Alfalfa Established Successfully in Intercropping with Corn in the Midwest US
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Experimental Design and Management
2.3. Sampling and Analysis
2.4. Statistical Analysis
3. Results
3.1. Corn Grain and Biomass Yield and Plant Height
3.2. Alfalfa Forage Yield
3.3. Alfalfa Stem and Plant Density and PAR
3.4. Alfalfa Nutritive Value
4. Discussion
4.1. Corn Grain and Biomass Yield and Plant Height
4.2. Alfalfa Forage Yield
4.3. Alfalfa Stem and Plant Density
4.4. Alfalfa Forage Nutritive Value
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sulc, R.M.; Tracy, B.F. Integrated crop-livestock systems in the US Maize Belt. Agron. J. 2007, 99, 335–345. [Google Scholar] [CrossRef] [Green Version]
- Russelle, M.P. The alfalfa yield gap: A review of the evidence. Forage Grazinglands 2013, 11, 1–8. [Google Scholar]
- Islam, M.A.; Ashilenje, D.S. Diversified forage cropping systems and their implications on resilience and productivity. Sustainability 2018, 10, 3920. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.S.; Hill, J.D.; Chase, C.A.; Johanns, A.M.; Liebman, M. Increasing cropping system diversity balances productivity, profitability and environmental health. PLoS ONE 2012, 7, e47149. [Google Scholar] [CrossRef] [Green Version]
- Picasso, V.D.; Casler, M.D.; Undersander, D. Resilience, Stability, and productivity of alfalfa. Crop Sci. 2019, 59, 800–810. [Google Scholar] [CrossRef] [Green Version]
- Weise, E. Special Report: USA TODAY Explores How Climate Change Is Affecting Americans in a Series of Stories this Year. 2013. Available online: http://www.usatoday.com/story/news/nation/2013/09/17/climate-change-agriculturecrops/2784561/ (accessed on 15 April 2021).
- Triberti, L.; Nastri, A.; Baldoni, G. Long-term effects of crop rotation, manure and mineral fertilisation on carbon sequestration and soil fertility. Eur. J. Agron. 2016, 74, 47–55. [Google Scholar] [CrossRef]
- N’Dayegamiye, A.; Whalen, J.K.; Tremblay, G.; Nyiraneza, J.; Grenier, M.; Drapeau, A.; Bipfubusa, M. The benefits of legume crops on corn and wheat yield, nitrogen nutrition, and soil properties improvement. Agron. J. 2015, 107, 1653–1665. [Google Scholar] [CrossRef]
- Yost, M.A.; Russelle, M.P.; Coulter, J.A.; Schmitt, M.A.; Sheaffer, C.C.; Randall, G.W. Stand age affects fertilizer nitrogen response in first-year maize following alfalfa. Agron. J. 2015, 107, 486–494. [Google Scholar] [CrossRef]
- Entz, M.H.; Baron, V.S.; Carr, P.M.; Meyer, D.W.; Smith, S.R.; McCaughey, W.P. Potential of forages to diversify cropping systems in the northern Great Plains. Agron. J. 2002, 94, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Syswerda, S.P.; Robertson, G.P. Ecosystem services along a management gradient in Michigan (USA) cropping systems. Agric. Ecosyst. Environ. 2014, 189, 28–35. [Google Scholar] [CrossRef]
- Zulauf, C. U.S. Hay Market over the Last 100 Years. Farmdoc. Dly. 2018, 8, 174. Available online: https://farmdocdaily.illinois.edu/2018/09/us-hay-market-over-the-last-100-years.html (accessed on 15 April 2021).
- Grabber, J.H. Prohexadione-calcium improves stand density and yield of alfalfa interseeded into silage maize. Agron. J. 2016, 108, 726–735. [Google Scholar] [CrossRef]
- Osterholz, W.R.; Renz, M.J.; Jokela, W.E.; Grabber, J.H. Alfalfa establishment by interseeding with silage corn projected to increase profitability of corn silage–alfalfa rotations. Agron. J. 2020, 112, 4120–4132. [Google Scholar] [CrossRef]
- Berti, M.T.; Lukaschewsky, J.; Samarappuli, D.P. Establishing alfalfa in intercropping with silage maize can be more profitable than spring-seeded alfalfa after silage maize. Agronomy 2021, 11, 1196. [Google Scholar] [CrossRef]
- Grabber, J.H.; Osterholz, W.R.; Riday, H.; Cassida, K.A.; Williamson, J.A.; Renz, M.J. Differential survival of alfalfa varieties interseeded into corn silage. Crop Sci. 2021, 61, 1797–1808. [Google Scholar] [CrossRef]
- Osterholz, W.R.; Grabber, J.H.; Renz, M.J. Adjuvants for prohexadione-calcium applied to alfalfa interseeded into maize. Agron. J. 2018, 110, 2687–2690. [Google Scholar] [CrossRef]
- Martin, N.P.; Russelle, M.P.; Powell, J.M.; Sniffen, C.J.; Smith, S.I.; Tricarico, J.M.; Grant, R.J. Invited review: Sustainable forage and grain crop production for the US dairy industry. J. Dairy Sci. 2017, 100, 9479–9494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osterholz, W.R.; Renz, M.J.; Jokela, W.E.; Grabber, J.H. Interseeded alfalfa reduces soil and nutrient runoff losses during and after maize silage production. J. Soil Water Conserv. 2019, 74, 85–90. [Google Scholar] [CrossRef]
- Vogel, A.M.; Below, F.E. Residue and agronomic management to reduce the continuous corn yield penalty. Agronomy 2019, 9, 567. [Google Scholar] [CrossRef] [Green Version]
- Vanhie, M.; Deen, W.; Bohner, H.; Hooker, D.C. Corn residue management strategies to improve soybean yield in northern climates. Agron. J. 2015, 107, 1940–1946. [Google Scholar] [CrossRef]
- NDAWN, North Dakota Agricultural Weather Network. NDAWN Center. North Dakota State University: Fargo, ND, USA, 2017; Available online: http://ndawn.ndsu.nodak.edu (accessed on 15 April 2021).
- Iowa Environmental Mesonet Network. National Weather Service Cooperative Observer Program; Iowa Environmental Mesonet Network: Ames, IA, USA, 2020; Available online: https://mesonet.agron.iastate.edu/COOP/ (accessed on 20 February 2020).
- In Web Soil Survey; Web Soil Survey; National Resources Conservation Service. United States Department of Agriculture: Washington, DC, USA, 2009. Available online: http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx (accessed on 15 April 2021).
- Vendrell, P.F.; Zupanzic, J. Determination of soil nitrate by transnitration of salicylic acid. Comm. Soil Sci. Plant Anal. 1990, 21, 1705–1713. [Google Scholar] [CrossRef]
- Franzen, D.W. North Dakota Fertilizer Recommendation Tables and Equations: Based on Soil Test and Yield Goals; Bull. SF-882 (Revised); North Dakota State University Extension Service: Fargo, ND, USA, 2010. [Google Scholar]
- Abrams, S.M.; Shenk, J.; Westerhaus, F.E. Determination of forage quality by near infrared reflectance spectroscopy: Efficacy of broad-based calibration equations. J. Dairy Sci. 1987, 70, 806–813. [Google Scholar] [CrossRef]
- SAS Institute. SAS User’s Guide 2014: Statistics; SAS Institute: Cary, NC, USA, 2014. [Google Scholar]
- Fan, J.L.; McConkey, B.; Wang, H.; Janzen, H. Root distribution by depth for temperate agricultural crops. Field Crops Res. 2016, 189, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Li, Z.; Wu, Q.; Sheng, T.; Du, M. Effects of alfalfa intercropping on crop yield, water use efficiency and overall economic benefit in the Maize Belt of Northeast China. Field Crops Res. 2018, 216, 109–119. [Google Scholar] [CrossRef]
- Garcia y Garcia, A.; Strock, J.S. Soil water availability and water use of crops from contrasting cropping systems. In Proceedings of the ASABE Annual International Meeting, Orlando, FL, USA, 17–20 July 2016. [Google Scholar]
- Zhang, G.; Zhang, C.; Yang, Z.; Dong, S. Root distribution and N acquisition in an alfalfa and maize intercropping system. J. Agric. Sci. 2013, 5, 128–141. [Google Scholar]
- Jellum, E.J.; Kuo, S. Nitrogen requirements of corn (Zea mays L.) as affected by monocropping and intercropping with Alfalfa (Medicago sativa). Nutr. Cycl. Agroecosyst. 1996, 47, 149–156. [Google Scholar] [CrossRef]
- Mattera, J.; Romeroa, L.A.; Cuatrin, A.L.; Maizeaglia, P.S.; Grimoldi, A.A. Yield components, light interception and radiation use efficiency of Lucerne (Medicago sativa L.) in response to row spacing. Eur. J. Agron. 2013, 45, 87–95. [Google Scholar] [CrossRef]
- Stewart, D.W.; Costa, C.; Dwyer, L.M.; Smith, D.L.; Hamilton, R.I.; Ma, B.L. Canopy structure, light interception, and photosynthesis in maize. Agron. J. 2003, 95, 1465–1474. [Google Scholar] [CrossRef]
- Machinandiarena, L.; Camarasa, J.; Barletta, P.; Scheneiter, J.O. Effect of plant density on yield and forage quality of corn for silage. In Proceedings of the XXII International Grassland Congress, Sidney, Australia, 15–19 September 2013; pp. 700–701. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Huang, Z.; Cui, Z.; He, H.H.; Liu, Y. Trade-offs between forage crop productivity and soil nutrients for different ages of alfalfa grassland. Land Degrad. Dev. 2021, 32, 374–386. [Google Scholar] [CrossRef]
- Wang, L.; Xie, J.; Luo, Z.; Niu, Y.; Coulter, J.A.; Zhang, R.; Lingling, L. Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China. Agric. Water Manag. 2021, 243, 106415. [Google Scholar] [CrossRef]
- Berti, M.T.; Samarappuli, D. How does sowing rate affect plant and stem density, forage yield, and nutritive value in glyphosate-tolerant alfalfa? Agronomy 2018, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, K.A.; Wedin, W.F.; Buxton, D.R. Cell-wall composition and digestibility of alfalfa stems and leaves. Crop Sci. 1987, 27, 735–741. [Google Scholar] [CrossRef]
- Lamb, J.A.F.S.; Jung, H.J.G.; Sheaffer, C.C.; Samac, D.A. Alfalfa leaf protein and stem cell wall polysaccharide yields under hay and biomass management systems. Crop Sci. 2007, 47, 1407–1415. [Google Scholar] [CrossRef]
- Andrzejewska, J.; Ignaczak, S.; Albrecht, K.A. Nutritive value of alfalfa harvested with a modified flail chopper. Agronomy 2020, 10, 690. [Google Scholar] [CrossRef]
- Samac, D.A.; Rhodes, L.H.; Lamp, W.O. Compendium of Alfalfa Diseases and Pests, 3rd ed.; APS Press: St. Paul, MN, USA, 2014. [Google Scholar]
- Sulc, R.M.; Parker, A.; Albrecht, K.; Cassida, K.; Hall, M.; Min, D.; Orloff, S.; Xu, X.; Undersander, D. Agronomic and nutritional attributes of reduced lignin alfalfa. In Proceedings of the 26th Tri-State Dairy Nutrition Conference, Fort Wayne, IN, USA, 17–19 April 2017; pp. 79–86. [Google Scholar]
- Fonseca, C.E.L.; Viands, D.R.; Hansen, J.L.; Pell, A.N. Associations among forage quality traits, vigor, and disease resistance in alfalfa. Crop Sci. 1999, 39, 1271–1276. [Google Scholar] [CrossRef]
- Pecetti, L.; Annicchiarico, P.; Scotti, C.; Paolini, M.; Nanni, V.; Palmonari, A. Effects of plant architecture and drought stress level on lucerne forage quality. Grass Forage Sci. 2017, 72, 714–722. [Google Scholar] [CrossRef]
- Petit, H.V.; Pesant, A.R.; Barnett, G.M.; Mason, W.N.; Dionne, J.L. Quality and morphological characteristics of alfalfa as affected by soil moisture, pH and phosphorous fertilization. Can. J. Plant Sci. 1992, 72, 147–162. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, Z.; Dong, S. Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. Field Crops Res. 2011, 124, 66–73. [Google Scholar] [CrossRef]
Location/State | Latitude | Longitude | Elevation | Soil Type | Soil Characteristics [24] | |
---|---|---|---|---|---|---|
(m.a.s.l.) | Texture | Description | ||||
Ames, IA | 42°00′46.93″ N | −93°39′50.75″ W | 303 | Webster-Clarion | Clay loam | Webster: fine-loamy, mixed, super-active, mesic, Typic Endoaquoll Clarion: fine-loamy, mixed, superactive, mesic, Typic Hapludoll |
Forman, ND | 46°05′03.20″ N | −97°38′06.71″ W | 385 | Aastad-Forman | Loam | Aastad: fine-loamy, mixed, super-active, frigid, Pachic Argiudoll Forman: fine-loamy, mixed, superactive, frigid, Calcic Argiudoll |
Prosper, ND | 46°59′57.42″ N | −97°06′57.24″ W | 281 | Kindred-Bearden | Silty clay loam | Kindred: fine-silty, mixed, super-active, Typic Endoaquoll Bearden: fine-silty, superactive, frigid, Aeric Calciaquoll |
Rosemount, MN | 44°42′14.93″ N | −93°05′50.92″ W | 288 | Waukegan | Silt loam | Fine-silty over sandy or sandy-skeletal, mixed, super-active, mesic, Typic Hapludoll |
Location | Corn Seeding | Alfalfa Seeding | Prohexadione- Calcium | Spring Alfalfa Seeding |
---|---|---|---|---|
Ames, IA | 17 May 2016 | 17 May 2016 | 24 June 2016 | 16 May 2017 |
Ames, IA | 16 May 2017 | 16 May 2017 | 5 July 2017 | |
Forman, ND | 3 May 2016 | 4 May 2016 | 17 June 2016 | 2 May 2017 |
Prosper, ND | 5 May 2016 | 5 May 2016 | 16 June 2016 | 2 May 2017 |
Prosper, ND | 12 May 2017 | 12 May 2017 | 26 June 2017 | |
Rosemount | 5 May 2017 | 5 May 2017 | 11 July 2017 |
Alfalfa | Spring-Seeded Alfalfa | Corn | |||||
---|---|---|---|---|---|---|---|
Location/Year | Harvest 1 | Harvest 2 | Harvest 3 | Harvest 4 | Harvest 1 † | Harvest 2 † | |
Ames, IA | |||||||
2016 (seeding year) | 10 Nov. | 13 Nov. | |||||
2017 | 31 May | 20 July | 13 Sept. | ||||
2018 | 1 June | 12 July | 22 Aug. | 26 Oct. | |||
Ames, IA | |||||||
2017 (seeding year) | . | 23 Nov. | 30 Nov. | ||||
2018 | 1 June | 12 July | 22 Aug. | 26 Oct. | 12 July | 8 Sept. | |
2019 | 4 June | 10 July | 8 Sept. | 3 Nov. | |||
Forman, ND | |||||||
2016 (seeding year) | 20 July | 22 Aug. | 10 Oct. | 14 Oct. | |||
2017 | 31 May | 5 July | 1 Aug. | 11 Oct. | 1 Aug. | 11 Oct. | |
Prosper, ND | |||||||
2016 (seeding year) | 19 July | 23 Aug. | 10 Oct. | 14 Oct. | |||
2017 | 31 May | 29 June | 1 Aug. | 4 Oct. | 14 July | 4 Oct. | |
2018 | 29 May | 28 June | 1 Aug. | 5 Sept. | |||
Prosper, ND | |||||||
2017 (seeding year) | 20 July | 4 Oct. | 2 Nov. | ||||
2018 | 29 May | 28 June | 1 Aug. | 5 Sept. | 9 July | 5 Sept. | |
2019 | 3 June | 15 July | 19 Aug. | ||||
Rosemount | |||||||
2017 (seeding year) | 11 July | 27 July | 2 Oct. | - | 2 Oct. | ||
2018 | 13 June | 7 Aug. | 31 Oct. | - | 31 Oct. | ||
2019 | 14 June | 8 Aug. | 23 Sept. | - |
Location/Year | N-NO3 | P | K | OM | pH † |
---|---|---|---|---|---|
kg ha−1 | mg kg−1 | g kg−1 | g kg−1 | ||
Ames 2016 | 76 | 9 | 80 | 43 | 6.6 |
Ames 2017 | 64 | 2 | 80 | 45 | 6.5 |
Forman 2016 | 60 | 28 | 382 | 57 | 6.3 |
Prosper 2016 | 95 | 33 | 358 | 42 | 7.3 |
Rosemount 2017 | 17 | 17 | 112 | 42 | 5.9 |
Treatment | Iowa | Minnesota | North Dakota ‡ | ||||||
---|---|---|---|---|---|---|---|---|---|
Grain | Biomass | Height | Grain | Biomass | Height | Grain | Biomass | Height | |
Mg ha−1 | (m) | Mg ha−1 | (m) | Mg ha−1 | (m) | ||||
Corn alone (check, T1) | 14.2 | 33.3 | 2.25 | 12.2 | 23.9 | 2.69 | 14.9 | 29.4 | 2.39 |
Alfalfa + corn (T3) | 11.8 | 27.1 | 2.10 | 9.7 | 20.9 | 2.60 | 12.1 | 22.3 | 2.23 |
Alfalfa + corn + PHX † (T4) | 11.9 | 28.0 | 2.09 | 9.7 | 20.2 | 2.59 | 12.8 | 23.3 | 2.17 |
LSD (0.05) | 2.0 | 3.8 | NS | NS | 2.0 | NS | 1.2 | 5.4 | NS |
% reduction from check | |||||||||
Alfalfa + corn | 17.0 | 18.6 | 6.7 | 20.5 | 12.5 | 3.3 | 18.8 | 25.8 | 6.7 |
Alfalfa + corn + PHX | 16.0 | 15.9 | 7.0 | 20.5 | 15.5 | 3.7 | 14.0 | 22.0 | 9.0 |
SOV | Significance (p < F) | ||||||||
Env | NS | NS | NS | - | - | - | NS | NS | NS |
Trt | ** | * | NS | NS | ** | NS | * | * | NS |
Trt × Env | NS | NS | NS | - | - | - | ** | NS | NS |
Treatment | Iowa | Minnesota | North Dakota ‡ | |||
---|---|---|---|---|---|---|
H1 | H1 | H1 | H2 | H3 | Total | |
Forage/biomass yield (Mg ha−1) | ||||||
Alfalfa alone (T2) | 1.14 | 1.41 | 3.13 | 3.58 | 1.07 | 7.79 |
Alfalfa + corn (T3) | 0.57 | 0.46 | - | - | 0.55 | 0.55 |
Alfalfa + corn + PHX † (T4) | 0.40 | 0.39 | - | - | 0.39 | 0.39 |
LSD ⁋ (0.05) | 0.34 | 0.55 | - | - | 0.12 | 0.73 |
SOV | Significance (p < F) | |||||
Env | NS | - | - | - | *** | *** |
Trt | *** | *** | - | - | *** | *** |
Trt × env | *** | - | - | - | *** | *** |
Treatment | H1 | H2 | H3 | H4 | Total |
---|---|---|---|---|---|
Forage yield (Mg ha−1) | |||||
Iowa | |||||
Alfalfa alone (T2) | 5.77 | 2.55 | 2.12 | - | 10.46 |
Alfalfa + corn (T3) | 3.47 | 2.24 | 1.92 | - | 7.63 |
Alfalfa + corn + PHX ‡ (T4) | 2.95 | 2.03 | 1.94 | - | 6.95 |
Spring-seeded alfalfa ⁋(T5) | - | 0.70 | 1.06 | - | 1.41 |
LSD (0.05) | 1.22 | 0.46 | 0.48 | - | 1.32 |
SOV | Significance (p < F) | ||||
Env | ** | NS | NS | - | *** |
Trt | *** | ** | *** | - | *** |
Trt × env | NS | NS | NS | - | NS |
Minnesota | |||||
Alfalfa alone (T2) | 4.40 | 2.42 | - | - | 6.85 |
Alfalfa + corn (T3) | 2.45 | 2.07 | - | - | 4.47 |
Alfalfa + corn + PHX (T4) | 1.97 | 1.63 | - | - | 3.62 |
Spring-seeded alfalfa (T5) | - | 1.15 | - | - | 1.15 |
LSD (0.05) | 0.88 | 0.66 | - | - | 1.24 |
SOV | Significance (p < F) | ||||
Trt | *** | ** | *** | ||
North Dakota | |||||
Alfalfa alone | 4.54 | 3.74 | 3.21 | 3.90 | 14.47 |
Alfalfa + corn | 3.13 | 3.64 | 3.06 | 3.77 | 12.60 |
Alfalfa + corn + PHX (T4) | 2.87 | 3.51 | 2.87 | 3.67 | 11.70 |
Spring-seeded alfalfa (T5) | - | - | 2.98 | 2.59 | 5.32 |
LSD †† (0.05) | 0.60 | NS | NS | NS | 0.96 |
SOV | Significance (p < F) | ||||
Env | NS | *** | NS | *** | NS |
Trt | * | NS | NS | NS | *** |
Trt × env | NS | NS | * | *** | NS |
Treatment (Trt) | H1 | H2 | H3 | H4 | Total |
---|---|---|---|---|---|
Forage yield (Mg ha−1) | |||||
Iowa | |||||
Alfalfa alone (T2) | 3.87 | 1.71 | 1.22 | 0.85 | 7.66 |
Alfalfa + corn (T3) | 3.55 | 1.74 | 1.37 | 0.86 | 7.52 |
Alfalfa + corn + PHX ‡ (T4) | 3.46 | 1.87 | 1.39 | 0.98 | 7.40 |
Spring-seeded alfalfa ⁋ (T5) | 3.16 | 1.90 | 1.13 | 0.96 | 7.46 |
LSD †† (0.05) | NS | NS | NS | NS | NS |
SOV | Significance (p < F) | ||||
Env | *** | NS | *** | NS | *** |
Trt | NS | NS | NS | NS | NS |
Trt × env | NS | NS | NS | NS | NS |
Minnesota | |||||
Alfalfa alone (T2) | 4.52 | 2.55 | 1.16 | - | 8.23 |
Alfalfa + corn (T3) | 3.71 | 3.22 | 1.44 | - | 8.07 |
Alfalfa + corn + PHX ‡ (T4) | 4.04 | 3.59 | 1.66 | - | 9.29 |
Spring-seeded alfalfa ⁋ (T5) | 4.46 | 3.28 | 1.69 | - | 9.44 |
LSD (0.05) | NS | 0.69 | 0.39 | - | NS |
SOV | Significance (p < F) | ||||
Trt | NS | NS | - | - | NS |
North Dakota | |||||
Alfalfa alone (T2) | 3.55 | 3.77 | 3.25 | 2.62 | 11.88 |
Alfalfa + corn (T3) | 3.51 | 3.49 | 3.24 | 2.87 | 11.67 |
Alfalfa + corn + PHX ‡ (T4) | 3.52 | 3.31 | 3.18 | 2.64 | 11.33 |
Spring-seeded alfalfa ⁋ (T5) | 4.02 | 3.92 | 3.25 | 2.76 | 12.58 |
LSD (0.05) | 0.40 | 0.47 | NS | NS | NS |
SOV | Significance (p < F) | ||||
Env | NS | NS | NS | NS | NS |
Trt | * | * | NS | NS | NS |
Trt × env | NS | NS | NS | NS | NS |
Treatment | Iowa | Minnesota | North Dakota † | ||||||
---|---|---|---|---|---|---|---|---|---|
Fall SY | Spring Y1 | Fall Y1 | Fall SY | Spring Y1 | Fall Y1 | Fall SY | Spring Y1 | Fall Y1 | |
Stems m−2 | Plants m−2 | Plants m−2 | |||||||
Alfalfa alone (T2) | 441 | 346 | 87 | 42 | 27 | 21 | 49 | 58 | 41 |
Alfalfa + corn (T3) | 194 | 230 | 107 | 62 | 24 | 19 | 48 | 57 | 40 |
Alfalfa + corn + PHX ‡ (T4) | 182 | 225 | 108 | 34 | 20 | 18 | 43 | 60 | 41 |
Spring-seeded alfalfa ⁋ (T5) | 363 | 90 | 12 | 67 | 44 | ||||
LSD (0.05) †† | 140 | 78 | NS | NS | NS | NS | NS | NS |
Iowa | Minnesota | North Dakota | |||||||
---|---|---|---|---|---|---|---|---|---|
SOV | CP | NDFD | NDF | CP | NDFD | NDF | CP | NDFD | NDF |
First Production Year | |||||||||
Trt | NS | NS | NS | NS | * | *** | NS | NS | NS |
Trt × Env † | NS | NS | NS | - | - | NS | NS | NS | |
H | NS | NS | NS | *** | *** | *** | * | NS | NS |
H × Env | *** | NS | ** | - | - | - | * | *** | *** |
Trt × H ‡ | ** | NS | NS | NS | NS | NS | NS | NS | NS |
Trt × H × Env | NS | NS | NS | - | - | - | *** | *** | *** |
Second Production Year | |||||||||
Trt | NS | NS | NS | NS | ** | NS | NS | NS | NS |
Trt × Env | NS | NS | NS | - | - | - | NS | NS | NS |
H | *** | NS | NS | *** | *** | *** | NS | NS | NS |
H × Env | *** | *** | *** | - | - | - | *** | *** | ** |
Trt × H | NS | NS | NS | NS | ** | NS | NS | NS | NS |
Trt × H × Env | NS | NS | NS | - | - | NS | NS | NS |
Treatment | Iowa | Minnesota | North Dakota | |||
---|---|---|---|---|---|---|
CP | NDFD | CP | NDFD | CP | NDFD | |
CP and NDFD concentration (g kg−1) | ||||||
First harvest | ||||||
Alfalfa alone (T2) | 173 | 459 | 158 | 460 | 240 | 471 |
Alfalfa + corn (T3) | 180 | 453 | 173 | 486 | 233 | 472 |
Alfalfa + corn + PHX ‡ (T4) | 179 | 499 | 173 | 500 | 229 | 476 |
Second harvest | ||||||
Alfalfa alone (T2) | 198 | 396 | 199 | 345 | 238 | 458 |
Alfalfa + corn (T3) | 209 | 404 | 199 | 353 | 254 | 460 |
Alfalfa + corn + PHX ‡ (T4) | 207 | 402 | 200 | 358 | 250 | 461 |
Spring-seeded alfalfa ⁋ (T5) | - | - | 149 | 243 | - | NS |
Third harvest | ||||||
Alfalfa alone (T2) | 247 | 421 | - | - | 220 | 422 |
Alfalfa + corn (T3) | 250 | 429 | - | - | 219 | 438 |
Alfalfa + corn + PHX ‡ (T4) | 253 | 424 | - | - | 249 | 441 |
Spring-seeded alfalfa ⁋ (T5) | 198 | 380 | - | - | 243 | 407 |
Fourth harvest | ||||||
Alfalfa alone (T2) | 197 | 394 | - | - | 174 | 412 |
Alfalfa + corn (T3) | 226 | 399 | - | - | 183 | 424 |
Alfalfa + corn + PHX ‡ (T4) | 218 | 388 | - | - | 189 | 427 |
Spring-seeded alfalfa ⁋ (T5) | 254 | 455 | - | - | 189 | 374 |
LSD1 (0.05) Trt x Harvest | 3 | NS | NS | NS | NS | NS |
LSD2 (0.05) Trt | NS | NS | NS | 2 | NS | NS |
2016 | 2017 | |||
---|---|---|---|---|
Rainfall (mm) | Dev. Normal † (mm) | Rainfall (mm) | Dev. Normal (mm) | |
Month | Ames, IA | |||
May | 109 | −10 | 189 | 71 |
June | 24 | −103 | 48 | −79 |
July | 149 | 34 | 37 | −77 |
August | 209 | 87 | 93 | −29 |
September | 200 | 119 | 46 | −35 |
Total | 691 | 128 | 563 | −150 |
Forman, ND | ||||
May | 66 | −3 | 43 | −2 |
June | 46 | −57 | 20 | −49 |
July | 146 | 62 | 83 | −19 |
August | 51 | −3 | 19 | −65 |
September | 23 | −35 | 171 | 117 |
Total | 332 | −36 | 440 | 27 |
Prosper, ND | ||||
May | 82 | 5 | 17 | −61 |
June | 38 | −63 | 88 | −12 |
July | 88 | 0 | 50 | −38 |
August | 26 | −40 | 53 | −14 |
September | 61 | −5 | 152 | 86 |
Total | 295 | −103 | 359 | −39 |
Rosemount, MN | ||||
May | - | - | 182 | 70 |
June | - | - | 91 | −40 |
July | - | - | 139 | 25 |
August | - | - | 129 | 17 |
September | - | - | 42 | −41 |
Total | - | - | 584 | 32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berti, M.T.; Cecchin, A.; Samarappuli, D.P.; Patel, S.; Lenssen, A.W.; Moore, K.J.; Wells, S.S.; Kazula, M.J. Alfalfa Established Successfully in Intercropping with Corn in the Midwest US. Agronomy 2021, 11, 1676. https://doi.org/10.3390/agronomy11081676
Berti MT, Cecchin A, Samarappuli DP, Patel S, Lenssen AW, Moore KJ, Wells SS, Kazula MJ. Alfalfa Established Successfully in Intercropping with Corn in the Midwest US. Agronomy. 2021; 11(8):1676. https://doi.org/10.3390/agronomy11081676
Chicago/Turabian StyleBerti, Marisol T., Andrea Cecchin, Dulan P. Samarappuli, Swetabh Patel, Andrew W. Lenssen, Ken J. Moore, Samantha S. Wells, and Maciej J. Kazula. 2021. "Alfalfa Established Successfully in Intercropping with Corn in the Midwest US" Agronomy 11, no. 8: 1676. https://doi.org/10.3390/agronomy11081676
APA StyleBerti, M. T., Cecchin, A., Samarappuli, D. P., Patel, S., Lenssen, A. W., Moore, K. J., Wells, S. S., & Kazula, M. J. (2021). Alfalfa Established Successfully in Intercropping with Corn in the Midwest US. Agronomy, 11(8), 1676. https://doi.org/10.3390/agronomy11081676