Non-Chemical Soil Fumigation for Sustainable Strawberry Production in Southern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Treatments
2.2. Plant Growth
2.3. Yield per Plant and Fruit Weight
2.4. Fruit Quality
2.5. Total Soil Microflora and Plant Mortality Assessment
2.6. Statistical Analysis
3. Results and Discussion
3.1. Plant Growth Pattern and Dry Biomass Partitioning
3.2. Harvest Season Pattern and Yield Performance
3.3. Fruit Weight and Other Quality Traits
3.4. Total Soil Microflora and Plant Mortality Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT: Statistical Database. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 18 June 2021).
- De Tommaso, N.; López Aranda, J.M.; Greco, N.; Saporiti, M.; Maccarini, C.; Myrta, A. Sustainability of strawberry nurseries and fruit production in relation to fumigation practices in Europe. Acta Hortic. 2021, 1309, 693–700. [Google Scholar] [CrossRef]
- Domínguez, P.; Miranda, L.; Soria, C.; De los Santos, B.; Chamorro, M.; Romero, F.; Daugovish, O.; Lopez-Aranda, J.M.; Medina, J.J. Soil biosolarization for sustainable strawberry production. Agron. Sustain. Dev. 2014, 34, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Lewis, E.; Liu, Q.; Li, H.; Bai, C.; Wang, Y. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat. Sci. Rep. 2016, 6, 30466. [Google Scholar] [CrossRef] [Green Version]
- Shennan, C.; Muramoto, J.; Koike, S.; Baird, G.; Fennimore, S.; Samtani, J.; Bolda, M.; Dara, S.; Daugovish, O.; Lazarovits, G.; et al. Anaerobic soil disinfestation is a potential alternative to soil fumigation for control of some soil-borne pathogens in strawberry production. Plant Pathol. 2017, 67, 51–66. [Google Scholar] [CrossRef]
- Minuto, A.; Baruzzi, G.; Turci, P.; Minuto, G. Fumigazione: Stato dell’arte e possibili innovazioni. Rivista di Frutticoltura e di Ortofloricoltura 2019, 5, 18–23. [Google Scholar]
- Molot, P.M.; Ferrière, H. Susceptibility of strawberry cultivars to Rhizoctonia solani and R. fragariae as influenced by inoculation technique, seasonal variations and physiological condition of the plants. Acta Hortic. 1989, 265, 535–540. [Google Scholar] [CrossRef]
- Fort, S.B.; Shaw, D.V.; Larson, K.D. Performance responses of strawberry seedlings to the sublethal effects of nonfumigated soils. J. Amer. Soc. Hortic. Sci. 1996, 121, 367–370. [Google Scholar] [CrossRef]
- Chandler, C.K.; Legard, D.E.; Noling, J.W. Performance of Strawberry Cultivars on Fumigated and Nonfumigated Soil in Florida. HortTechnology 2001, 11, 69–71. [Google Scholar] [CrossRef] [Green Version]
- Lovaisa, N.C.; Guerrero-Molina, M.F.; Delaporte-Quintana, P.G.; Alderete, M.D.; Ragout, A.L.; Salazar, S.M.; Pedraza, R.O. Strawberry monocropping: Impacts on fruit yield and soil microorganisms. J. Soil Sci. Plant Nutr. 2017, 17, 868–883. [Google Scholar] [CrossRef] [Green Version]
- Manici, L.M.; Rossi, A.; Caputo, F.; Topp, A.R.; Zago, M.; Kelderer, M. A first survey on the health quality of soils in Martell valley with the prospective of implementing organic production of strawberries. In Proceedings of the 18th International Conference on Organic Fruit-Growing, Stuttgart, Germany, 19–21 February 2018. [Google Scholar]
- De los Santos, B.; Medina, J.J.; Miranda, L.; Gómez, J.A.; Talavera, M. Soil Disinfestation Efficacy against Soil Fungal Pathogens in Strawberry Crops in Spain: An Overview. Agronomy 2021, 11, 526. [Google Scholar] [CrossRef]
- Minuto, A.; Lazzeri, L. Fumigazione del suolo. In La Fragola; Faedi, W., Ed.; Collana Coltura&Cultura, Bayer CropScience: Bologna, Italy, 2010; pp. 254–263. [Google Scholar]
- Lugaresi, C.; Gengotti, S. Coltivazione: Malattie e fisiopatie. In La Fragola; Faedi, W., Ed.; Collana Coltura&Cultura, Bayer CropScience: Bologna, Italy, 2010; pp. 228–245. [Google Scholar]
- Maas, J.L. Compendium of Strawberry Diseases, 2nd ed.; APS: St. Paul, MN, USA, 2019; 128p. [Google Scholar]
- López-Aranda, J.M.; Domínguez, P.; Miranda, L.; De Los Santos, B.; Talavera, M.; Daugovish, O.; Soria, C.; Chamorro, M.; Medina, J.J. Fumigant Use for Strawberry Production in Europe: The Current Landscape and Solutions. Int. J. Fruit Sci. 2016, 16, 1–15. [Google Scholar] [CrossRef]
- Mazzola, M.; Muramoto, J.; Shennan, C. Anaerobic disinfestation induced changes to the soil microbiome, disease incidence and strawberry fruit yields in California field trials. Appl. Soil Ecol. 2018, 127, 74–86. [Google Scholar] [CrossRef] [Green Version]
- Momma, N.; Kobara, Y.; Uematsu, S.; Nobuhiro, K.; Shinmura, A. Development of biological soil disinfestations in Japan. Appl. Microbiol. Biotechnol. 2013, 97, 3801–3809. [Google Scholar] [CrossRef] [PubMed]
- Strauss, S.L.; Kluepfel, D.A. Anaerobic soil disinfestation: A chemical-independent approach to pre-plant control of plant pathogens. J. Integr. Agric. 2015, 14, 2309–2318. [Google Scholar] [CrossRef]
- Rosskopf, E.N.; Di Gioia, F.; Hong, J.C.; Ozores-Hampton, M.; Zhao, X.; Black, Z.; Gao, Z.; Wilson, C.; Thomas, J.; Jones, J.B.; et al. Anaerobic soil disinfestation: Areawide project on obstacles and adoption. Acta Hortic. 2020, 1270, 23–36. [Google Scholar] [CrossRef]
- Momma, N. Studies on mechanisms of anaerobicity-mediated biological soil disinfestation and its practical application. J. Gen. Plant Pathol. 2015, 81, 480–482. [Google Scholar] [CrossRef]
- Streminska, M.A.; Runia, W.T.; Termorshuizen, A.J.; Feil, H.; Van Der Wurff, A.W. Anaerobic soil disinfestation in microcosms of two sandy soil. Commun. Agric. Appl. Biol. Sci. 2014, 79, 15–19. [Google Scholar]
- Momma, N. Biological Soil Disinfestation (BSD) of Soilborne Pathogens and Its Possible Mechanisms. Jpn. Agric. Res. Quart. 2008, 42, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Runia, W.T.; Thoden, T.C.; Molendijk, L.P.G.; Van Den Berg, W.; Termorshuizen, A.J.; Streminska, M.A.; Van Der Wurff, A.W.G.; Feil, H.; Meints, H. Unravelling the mechanism of pathogen inactivation during anaerobic soil disinfestation. Acta Hortic. 2014, 1044, 177–193. [Google Scholar] [CrossRef]
- Hewavitharana, S.S.; Ruddell, D.; Mazzola, M. Carbon source-dependent antifungal and nematocidal volatiles derived during anaerobic soil disinfestation. Eur. J. Plant Pathol. 2014, 140, 39–52. [Google Scholar] [CrossRef]
- Muramoto, J.; Shennan, C.; Baird, G.; Zavatta, M.; Koike, S.T.; Daugovish, O.; Bolda, M.; Dara, S.; Klonsky, K.; Mazzola, M. Optimizing Anaerobic Soil Disinfestation for California Strawberries. Acta Hortic. 2014, 1044, 215–220. [Google Scholar] [CrossRef]
- Shennan, C.; Muramoto, J.; Lamers, J.; Rosskopf, E.N.; Kokalis-Burelle, N.; Mazzola, M.; Momma, N.; Butler, D.M.; Kobara, Y. Anaerobic soil disinfestation for soil borne disease control in strawberry and vegetable systems: Current knowledge and future directions. Acta Hortic. 2014, 1044, 165–175. [Google Scholar] [CrossRef]
- Butler, D.M.; Kokalis-Burelle, N.; Muramoto, J.; Shennan, C.; McCollum, T.G.; Rosskopf, E.N. Impact of anaerobic soil disinfestation combined with soil solarization on plant–parasitic nematodes and introduced inoculum of soilborne plant pathogens in raised-bed vegetable production. Crop. Prot. 2012, 39, 33–40. [Google Scholar] [CrossRef]
- Kirkegaard, J.A.; Gardner, P.A.; Desmarchelier, J.M.; Angus, J.F. Biofumigation—using Brassica species to control pests and diseases in horticulture and agriculture. In Proceedings 9th Australian Research Assembly on Brassicas, Agricultural Research Institute; Wratten, N., Mailer, R.J., Eds.; CSIRO: Wagga Wagga, Australia, 1993; pp. 77–82. [Google Scholar]
- Blažević, I.; Montaut, S.; Burčul, F.; Olsen, C.E.; Burow, M.; Rollin, P.; Agerbirk, N. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. J. Phytochem. 2020, 169, 112100. [Google Scholar] [CrossRef]
- Bones, A.M.; Rossiter, J.T. The enzymic and chemically induced decomposition of glucosinolates. J. Phytochem. 2006, 67, 1053–1067. [Google Scholar] [CrossRef]
- Lazzeri, L.; Curto, G.; Leoni, O.; Dallavalle, E. Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the root-knot nematode Meloidogyne incognita (Kofoid et White) Chitw. J. Agric. Food Chem. 2004, 52, 6703–6707. [Google Scholar] [CrossRef]
- Furlan, L.; Bonetto, C.; Finotto, A.; Lazzeri, L.; Malaguti, L.; Patalano, G.; Parker, W. The efficacy of biofumigant meals and plants to control wireworm populations. J. Ind. Crop 2010, 31, 245–254. [Google Scholar] [CrossRef]
- Curto, G.; Dallavalle, E.; Matteo, R.; Lazzeri, L. Biofumigant effect of new defatted seed meals against the southern root-knot nematode, Meloidogyne incognita. Ann. Appl. Biol. 2016, 169, 17–26. [Google Scholar] [CrossRef]
- Handiseni, M.; Jo, Y.; Lee, K.; Zhou, X. Screening brassicaceous plants as biofumigants for management of Rhizoctonia solani AG1-IA. Plant Dis. 2016, 100, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Nazareth, T.D.M.; Alonso-Garrido, M.; Stanciu, O.; Mañes, J.; Manyes, L.; Meca, G. Effect of allyl isothiocyanate on transcriptional profile, aflatoxin synthesis, and Aspergillus flavus growth. Food Res. Int. 2020, 128, 108786. [Google Scholar] [CrossRef]
- Lazzeri, L.; Bagatta, M.; D’Avino, L.; Ugolini, L.; De Nicola, G.R.; Casadei, N.; Cinti, S.; Malaguti, L.; Matteo, R.; Iori, R. Characterization of the main glucosinolate content and fatty acid composition in non-food brassicaceae seeds. Acta Hortic. 2013, 1005, 331–338. [Google Scholar] [CrossRef]
- Clarkson, J.P.; Michel, V.; Neilson, R. Biofumigation for the Control of Soil-Borne Diseases. 2015. Available online: https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/9_eip_sbd_mp_biofumigation_final_0.pdf (accessed on 11 June 2021).
- Lazzeri, L.; Malaguti, L.; Cinti, S.; Ugolini, L.; De Nicola, G.R.; Bagatta, L.; Casadei, N.; D’Avino, L.; Matteo, R.; Patalano, G. The Brassicaceae Biofumigation System for Plant Cultivation and Defence. An Italian Twenty-Year Experience of Study and Application. Acta Hortic. 2013, 1005, 375–382. [Google Scholar] [CrossRef]
- Samtani, J.B.; Ajwa, H.A.; Weber, J.B.; Browne, G.T.; Klose, S.; Hunzie, J.; Fennimore, S.A. Evaluation of non-fumigant alternatives to methyl bromide for weed control and crop yield in California strawberries (Fragaria ananassa L.). Crop. Prot. 2011, 30, 45–51. [Google Scholar] [CrossRef]
- Pacifico, D.; Lanzanova, C.; Pagnotta, E.; Bassolino, L.; Mastrangelo, A.M.; Marone, D.; Matteo, R.; Lo Scalzo, R.; Balconi, C. Sustainable Use of Bioactive Compounds from Solanum tuberosum and Brassicaceae Wastes and by-Products for Crop Protection—A Review. Molecules 2021, 26, 2174. [Google Scholar] [CrossRef]
- Giovannini, D.; Maltoni, M.L.; Stagno, F.; Sbrighi, P.; Minuto, A.; Lanteri, A.P.; Lazzeri, L.; Brandi, F.; Matteo, R.; Baruzzi, G. Application of eco-friendly practices alternative to soil chemical fumigation: Preliminary results on strawberry. Acta Hortic. 2021, 1309, 463–469. [Google Scholar] [CrossRef]
- Baruzzi, G.; Macchi, E. La nuova fragolicoltura italiana produce tutto l’anno. Frutticoltura 2019, 5, 6–9. [Google Scholar]
- Regione Basilicata. Centro Funzionale Decentrato. Available online: http://www.centrofunzionalebasilicata.it/it (accessed on 18 June 2021).
- Ajwa, H.A.; Trout, T.; Mueller, J.; Wilhelm, S.; Nelson, S.D.; Soppe, R.; Shatley, D. Application of Alternative Fumigants through Drip Irrigation Systems. Phytopathology 2002, 12, 1349–1355. [Google Scholar] [CrossRef] [Green Version]
- De Cal, A.; Martinez-Treceño, A.; Salto, T.; Lopez-Aranda, J.M.; Melgarejo, P. Effect of chemical fumigation on soil fungal communities in Spanish strawberry nurseries. Appl. Soil Ecol. 2005, 28, 47–56. [Google Scholar] [CrossRef]
- Cloud, G.L.; Rupe, J.C. Comparison of three media for enumeration of sclerotia of Macrophomina phaseolina. Plant Dis. 1991, 75, 771–772. [Google Scholar] [CrossRef]
- Debode, J.; Van Poucke, K.; França, S.C.; Maes, M.; Höfte, M.; Heungens, K. Detection of multiple Verticillium species in soil using density flotation and real-time polymerase chain reaction. Plant Dis. 2011, 95, 1571–1580. [Google Scholar] [CrossRef]
- Cocco, C.; Faedi, W.; Magnani, S.; Maltoni, M.L.; Stagno, F.; Turci, P.; Quacquarelli, I.; Ferre’, A.S.; Baruzzi, G. Effects of Plug Plants and Bare-root Plants on Strawberry Field Performance, Fruit Quality Traits and Health-promoting Compounds. J. Berry Res. 2020, 10, 145–156. [Google Scholar] [CrossRef]
- Larson, K.D.; Shaw, D.V. Relative performance of strawberry genotypes on fumigated and nonfumigated soils. J. Am. Soc. Hortic. Sci. 1995, 120, 274–277. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, G.; Butler, L.; Louws, F. Strawberry Growth and Development in an Annual Plasticulture System. Hortic. Sci. 2001, 36, 1219–1223. [Google Scholar] [CrossRef] [Green Version]
- Butler, L.; Fernandez, G.; Louws, F. Strawberry Plant Growth Parameters and Yield among Transplants of Different Types and from Different Geographic Sources, Grown in a Plasticulture System. HortTechnology 2002, 12, 100–103. [Google Scholar]
2019 | 2020 | ||||||
---|---|---|---|---|---|---|---|
24 January | 26 March | 1 May | 17 January | 28 March | 5 May | 25 May | |
Total Leaf Area (LA, cm2) | |||||||
UNTREATED | 168.3 d | 823.8 d | 991.3 c | 389.0 c | 1030.8 c | 1279.9 c | 1553.8 c |
BIOFUM | 349.2 c | 1348.8 c | 1676.8 b | 527.8 bc | 1810.3 b | 2097.0 b | 2423.3 b |
ASD | 614.5 b | 1724.3 b | 2019.5 b | 730.4 ab | 2004.5 b | 2272.8 ab | 2690.4 ab |
ASD_mod | - | - | - | 852.9 a | 1984.8 b | 2321.3 ab | 2701.2 ab |
STANDARD | 747.5 a | 1940.0 a | 2306.3 a | 880.8 a | 2315.3 a | 2690.6 a | 2955.3 a |
Total Plant dry Weight (DW, g) | |||||||
UNTREATED | 6.4 d | 13.8 d | 18.4 d | 8.0 b | 15.8 d | 20.4 c | 29.4 c |
BIOFUM | 10.2 c | 22.3 c | 28.6 c | 10.9 b | 29.1 c | 34.6 b | 42.1 b |
ASD | 16.3 b | 28.7 b | 44.3 b | 15.8 a | 28.9 b | 41.9 ab | 51.5 ab |
ASD_mod | - | - | - | 16.2 a | 32.1 ab | 43.6 ab | 54.2 ab |
STANDARD | 19.5 a | 34.1 a | 50.9 a | 17.0 a | 35.7 a | 46.4 a | 59.5 a |
Harvest Season 2019 | |||||||||
Treatment | Total Yield | Fruit Weight | Flesh Firmness | SSC | TA | L* | C* | °h | |
g plant−1 | t Ha−1 | g | g | °Brix | mEq 100 g FW−1 | ||||
UNTREATED | 294.0 c | 21.2 c | 24.5 c | 589.4 n.s. | 8.7 n.s. | 10.7 n.s. | 37.9 n.s. | 44.5 n.s. | 27.7 n.s. |
STANDARD | 524.9 a | 37.8 a | 29.3 a | 581.0 | 8.0 | 9.9 | 38.0 | 45.2 | 28.6 |
BIOFUM | 323.5 c | 23.3 c | 26.0 b | 623.0 | 8.6 | 10.6 | 37.9 | 44.5 | 26.3 |
ASD | 422.2 b | 30.4 b | 27.7 ab | 629.0 | 8.3 | 10.7 | 38.1 | 44.3 | 26.9 |
Harvest Season 2020 | |||||||||
Treatment | Total Yield | Fruit Weight | Flesh Firmness | SSC | TA | L* | C* | °h | |
g plant−1 | t Ha−1 | g | g | °Brix | mEq 100 g FW−1 | ||||
UNTREATED | 396.5 b | 28.4 b | 22.6 c | 646.1 n.s. | 8.0 n.s. | 10.8 n.s. | 37.6 n.s. | 44.4 n.s. | 30.4 n.s. |
STANDARD | 559.6 a | 40.3 a | 28.4 a | 601.0 | 7.5 | 9.1 | 38.1 | 45.0 | 29.1 |
BIOFUM | 523.4 a | 37.7 a | 25.6 b | 599.0 | 7.8 | 10.0 | 36.9 | 43.6 | 29.7 |
ASD | 548.0 a | 39.5 a | 27.0 a | 610.0 | 7.7 | 9.8 | 37.5 | 44.0 | 30.2 |
ASD_mod | 539.7 a | 38.9 a | 27.4 a | 624.0 | 7.9 | 10.5 | 37.9 | 44.6 | 30.2 |
Total Microflora Content | ||||
---|---|---|---|---|
2018/19 | 2019/20 | |||
January | May | January | May | |
Treatment | Log10 CFU g−1 dry Weight Soil | |||
UNTREAT | 4.64 bA | 4.84 bA | 5.32 aA | 5.33 aA |
STANDARD | 4.42 bA | 3.81 cB | 4.95 bA | 5.04 bA |
BIOFUM | 4.68 bB | 5.81 aA | 4.98 bA | 4.98 bA |
ASD | 5.32 aA | 5.13 bA | 5.44 aA | 5.32 aB |
ASD_mod | - | - | 5.30 aA | 5.16 abB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giovannini, D.; Brandi, F.; Lanteri, A.P.; Lazzeri, L.; Maltoni, M.L.; Matteo, R.; Minuto, A.; Sbrighi, P.; Stagno, F.; Baruzzi, G. Non-Chemical Soil Fumigation for Sustainable Strawberry Production in Southern Italy. Agronomy 2021, 11, 1678. https://doi.org/10.3390/agronomy11081678
Giovannini D, Brandi F, Lanteri AP, Lazzeri L, Maltoni ML, Matteo R, Minuto A, Sbrighi P, Stagno F, Baruzzi G. Non-Chemical Soil Fumigation for Sustainable Strawberry Production in Southern Italy. Agronomy. 2021; 11(8):1678. https://doi.org/10.3390/agronomy11081678
Chicago/Turabian StyleGiovannini, Daniela, Federica Brandi, Anna Paola Lanteri, Luca Lazzeri, Maria Luigia Maltoni, Roberto Matteo, Andrea Minuto, Paolo Sbrighi, Fiorella Stagno, and Gianluca Baruzzi. 2021. "Non-Chemical Soil Fumigation for Sustainable Strawberry Production in Southern Italy" Agronomy 11, no. 8: 1678. https://doi.org/10.3390/agronomy11081678
APA StyleGiovannini, D., Brandi, F., Lanteri, A. P., Lazzeri, L., Maltoni, M. L., Matteo, R., Minuto, A., Sbrighi, P., Stagno, F., & Baruzzi, G. (2021). Non-Chemical Soil Fumigation for Sustainable Strawberry Production in Southern Italy. Agronomy, 11(8), 1678. https://doi.org/10.3390/agronomy11081678