Effect of Genetically Diverse Pollen on Pollination, Pollen Tube Overgrow, Fruit Set and Morphology of Kiwiberry (Actinidia arguta)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Location and Climate Conditions
2.2. Plant Material and Phenology
2.3. Experimental Design
2.4. Pollen Quality and Size Measurements
2.5. Microscope Analysis of Growing Pollen Tubes
2.6. Fruit Morphological Measurements
2.7. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Pollen Quality and Size
3.3. Growing Pollen Tubes on Pistils
3.4. Influence of Genetically Diverse Pollen on the Fruit Morphology
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Käfer, J.; Marais, G.A.B.; Pannell, J.R. On the rarity of dioecy in flowering plants. Mol. Ecol. 2017, 26, 1225–1241. [Google Scholar] [CrossRef]
- de Jong, T.J.; Batenburg, J.C.; Klinkhamer, P.G.L. Distance-dependent pollen limitation of seed set in some insect-pollinated dioecious plants. Acta Oecol. 2005, 28, 331–335. [Google Scholar] [CrossRef]
- Gaaliche, B.; Trad, M.; Mars, M. Effect of pollination intensity, frequency and pollen source on fig (Ficus carica L.) productivity and fruit quality. Sci. Hortic. 2011, 130, 737–742. [Google Scholar] [CrossRef]
- Ferguson, A.R. Botanical Description. In The Kiwifruit Genome; Testolin, R., Huang, H.-W., Ferguson, R., Eds.; Springer Science and Business Media LLC: New York, NY, USA, 2016; pp. 1–13. [Google Scholar] [CrossRef]
- Lim, T.K. Actinidia arguta. In Edible Medicinal and Non-Medicinal Plants: Vol. 1, Fruits; Springer, Science and Business Media B.V.: New York, NY, USA, 2012; pp. 5–11. [Google Scholar] [CrossRef]
- Leontowicz, H.; Leontowicz, M.; Latocha, P.; Jesion, I.; Park, Y.-S.; Katriche, E.; Barasche, D.; Nemirovski, A.; Gorinstein, S. Bioactivity and nutritional properties of hardy kiwi fruit Actinidia arguta in comparison with Actinidia deliciosa ‘Hayward’ and Actinidia eriantha ‘Bidan’. Food Chem. 2016, 196, 281–291. [Google Scholar] [CrossRef]
- Leontowicz, M.; Leontowicz, H.; Jesion, I.; Bielecki, W.; Najman, K.; Latocha, P.; Park, Y.-S.; Gorinstein, S. Actinidia arguta supplementation protects aorta and liver in rats with induced hypercholesterolemia. Nutr. Res. 2016, 36, 1231–1242. [Google Scholar] [CrossRef]
- Latocha, P.; Łata, B.; Stasiak, A. Phenolics, ascorbate and the antioxidant potential of kiwiberry vs. common kiwifruit: The effect of cultivar and tissue type. J. Funct. Foods 2015, 19, 155–163. [Google Scholar] [CrossRef]
- Latocha, P. The nutritional and health benefits of kiwiberry (Actinidia arguta)—A review. Plant. Foods Hum. Nutr. 2017, 72, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Costa, G.; Testolin, R.; Vizzotto, G. Kiwifruit pollination: An unbiased estimate of wind and bee contribution. N. Z. J. Crop. Hort. 1993, 21, 189–195. [Google Scholar] [CrossRef]
- Fraser, L.; Mcneilage, M. Reproductive Biology. In The Kiwifruit Genome; Testolin, R., Huang, H.-W., Ferguson, R., Eds.; Springer Science and Business Media LLC: New York, NY, USA, 2016; pp. 65–84. [Google Scholar] [CrossRef]
- Stasiak, A.; Łata, B.; Bieniasz, M.; Latocha, P. Morphological variation of male A. arguta plants affects their flowering potential and pollen efficiency. Hort. Sci. 2020, 47, 100–109. [Google Scholar] [CrossRef]
- Sáez, A.; Negri, Z.P.; Viel, M.; Aizen, M.A. Pollination efficiency of artificial and bee pollination practices in kiwifruit. Sci. Hortic. 2019, 246, 1017–1021. [Google Scholar] [CrossRef]
- Stasiak, A.; Stefaniak, J.; Łata, B.; Latocha, P. Efficiency of A. arguta (Siebold et Zucc.) Planch, Ex. Miq. pollination using A. deliciosa pollen. J. Int. Sci. Publ. Agric. Food 2017, 5, 178–187. Available online: https://www.scientific-publications.net/en/article/1001407/ (accessed on 18 June 2021).
- Tiyayon, C.; Strik, B. Flowering and fruiting morphology of hardy kiwifruit A. arguta. Acta Hortic. 2003, 610, 171–176. [Google Scholar] [CrossRef]
- Gonzales, M.V.; Coque, M.; Herrero, M. Kiwifruit flower biology and its implications on fruit set. Acta Hortic. 1997, 444, 425–429. [Google Scholar] [CrossRef]
- Mohammadi, N.; Rastgoo, S.; Izadi, M. The strong effect of pollen source and pollination time on fruit set and the yield of tissue culture-derived date palm (Phoenix dactylifera L.) trees cv. Barhee. Sci. Hortic. 2017, 224, 343–350. [Google Scholar] [CrossRef]
- Seal, A.G.; Dunn, J.K.; De Silva, H.N.; McGhie, T.K.; Lunken, R.C.M. Choice of pollen parent affects red flesh colour in seedlings of diploid Actinidia chinensis (kiwifruit). N. Z. J. Crop. Hort. 2013, 41, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Stasiak, A.; Latocha, P.; Drzewiecki, J.; Hallman, E.; Najman, K.; Leontowicz, H.; Leontowicz, M.; Łata, B. The choice of female or male parent affects some biochemical characteristics of fruit or seed of kiwiberry (Actinidia arguta). Euphytica 2019, 215, 52. [Google Scholar] [CrossRef] [Green Version]
- Pourghayoumi, M.; Bakhshia, D.; Rahemib, M.; Jafari, M. Effect of pollen source on quantitative and qualitative characteristics of dried figs (Ficus carica L.) cvs ‘Payves’ and ‘Sabz’ in Kazerun–Iran. Sci. Hortic. 2012, 147, 98–104. [Google Scholar] [CrossRef]
- Selak, G.V.; Perica, S.; Ban, S.G.; Poljak, M. The effect of temperature and genotype on pollen performance in olive (Olea europaea L.). Sci. Hortic. 2013, 156, 38–46. [Google Scholar] [CrossRef]
- Polito, V.S.; Weinbaum, S.A. Intraclonal Variation in Pollen Germinability in Kiwifruit, Pistachio and Walnut as Influenced by Tree Age. Sci. Hortic. 1988, 36, 97–102. [Google Scholar] [CrossRef]
- Shivanna, K.R.; Heslop-Harrison, Y.; Heslop-Harrison, J. The pollen-stigma interaction in the grasses. 3. Features of the self-incompatibility response. Acta Bot. Neerl. 1982, 31, 307–319. [Google Scholar] [CrossRef]
- Hebbar, K.B.; Rose, H.M.; Nair, A.R.; Kannana, S.; Niral, V.; Arivalagan, M.; Gupta, A.; Samsudeen, K.; Chandran, K.P.; Chowdappa, P.; et al. Differences in in vitro pollen germination and pollen tube growth of coconut (Cocos nucifera L.) cultivars in response to high temperature stress. Environ. Exp. Bot. 2018, 153, 35–44. [Google Scholar] [CrossRef]
- Alvarez, H.C.; Salazar-Gutiérrez, M.; Chaves, B. Modelling pollen tube growth of ‘Gala’ and ‘Fuji’ apples. Sci. Hortic. 2018, 240, 125–132. [Google Scholar] [CrossRef]
- Padureanu, S.; Patras, A. Germination potential and pollen tube growth in Galanthus nivalis L. Flora 2020, 264, 151556. [Google Scholar] [CrossRef]
- Strik, B.; Growing Kiwifruit. PNW 507 Oregon State Univ. Extension Service 2005. Available online: https://catalog.extension.oregonstate.edu/pnw507 (accessed on 20 March 2018).
- Alexander, M.P. Differential staining of aborted and nonaborted pollen. Stain Technol. 1969, 44, 117–122. [Google Scholar] [CrossRef]
- Bieniasz, M.; Dziedzic, E.; Słowik, G. Biological features of flowers influencing the fertility of Lonicera spp. cultivars. Hortic. Environ. Biotechnol. 2019, 60, 155–166. [Google Scholar] [CrossRef]
- Radice, S.; Arena, M.E. Reproductive shoots of Berberis microphylla G. Forst.in relation with the floral bud development and the fruit set. Heliyon 2018, 4, e00927. [Google Scholar] [CrossRef] [Green Version]
- Tarantino, A.; Lops, F.; Disciglio, G.; Lopriore, G. Effects of plant biostimulants on fruit set, growth, yield and fruit quality attributes of ‘Orange rubis®’apricot (Prunus armeniaca L.) cultivar in two consecutive years. Sci. Hortic. 2018, 239, 26–34. [Google Scholar] [CrossRef]
- Abreu, I.; Oliveira, M. Fruit production in kiwifruit (Actinidia deliciosa) using preserved pollen. Aust. J. Agr. Res. 2004, 55, 565–569. [Google Scholar] [CrossRef]
- Borghezan, M.; Clauman, A.D.; Steinmacher, D.A.; Guerra, M.P.; Orth, A.I. In vitro viability and preservation of pollen kiwi (Actinidia chinensis var. deliciosa (A. Chev) A. Chev). Crop Breed. Appl. Biot. 2011, 11, 338–344. [Google Scholar]
- Jiang, Z.-W.; Wang, S.-M.; Zhang, Z.-H.; Huang, H.-W. Pollen morphology of Actinidia and its systematic significance. J. Syst. Evol. 2004, 42, 245–260. Available online: https://www.jse.ac.cn/EN/Y2004/V42/I3/245 (accessed on 18 June 2021).
- Sękara, A.; Bieniasz, M. Pollination, fertilization and fruit formation in eggplant (Solanum melongena L.). Acta Agrobot. 2008, 61, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Bieniasz, M.; Necas, T.; Dziedzic, E.; Ondrasek, I.; Pawłowska, B. Evaluation of pollen quality and self-fertility in selected cultivars of Asian and European pears. Not. Bot. Horti. Agrobo. 2017, 45, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Jerram, M. Pollination of kiwifruit (Actinidia chinensis Planch.): Stigma-style structure and pollen tube growth. N. Z. J. Bot. 1979, 17, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Erbar, C. Pollen tube transmitting tissue: Place of competition of male gametophytes. J. Plant. Sci. 2003, 164 (Suppl. 5), S265–S277. [Google Scholar] [CrossRef] [Green Version]
- Hormaza, J.I.; Herrero, M. Dynamics of pollen tube growth under different competition regimes. Sex. Plant. Reprod. 1996, 9, 153–160. [Google Scholar] [CrossRef]
- Herrero, M. Changes in the ovary related to pollen tube guidance. Ann. Bot.-Lond. 2000, 85 (Suppl. A), 79–85. [Google Scholar] [CrossRef] [Green Version]
- Piotrowska, K. Ecological features of flowers and the amount of pollen released in Corylus avellana (L.) and Alnus glutinosa (L.) Gaertn. Acta. Agrobot. 2008, 61, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, A.R.; Huang, H. Cytology, Ploidy and Ploidy Manipulation. In The Kiwifruit Genome; Testolin, R., Huang, H.-W., Ferguson, R., Eds.; Springer Science and Business Media LLC: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Tontou, R.; Giovanardi, D.; Stefani, E. Pollen as a possible pathway for the dissemination of Pseudomonas syringe pv. actinidiae and bacterial canker of kiwifruit. Phytopathol. Mediterr. 2014, 53, 333–339. [Google Scholar] [CrossRef]
Points by Scale | Stigma | Style |
---|---|---|
3 | Full coverage (more than 400 pollen grains/stigma on average) | Maximum—above 90% pollen tube fulfilment of style |
2 | Medium coverage (above 100 to 400 pollen grains/stigma on average) | Medium—89–50% |
1 | Low coverage (below 100 pollen grains/stigma on average) | Low—<50% |
Genotype | Viability [%] | Germability [%] | Pollen Grain Size [µm] ** | ||
---|---|---|---|---|---|
2015 | 2016 | 2015 | 2016 | ||
‘Weiki’ | 100.0 a * ± 0.0 | 98.4 ab ± 0.4 | 97.1 a ± 1.2 | 93.1 a ± 2.2 | 26.4 a ± 1.76 |
‘Joker’ | 96.9 ab ± 0.9 | 86.2 ab ± 0.5 | 92.2 ab ± 0.3 | 86.8 ab ± 4.0 | 29.1 a ± 2.33 |
‘Nostino’ | 98.4 ab ± 1.4 | 99.1 ab ± 0.7 | 95.6 ab ± 1.2 | 93.0 a ± 3.1 | 28.2 a ± 1.91 |
‘Rot’ | 96.6 ab ± 0.3 | 82.5 b ± 1.3 | 89.0 b ± 0.2 | 81.0 b ± 0.6 | 27.4 a ± 2.57 |
‘Rubi’ | 97.6 ab ± 0.4 | 100.0 a ± 0.0 | 92.1 ab ± 1.8 | 91.0 ab ± 0.9 | 25.8 a ± 1.88 |
F7 | 99.8 ab ± 0.2 | 100.0 a ± 0.0 | 94.5 ab ± 3.8 | 94.7 a ± 3.6 | 25.4 a ± 2.02 |
‘Tomuri’ | 94.0 b ± 0.1 | 89.3 ab ± 1.2 | 90.8 ab ± 0.1 | 86.4 a ± 1.3 | 30.2 a ± 1.52 |
Female Cultivar | ‘Geneva’ | ‘Weiki’ | ‘Bingo’ | ||||||
---|---|---|---|---|---|---|---|---|---|
Pollen Source (Male Cultivar) | Pollen Grains on the Stigma * | Pollen Tubes in Half of the Style ** | Pollen Tubes in Base of the Style *** | Pollen Grains on the Stigma * | Pollen Tubes in Half of the Style ** | Pollen Tubes in Base of the Style *** | Pollen Grains on the Stigma * | Pollen Tubes in Half of the Style ** | Pollen Tubes in Base of the Style *** |
2015 | |||||||||
‘Weiki’ | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 |
‘Joker’ | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 1 |
‘Nostino’ | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 2 |
‘Rot’ | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 |
‘Rubi’ | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
F7 | 1 | 1 | 1 | 3 | 2 | 2 | 2 | 1 | 1 |
‘Tomuri’ | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 1 |
2016 | |||||||||
‘Weiki’ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
‘Joker’ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
‘Nostino’ | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 |
‘Rot’ | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 |
‘Rubi’ | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 |
F7 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 |
‘Tomuri’ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Female Cultivar | ‘Geneva’ | ‘Weiki’ | ‘Bingo’ | |||
---|---|---|---|---|---|---|
Male Cultivar | Fruit Set [%] | Average Fruit Weight [g] | Fruit Set [%] | Average Fruit Weight [g] | Fruit Set [%] | Average Fruit Weight [g] |
Male cultivar | ||||||
Transformation Bliss | Bliss | Log10 | Box-Cox | |||
F7 | 83.9 ab ± 7.9 | 5.92 b ± 1.18 | 89.1 a ± 6.7 | 6.14 a ± 1.71 | 75.8 a ± 17.7 | 6.39 a ± 1.58 |
‘Joker’ | 77.9 b ± 10.0 | 6.51 ab ± 0.89 | 82.6 a ± 9.3 | 6.08 a ± 1.51 | 80.4 a ± 15.1 | 6.87 a ± 0.66 |
‘Nostino’ | 89.8 ab ± 6.3 | 7.69 a ± 1.04 | 92.0 a ± 6.6 | 7.37 a ± 2.04 | 85.0 a ± 15.6 | 7.29 a ± 1.91 |
‘Rot’ | 96.1 a ± 6.5 | 6.86 ab ± 1.46 | 93.9 a ± 8.0 | 6.98 a ± 2.09 | 89.6 a ± 7.0 | 7.74 a ± 2.54 |
‘Rubi’ | 90.4 ab ± 8.8 | 7.28 ab ± 1.27 | 85.0 a ± 14.8 | 8.45 a ± 2.30 | 84.1 a ± 9.2 | 7.42 a ± 1.91 |
‘Tomuri’ | 92.4 ab ± 6.5 | 5.97 b ± 1.02 | 88.8 a ± 6.7 | 6.45 a ± 1.04 | 68.9 a ± 20.1 | 6.99 a ± 2.45 |
‘Weiki’ | 87.5 ab ± 7.8 | 6.04 b ± 0.71 | 96.7 a ± 8.2 | 6.44 a ± 1.41 | 85.6 a ± 13.2 | 7.34 a ± 0.81 |
Year | ||||||
2015 | 86.9 b ± 9.7 | 6.00 b ± 0.78 | 90.7 a ± 8.5 | 5.77 b ±1.56 | 81.5 a ± 13.9 | 8.33 a ±1.61 |
2016 | 89.7 a ± 8.4 | 7.07 a ± 1.30 | 88.7 b ± 10.6 | 7.70 a ±1.59 | 81.1 a ± 16.4 | 6.16 b ±1.15 |
Female Cultivar | ‘Geneva’ | ‘Weiki’ | ‘Bingo’ | |||
---|---|---|---|---|---|---|
Male Cultivar | Average Seed Number | Average 500 Seed Weight [g] | Average Seed Number | Average 500 Seed Weight [g] | Average Seed Number | Average 500 Seed Weight [g] |
Male cultivar | ||||||
Transformation | Box-Cox | Log10 | ||||
F7 | 133.9 a ± 18.2 | 0.66 c ± 0.12 | 166.0 ab ± 10.6 | 0.68 bc ± 0.06 | 161.9 ab ± 31.6 | 0.59 b ± 0.05 |
‘Joker’ | 111.9 b ± 25.1 | 0.86 ab ± 0.10 | 142.3 b ± 18.6 | 0.73 b ± 0.13 | 154.8 b ± 42.7 | 0.65 ab ± 0.09 |
‘Nostino’ | 138.5 a ± 14.0 | 0.88 a ± 0.11 | 165.7 ab ± 7.2 | 0.85 a ± 0.11 | 170.2 ab ± 38.1 | 0.73 a ± 0.14 |
‘Rot’ | 139.5 a ± 6.7 | 0.80 b ± 0.17 | 167.3 ab ± 12.8 | 0.73 b ± 0.13 | 185.1 a ± 35.3 | 0.61 b ± 0.06 |
‘Rubi’ | 138.0 a ± 17.7 | 0.89 a ± 0.19 | 173.9 a ± 10.6 | 0.80 ab ± 0.13 | 179.1 a ± 27.3 | 0.61 b ± 0.06 |
‘Tomuri’ | 110.0 b ± 26.7 | 0.65 c ± 0.08 | 152.7 ab ± 34.2 | 0.57 c ± 0.15 | 161.1 ab ± 17.2 | 0.26 c ± 0.06 |
‘Weiki’ | 123.4 ab ± 28.8 | 0.84 ab ± 0.15 | 167.2 ab ± 18.3 | 0.77 ab ± 0.14 | 173.3 ab ± 26.6 | 0.62 ab ± 0.05 |
Year | ||||||
2015 | 144.1 a ± 9.2 | 0.68 b ± 0.09 | 168.8 a ± 12.4 | 0.63 b ± 0.11 | 195.7 a ± 15.5 | 0.55 a ± 0.10 |
2016 | 111.7 b ± 20.5 | 0.91 a ± 0.12 | 155.6 b ± 23.2 | 0.83 a ± 0.10 | 143.0 b ± 18.0 | 0.61a ± 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stasiak, A.; Latocha, P.; Bieniasz, M. Effect of Genetically Diverse Pollen on Pollination, Pollen Tube Overgrow, Fruit Set and Morphology of Kiwiberry (Actinidia arguta). Agronomy 2021, 11, 1814. https://doi.org/10.3390/agronomy11091814
Stasiak A, Latocha P, Bieniasz M. Effect of Genetically Diverse Pollen on Pollination, Pollen Tube Overgrow, Fruit Set and Morphology of Kiwiberry (Actinidia arguta). Agronomy. 2021; 11(9):1814. https://doi.org/10.3390/agronomy11091814
Chicago/Turabian StyleStasiak, Agnieszka, Piotr Latocha, and Monika Bieniasz. 2021. "Effect of Genetically Diverse Pollen on Pollination, Pollen Tube Overgrow, Fruit Set and Morphology of Kiwiberry (Actinidia arguta)" Agronomy 11, no. 9: 1814. https://doi.org/10.3390/agronomy11091814
APA StyleStasiak, A., Latocha, P., & Bieniasz, M. (2021). Effect of Genetically Diverse Pollen on Pollination, Pollen Tube Overgrow, Fruit Set and Morphology of Kiwiberry (Actinidia arguta). Agronomy, 11(9), 1814. https://doi.org/10.3390/agronomy11091814