.16 ± 0.01 | 16 ± 2 |
18 | SH18 | 0.30 ± 0.02 | 18 ± 2 |
19 | SH19 | 0.24 ± 0.01 | 19 ± 2 |
20 | SH20 | 0.19 ± 0.01 | 21 ± 2 |
21 | SH21 | 0.17 ± 0.01 | 23 ± 2 |
22 | SH22 | 0.25 ± 0.01 | 23 ± 2 |
23 | SH23 | 0.21 ± 0.01 | 12 ± 1 |
24 | SH24 | 0.21 ± 0.01 | 13 ± 1 |
25 | SH25 | 0.20 ± 0.01 | 12 ± 1 |
№ | Breeding Number | Total Protein Content, mg/g DW | Carbohydrates Content, mg/g DW |
---|---|---|---|
1 | SH1 | 15.81 ± 5.60 bcde | 216.80 ± 57.70 abc |
2 | SH2 | 16.87 ± 2.15 bcdef | 73.21 ± 20.94 a |
3 | SH3 | 28.66 ± 2.35 hi | 493.33 ± 49.00 ef |
4 | SH4 | 13.80 ± 4.13 abcd | 302.98 ± 94.06 bcd |
5 | SH5 | 35.23 ± 2.30 jk | 539.21 ± 189.00 fg |
6 | SH6 | 31.29 ± 4.05 i | 249.09 ± 46.92 abcd |
7 | SH7 | 37.41 ± 3.83 k | 210.31 ± 116.80 abc |
8 | SH8 | 20.25 ± 3.77 efg | 243.11 ± 169.65 abcd |
9 | SH9 | 12.44 ± 4.253 abc | 409.00 ± 238.82 def |
10 | SH10 | 19.61 ± 5.62 defg | 287.56 ± 32.11 bcd |
11 | SH11 | 19.14 ± 5.90 defg | 267.02 ± 50.53 bcd |
12 | SH12 | 23.32 ± 4.75 gh | 208.25 ± 16.84 bcd |
13 | SH13 | 33.32 ± 4.37 ijk | 340.95 ± 101.88 bcde |
14 | SH14 | 22.86 ± 1.01 fghj | 349.97 ± 64.32 bcde |
15 | SH15 | 23.87 ± 3.28 gh | 250.29 ± 130.70 abcd |
16 | SH16 | 15.92 ± 1.54 bcde | 188.39 ± 23.51 abc |
17 | SH17 | 15.52 ± 1.39 bcde | 355.78 ± 89.00 cde |
18 | SH18 | 18.53 ± 1.89 cdefg | 160.79 ± 29.63 ab |
19 | SH19 | 8.19 ± 0.59 a | 211.87 ± 78.92 abc |
20 | SH20 | 21.85 ± 5.65 efg | 205.61 ± 17.21 abc |
21 | SH21 | 19.41 ± 2.55 defg | 676.36 ± 195.28 cde |
22 | SH22 | 21.63 ± 5.20 efg | 260.83 ± 16.84 bcd |
23 | SH23 | 30.17 ± 4.56 ij | 422.75 ± 192.12 def |
24 | SH24 | 11.73 ± 3.31 ab | 425.36 ± 87.14 def |
25 | SH25 | 9.39 ± 0.55 a | 293.69 ± 52.68 bcd |
№ | Breeding Number | Starch Content, % |
---|---|---|
1 | SH1 | 18.2 |
2 | SH2 | 16.4 |
3 | SH3 | 17.6 |
4 | SH4 | 17.3 |
5 | SH5 | 13.4 |
6 | SH6 | 17.5 |
7 | SH7 | 18.3 |
8 | SH8 | 21.0 |
9 | SH9 | 19.0 |
10 | SH10 | 17.3 |
11 | SH11 | 18.0 |
12 | SH12 | 15.2 |
13 | SH13 | 20.3 |
14 | SH14 | 18.5 |
15 | SH15 | 17.3 |
16 | SH16 | 16.4 |
17 | SH17 | 18.1 |
18 | SH18 | 9.0 |
19 | SH19 | 17.9 |
20 | SH20 | 16.1 |
21 | SH21 | 16.2 |
22 | SH22 | 17.5 |
23 | SH23 | 19.2 |
24 | SH24 | 16.8 |
25 | SH25 | 16.0 |
№ | Breeding Number | Potato Chips Quality, Points | Eating Quality, Points | |||||
---|---|---|---|---|---|---|---|---|
View | Color | Texture | Average (±SD) | Taste (1–5) (±SD) | Mealiness (1–9) | Texture | ||
1 | SH1 | 5 | 4 | 5 | 4.6 ± 0.6 | 3.4 ± 0.5 | 4 | hard |
2 | SH2 | 6 | 4 | 6 | 5.3 ± 1.2 | 3.8 ± 0.8 | 6 | hard |
3 | SH3 | 5 | 2 | 2 | 3.0 ± 1.7 | 3.8 ± 0.6 | 6 | soft |
4 | SH4 | 5 | 4 | 8 | 5.6 ± 2.1 | 4.4 ± 0.9 | 4 | hard |
5 | SH5 | 5 | 3 | 6 | 4.6 ± 1.5 | 3.8 ± 1.3 | 8 | hard |
6 | SH6 | 7 | 6 | 7 | 6.6 ± 0.6 | 3.6 ± 0.9 | 7 | hard |
7 | SH7 | 4 | 6 | 9 | 6.3 ± 2.5 | 4.2 ± 0.8 | 7 | hard |
8 | SH8 | 6 | 4 | 4 | 4.6 ± 1.2 | 4.2 ± 1.1 | 7 | hard |
9 | SH9 | 6 | 4 | 5 | 5.0 ± 1.0 | 3.8 ± 1.1 | 6 | hard |
10 | SH10 | 5 | 4 | 9 | 6.0 ± 2.6 | 4.3 ± 0.7 | 8 | hard |
11 | SH11 | 5 | 6 | 9 | 6.6 ± 2.1 | 3.6 ± 1.3 | 7 | hard |
12 | SH12 | 5 | 4 | 8 | 5.6 ± 2.1 | 3.9 ± 1.1 | 7 | hard |
13 | SH13 | 5 | 3 | 6 | 4.6 ± 1.5 | 4.0 ± 1.0 | 8 | soft |
14 | SH14 | 5 | 5 | 8 | 6.0 ± 1.7 | 3.0 ± 0.7 | 8 | hard |
15 | SH15 | 6 | 7 | 8 | 7.0 ± 1.0 | 4.4 ± 0.5 | 8 | hard |
16 | SH16 | 4 | 2 | 4 | 3.3 ± 1.2 | 4.5 ± 0.6 | 7 | hard |
17 | SH17 | 3 | 3 | 2 | 2.6 ± 0.6 | 3.5 ± 0.6 | 9 | hard |
18 | SH18 | 3 | 4 | 4 | 3.6 ± 0.6 | 3.5 ± 0.6 | 6 | hard |
19 | SH19 | 7 | 9 | 9 | 8.3 ± 1.2 | 3.8 ± 0.8 | 6 | soft |
20 | SH20 | 4 | 3 | 7 | 4.6 ± 2.1 | 3.0 ± 1.2 | 7 | soft |
21 | SH21 | 5 | 3 | 2 | 3.3 ± 1.5 | 3.9 ± 0.2 | 7 | soft |
22 | SH22 | 7 | 2 | 3 | 4.0 ± 2.6 | 3.6 ± 0.9 | 8 | soft |
23 | SH23 | 5 | 3 | 5 | 4.3 ± 1.2 | 4.2 ± 0.4 | 7 | soft |
24 | SH24 | 4 | 1 | 2 | 2.3 ± 1.5 | 3.8 ± 0.8 | 5 | hard |
25 | SH25 | 5 | 4 | 8 | 5.6 ± 2.1 | 4.4 ± 0.9 | 8 | soft |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polivanova, O.B.; Gins, E.M.; Moskalev, E.A.; Voinova, M.S.; Koroleva, A.K.; Semenov, A.Z.; Sivolapova, A.B.; Ivanova, A.S.; Kazakov, O.G.; Simakov, E.A.; et al. Quality Evaluation, Phytochemical Characteristics and Estimation of Beta-Carotene Hydroxylase 2 (Chy2) Alleles of Interspecific Potato Hybrids. Agronomy 2021, 11, 1619. https://doi.org/10.3390/agronomy11081619
Polivanova OB, Gins EM, Moskalev EA, Voinova MS, Koroleva AK, Semenov AZ, Sivolapova AB, Ivanova AS, Kazakov OG, Simakov EA, et al. Quality Evaluation, Phytochemical Characteristics and Estimation of Beta-Carotene Hydroxylase 2 (Chy2) Alleles of Interspecific Potato Hybrids. Agronomy. 2021; 11(8):1619. https://doi.org/10.3390/agronomy11081619
Chicago/Turabian StylePolivanova, Oksana B., Ekaterina M. Gins, Evgeny A. Moskalev, Maria S. Voinova, Alina K. Koroleva, Anatoly Zh. Semenov, Anastasia B. Sivolapova, Anna S. Ivanova, Oleg G. Kazakov, Evgeny A. Simakov, and et al. 2021. "Quality Evaluation, Phytochemical Characteristics and Estimation of Beta-Carotene Hydroxylase 2 (Chy2) Alleles of Interspecific Potato Hybrids" Agronomy 11, no. 8: 1619. https://doi.org/10.3390/agronomy11081619
APA StylePolivanova, O. B., Gins, E. M., Moskalev, E. A., Voinova, M. S., Koroleva, A. K., Semenov, A. Z., Sivolapova, A. B., Ivanova, A. S., Kazakov, O. G., Simakov, E. A., Chalaya, N. A., Rogozina, E. V., & Goryunova, S. V. (2021). Quality Evaluation, Phytochemical Characteristics and Estimation of Beta-Carotene Hydroxylase 2 (Chy2) Alleles of Interspecific Potato Hybrids. Agronomy, 11(8), 1619. https://doi.org/10.3390/agronomy11081619