Soil Quality and Organic Matter Pools in a Temperate Climate (Northern Italy) under Different Land Uses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sampling
2.2. Soil Quality Indicators
2.3. Soil Analyses
2.4. Statistical Analyses
3. Results
3.1. Indicators of Soil Quality: Clustering
3.2. Linking the Minimum Set of Indicators in a Cluster Analysis and the Other Indicators
3.3. Soil Organic Matter Fractionation in Topsoils: Clustering
3.4. Linking Soil Organic Matter Fractionation and the Other Indicators
4. Discussion
4.1. Soil Quality Status According to the Minimum Set of Indicators
4.2. Soil Organic Matter Pools
4.3. Sustainability of Current Land Use and Related Soil Management Practices
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Municipality Geological Substrate MAT (°C)–MAP (mm) Soil Type | Elevation (m) | Slope (%) | Land Use | Coordinates | Site Code |
---|---|---|---|---|---|
Bondeno Meandering river deposits 13.7 °C–650 mm Fluvic Cambisols | 10 | Flat | Grassed orchard since 1992 | 32T 692,070 mE 4,973,342 mN | BON T1 |
10 | Flat | Vegetable garden since 1992 | 32T 691,948 mE 4,973,352 mN | BON T3 | |
8 | Flat | Orchard since 2007 | 32T 692,183 mE 4,973,497 mN | BON T4 | |
11 | Flat | Vegetable garden since 2007 | 32T 691,980 mE 4,973,306 mN | BON T5 | |
9 | Flat | Vegetable garden since 1996 | 32T 692,140 mE 4,973,580 mN | BON T6 | |
9 | Flat | Potatoes | 32T 692,153 mE 4,973,557 mN | BON T7 | |
9 | Flat | Strawberries since 1996 | 32T 692,173 mE 4,973,529 mN | BON T8 | |
Ostellato Peaty silty clay deltaic deposits 14.3 °C–673 mm Calcaric Thaptohistic Fluvisols | –6 | Flat | Pear nursery 1–2 years | 32T 735,876 mE 4,957,753 mN | MAC3 |
–5 | Flat | Pear nursery 2–3 years | 32T 735,455 mE 4,957,786 mN | MAC4 | |
−5 | Flat | Pear nursery ≥ 3 years | 32T 735,496 mE 4,957,801 mN | MAC5 | |
694 | 14 | Grassed uncultivated | 32T 643,297 mE 4,898,148 mN | HEL1, HEL2 | |
Fanano Landslide deposits 10.7 °C–1300 mm Calcaric Regosols | 698 | 16 | Raspberries | 32T 643,257 mE 4,898,122 mN | HEL3, HEL4 |
713 | 12 | Raspberries | 32T 643,166 mE 4,898,137 mN | HEL5, HEL6 | |
73 | 4 | Grassed orchard (peach, 10 years) | 33T 274,776 mE 4,888,720 mN | BIO_1 | |
Cesena Sandstones intercalated with claystones (BIO1, BIO2) Marly arenaceous formation (BIO3, BIO4) 14.6 °C–741 mm Vertic Cambisols/Haplic Luvisols (BIO1, BIO2) Fluvic Cambisols (BIO3, BIO4) | 73 | 4 | Green manure orchard (peach, 10 years) | 33T 274,790 mE 4,888,718 mN | BIO_2 |
57 | 2 | Grassed orchard (peach, 5 years) | 33T 275,382 mE 4,889,160 mN | BIO_3 | |
57 | 2 | Green manure orchard (peach, 5 years) | 33T 275,386 mE 4,889,157 mN | BIO_4 | |
127 | 2 | Grassed orchard (kiwi, 29 years) | 32T 719,035 mE 4,898,500 mN | SAV1 | |
Brisighella Marly arenaceous formation 13.2 °C–828 mm Hypocalcic Cambisols | 191 | 13 | Grassed orchard (kiwi, 1 year) | 32T 716,028 mE 4,900,689 mN | SPA1_1 |
Faenza Landslide deposits (SPA1) Marly arenaceous formation (SPA2) 13.2 °C–895 mm Haplic Cambisols | 149 | 5 | Grassed orchard (kiwi, 30 years) | 32T 715,976 mE 4,900,869 mN | SPA1_2 |
361 | 24 | Grassed orchard (apricot, 10 years) | 32T 735,832 mE 4,886,917 mN | MER1_1 | |
Predappio Marly arenaceous formation 13.2 °C–895 mm Haplic Cambisols | 347 | 24 | Grassed orchard (peach, 10 years) | 32T 735,848 mE 4,886,840 mN | MER1_2 |
17 | Flat | Grassed orchard (pear, 18 years) | 32T 731,949 mE 4,914,911 mN | ZAN1_1 | |
Granarolo Faentino Silty clay alluvial deposits 14.9 °C–774 mm Fluvic Cambisols | 17 | Flat | Grassed orchard (peach, 15 years) | 32T 732,200 mE 4,915,040 mN | ZAN1_2 |
725 | 34 | Fruit chestnut | 32T 690,027 mE 4,898,707 mN | MAR1 | |
Monghidoro Landslide deposits (MAR1, MAR2, MAR3) Shales (MAR4, MAR5, MAR6, MAR7, MAR8) 12.1 °C–1249 mm Calcaric Regosols | 721 | 34 | Fruit chestnut | 32T 690,016 mE 4,898,702 mN | MAR2 |
719 | 34 | Fruit chestnut | 32T 690,015 mE 4,898,699 mN | MAR3 | |
700 | 21 | Fruit chestnut | 32T 689,880 mE 4,898,803 mN | MAR4 | |
689 | 21 | Fruit chestnut | 32T 689,873 mE 4,898,842 mN | MAR5 | |
684 | 7 | Fruit chestnut | 32T 689,848 mE 4,898,855 mN | MAR6 | |
691 | 15 | Fruit chestnut | 32T 689,775 mE 4,898,809 mN | MAR7 | |
688 | 7 | Fruit chestnut | 32T 689,778 mE 4,898,812 mN | MAR8 | |
647 | 7 | Fruit chestnut | 32T 659,049 mE 4,916,723 mN | TIZ1 | |
Zocca Stratified stone rocks (TIZ1, TIZ2, TIZ3) Marls (TIZ4, TIZ5, TIZ6, TIZ7) 11.8 °C–884 mm Calcic Regosols | 639 | 14 | Fruit chestnut | 32T 659,072 mE 4,916,758 mN | TIZ2 |
636 | 10 | Fruit chestnut | 32T 659,089 mE 4,916,773 mN | TIZ3 | |
614 | 25 | Fruit chestnut | 32T 658,831 mE 4,916,463 mN | TIZ5 | |
610 | 25 | Fruit chestnut | 32T 658,828 mE 4,916,468 mN | TIZ6 | |
632 | 23 | Fruit chestnut | 32T 658,899 mE 4,916,518 mN | TIZ7 | |
620 | 23 | Fruit chestnut | 32T 658,884 mE 4,916,516 mN | TIZ8 | |
737 | 26 | Fruit chestnut | 32T 618,243 mE 4,926,952 mN | PIC1 | |
Carpineti Sandstones 11.9 °C–780 mm Haplic Cambisols | 729 | 26 | Fruit chestnut | 32T 618,265 mE 4,926,959 mN | PIC2 |
708 | 12 | Fruit chestnut | 32T 618,330 mE 4,926,980 mN | PIC3 | |
694 | 15 | Fruit chestnut | 32T 618,338 mE 4,927,058 mN | PIC4 | |
693 | 15 | Fruit chestnut | 32T 618,335 mE 4,927,073 mN | PIC5 | |
734 | 35 | Fruit chestnut | 32T 618,160 mE 4,927,154 mN | PIC6 | |
744 | 20 | Fruit chestnut | 32T 617,920 mE 4,926,380 mN | CAN1 | |
734 | 20 | Fruit chestnut | 32T 617,884 mE 4,926,380 mN | CAN2 | |
635 | 12 | Fruit chestnut | 32T 686,233 mE 4,904,761 mN | MEN1 | |
Loiano Sands and sandstones (MEN1, MEN2) Landslide deposits (MON1, MON2, MON3, MON4) 12.1 °C–879 mm Haplic Cambisols | 630 | 18 | Fruit chestnut | 32T 686,249 mE 4,904,766 mN | MEN2 |
604 | 15 | Fruit chestnut | 32T 686,780 mE 4,904,186 mN | MON1 | |
601 | 17 | Fruit chestnut | 32T 686,770 mE 4,904,202 mN | MON2 | |
594 | 12 | Fruit chestnut | 32T 686,771 mE 4,904,251 mN | MON3 | |
608 | 28 | Fruit chestnut | 32T 686,736 mE 4,904,188 mN | MON4 |
References
- FAO. Voluntary Guidelines for Sustainable Soil Management; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; p. 16. [Google Scholar]
- Blum, W.H. Functions of soil for society and the environment. Rev. Environ. Sci. Biotechnol. 2005, 4, 75–79. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Baer, S.G.; Birgé, H.E. Soil ecosystem services: An overview. In Managing Soil Health for Sustainable Agriculture Volume 1; Reicosky, D., Ed.; Fundamentals, Burleigh Dodds Science Publishing: Cambridge, UK, 2018; pp. 17–38. [Google Scholar]
- Montanarella, L.; Panagos, P. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Environmental impact of organic agriculture. Adv. Agron. 2016, 139, 99–152. [Google Scholar]
- FAO-ITPS. Protocol for the Assessment of Sustainable Soil Management; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R.; Ehlers, K. Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations’ Sustainable Development Goals. Land Degrad. Dev. 2019, 30, 824–838. [Google Scholar] [CrossRef]
- Murphy, B.W. Impact of soil organic matter on soil properties—A review with emphasis on Australian soils. Soil Res. 2015, 53, 605–635. [Google Scholar] [CrossRef]
- Duval, M.E.; Galantini, J.A.; Iglesias, J.O.; Canelo, S.; Martinez, J.M.; Wall, L. Analysis of organic fractions as indicators of soil quality under natural and cultivated systems. Soil Tillage Res. 2013, 131, 11–19. [Google Scholar] [CrossRef]
- Gomiero, T. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef] [Green Version]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Virto, I.; Imaz, M.J.; Fernández-Ugalde, O.; Gartzia-Bengoetxea, N.; Enrique, A.; Bescansa, P. Soil degradation and soil quality in Western Europe: Current situation and future perspectives. Sustainability 2015, 7, 313–365. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. Down to Earth: Soil Degradation and Sustainable Development in Europe; United Nation Convention to Combat Desertification: Bonn, Germany, 2000. [Google Scholar]
- Tan, Z.X.; Lal, R.; Smeck, N.E.; Calhoun, F.G. Relationships between surface soil organic carbon pool and site variables. Geoderma 2004, 121, 187–195. [Google Scholar] [CrossRef]
- Goidts, E.; Van Wesemael, B.; Van Oost, K. Driving forces of soil organic carbon evolution at the landscape and regional scale using data from a stratified soil monitoring. Glob. Chang. Biol. 2009, 15, 2981–3000. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Hübner, R.; Barthold, F.; Spörlein, P.; Geuß, U.; Hangen, E.; Reischl, A.; Schilling, B.; von Lützow, M.; Kögel-Knabner, I. Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria). Agric. Ecosyst. Environ. 2013, 176, 39–52. [Google Scholar] [CrossRef]
- Benedetti, A.; Mocali, S. Analisi a livello di suolo. In Indicatori di biodiversità per la Sostenibilità in Agricoltura. In Linee Guida, Strumenti e Metodi per la Valutazione della Qualità degli Agroecosistemi; Caporali, F., Vazzana, C., Benedetti, A., Calabrese, J., Mancinelli, R., Lazzerini, G., Mocali, S., Campiglia, E., Di Felice, V., Eds.; ISPRA: Rome, Italy, 2008; pp. 159–208. [Google Scholar]
- Vittori Antisari, L.; Ferronato, C.; De Feudis, M.; Natali, C.; Bianchini, G.; Falsone, G. Soil biochemical indicators and biological fertility in agricultural soils: A case study from northern Italy. Minerals 2021, 11, 219. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Soong, J.L.; Horton, A.J.; Campbell, E.E.; Haddix, M.L.; Wall, D.H.; Parton, W.J. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat. Geosci. 2015, 8, 776–779. [Google Scholar] [CrossRef]
- Lavallee, J.M.; Soong, J.L.; Cotrufo, M.F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Chang. Biol. 2020, 26, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Rubel, F.; Brugger, K.; Haslinger, K.; Auer, I. The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800–2100. Meteorol. Z. 2007, 26, 115–125. [Google Scholar] [CrossRef]
- Feng, X. A theoretical analysis of carbon isotope evolution of decomposing plant litters and soil organic matter. Glob. Biogeochem. Cycles 2002, 16, 1119. [Google Scholar] [CrossRef]
- Balesdent, J.; Mariotti, A. Measurement of soil organic matter turnover using 13C natural abundance. In Mass Spectrometry of Soils; Boutton, T.W., Yamasaki, S., Eds.; Marcel Dekker: New York, NY, USA, 1996; pp. 83–111. [Google Scholar]
- Ovsepyan, L.; Kurganova, I.; de Gerenyu, V.L.; Kuzyakov, Y. Recovery of organic matter and microbial biomass after abandonment of degraded agricultural soils: The influence of climate. Land Degrad. Dev. 2019, 30, 1861–1874. [Google Scholar] [CrossRef]
- Ferreira, A.C.C.; Leite, L.F.C.; de Araújo, A.S.F.; Eisenhauer, N. Land-use type effects on soil organic carbon and microbial properties in a semi-arid region of Northeast Brazil. Land Degrad. Dev. 2016, 27, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Mocali, S.; Paffetti, D.; Emiliani, G.; Benedetti, A.; Fani, R. Diversity of heterotrophic aerobic cultivable microbial communities of soils treated with fumigants and dynamics of metabolic, microbial, and mineralization quotients. Biol. Fertil. Soils 2008, 44, 557–569. [Google Scholar] [CrossRef]
- Anderson, T.-H.; Domsch, K.H. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol. Biochem. 1989, 21, 471–479. [Google Scholar] [CrossRef]
- Dilly, O. Microbial Energetics in Soils. In Microorganisms in Soils: Roles in Genesis and Functions; Buscot, F., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 123–138. [Google Scholar]
- Renzi, G.; Canfora, L.; Salvati, L.; Benedetti, A. Validation of the soil Biological Fertility Index (BFI) using a multidimensional statistical approach: A country-scale exercise. Catena 2017, 149, 294–299. [Google Scholar] [CrossRef]
- Pompili, L.; Mellina, A.S.; Benedetti, A.; Bloem, J. Microbial indicators in three agricultural soils with different management. Fresenius Environ. Bull. 2008, 17, 1128–1136. [Google Scholar]
- Agnelli, A.; Bol, R.; Trumbore, S.E.; Dixon, L.; Cocco, S.; Corti, G. Carbon and nitrogen in soil and vine roots in harrowed and grass-covered vineyards. Agric. Ecosyst. Environ. 2014, 193, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Falsone, G.; Marinari, S.; Vittori Antisari, L.; Vianello, G. Soil processes related to organic matter modifications following Douglas-fir mature reforestation. Biol. Fertil. Soils 2015, 51, 277–287. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- De Feudis, M.; Falsone, G.; Vittori Antisari, L. Mid-term (30 years) changes of soil properties under chestnut stands due to organic residues management: An integrated study. Catena 2021, 198, 105021. [Google Scholar] [CrossRef]
- Brombin, V.; Mistri, E.; De Feudis, M.; Forti, C.; Salani, G.M.; Natali, C.; Falsone, G.; Vittori Antisari, L.; Bianchini, G. Soil carbon investigation in three pedoclimatic and agronomic settings of northern Italy. Sustainability 2020, 12, 10539. [Google Scholar] [CrossRef]
- Krüger, J.P.; Leifeld, J.; Alewell, C. Degradation changes stable carbon isotope depth profiles in palsa peatlands. Biogeosciences 2014, 11, 3369–3380. [Google Scholar] [CrossRef] [Green Version]
- Cagnarini, C.; Blyth, E.; Emmett, B.A.; Evans, C.D.; Griffiths, R.I.; Keith, A.; Jones, L.; Lebron, I.; McNamara, N.P.; Puissant, J.; et al. Zones of influence for soil organic matter dynamics: A conceptual framework for data and models. Glob. Chang. Biol. 2019, 25, 3996–4007. [Google Scholar] [CrossRef] [PubMed]
- Rolinski, S.; Prishchepov, A.V.; Guggenberger, G.; Bischoff, N.; Kurganova, I.; Schierhorn, F.; Müller, D.; Müller, C. Dynamics of soil organic carbon in the steppes of Russia and Kazakhstan under past and future climate and land use. Reg. Environ. Chang. 2021, 21, 73. [Google Scholar] [CrossRef]
- Dick, D.P.; Nunes Gonçalves, C.; Dalmolin, R.S.D.; Knicker, H.; Klamt, E.; Kögel-Knabner, I.; Simões, M.L.; Martin-Neto, L. Characteristics of soil organic matter of different Brazilian Ferralsols under native vegetation as a function of soil depth. Geoderma 2005, 124, 319–333. [Google Scholar] [CrossRef]
- Berhe, A.A.; Harden, J.W.; Torn, M.S.; Harte, J. Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions. J. Geophys. Res. Biogeosci. 2008, 113, G04039. [Google Scholar] [CrossRef]
- Falsone, G.; Celi, L.; Caimi, A.; Simonov, G.; Bonifacio, E. The effect of clear cutting on podzolisation and soil carbon dynamics in boreal forests (Middle Taiga zone, Russia). Geoderma 2012, 177–178, 27–38. [Google Scholar] [CrossRef]
- Lundström, U.S.; Van Breemen, N.; Bain, D. The podzolization process. A review. Geoderma 2000, 94, 91–107. [Google Scholar] [CrossRef]
- Novara, A.; Gristina, L.; Kuzyakov, Y.; Schillaci, C.; Laudicina, V.A.; La Mantia, T. Turnover and availability of soil organic carbon under different Mediterranean land-uses as estimated by 13C natural abundance. Eur. J. Soil Sci. 2013, 64, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, D.V.; Gonzaga, M.I.S.; da Silva, T.O.; da Silva, T.L.; da Silva Dias, N.; Matias, M.I.S. Soil organic matter pools and carbon fractions in soil under different land uses. Soil Tillage Res. 2013, 126, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Lützow, M.V.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cluster | n | Depth | BD | pH | TN | SOC | SR | MBC |
---|---|---|---|---|---|---|---|---|
cm | [g cm−3] | (H2O) | [g kg−1] | [g kg−1] | [mg C-CO2 kg −1 h−1] | [mg kg−1] | ||
*** | *** | *** | *** | *** | *** | |||
1 | 17 | 0–15 | 1.20 ± 0.03 b | 5.0 ± 0.1 c | 1.48 ± 0.16 b | 19.8 ± 2.2 b | 0.60 ± 0.09 b | 200 ± 37 b |
2 | 16 | 0–15 | 1.17 ± 0.06 b | 6.4 ± 0.3 b | 3.28 ± 0.23 a | 35.2 ± 2.1 a | 1.25 ± 0.14 a | 550 ± 47 a |
3 | 18 | 0–15 | 1.43 ± 0.03 a | 7.8 ± 0.1 a | 1.56 ± 0.14 b | 14.0 ± 1.1 c | 0.57 ± 0.06 b | 154 ± 24 b |
4 | 3 | 0–15 | 1.46 ± 0.10 a | 7.7 ± 0.1 a | 6.41 ± 0.25 a | 75.8 ± 0.4 a | 0.84 ± 0.04 ab | 103 ± 32 b |
* | ns | *** | *** | *** | ** | |||
1 | 47 | 15–30 | 1.47 ± 0.02 a | 6.3 ± 0.2 | 0.92 ± 0.06 b | 8.7 ± 0.5 b | 0.34 ± 0.04 b | 94 ± 11 b |
2 | 7 | 15–30 | 1.20 ± 0.10 b | 7.4 ± 0.2 | 4.82 ± 0.63 a | 52.7 ± 9.7 a | 0.94 ± 0.09 a | 292 ± 82 a |
Cluster | n | Depth | C/N | δ13C | qCO2 | qMIN | qMIC | Dilly | SFI |
---|---|---|---|---|---|---|---|---|---|
[cm] | [‰] | [mg C-CO2 mg Cmic−1 h−1] | [mg C-CO2 g OC−1] | [g kg−1] | |||||
*** | *** | ns | * | ** | *** | *** | |||
1 | 17 | 0–15 | 13.2 ± 0.5 a | −27.1 ± 0.1 b | 0.62 ± 0.15 | 2.33 ± 0.19 a | 9.2 ± 1.3 b | 370 ± 78 a | 10.8 ± 0.6 bc |
2 | 16 | 0–15 | 12.2 ± 1.3 b | −26.6 ± 0.4 b | 0.73 ± 0.23 | 2.68 ± 0.33 a | 16.3 ± 1.7 a | 76 ± 11 b | 14.0 ± 0.4 a |
3 | 18 | 0–15 | 9.1 ± 0.3 c | −25.2 ± 0.4 a | 0.54 ± 0.08 | 4.32 ± 0.77 a | 10.2 ± 1.0 b | 328 ± 50 a | 11.8 ± 0.5 b |
4 | 3 | 0–15 | 11.9 ± 0.5 ab | −23.3 ± 0.4 a | 1.43 ± 0.80 | 0.75 ± 0.08 b | 1.4 ± 0.4 c | 191 ± 114 ab | 8.3 ± 0.3 c |
ns | ns | *** | * | ns | *** | ns | |||
1 | 47 | 15–30 | 9.8 ± 0.4 | −25.6 ± 0.2 | 0.67 ± 0.10 b | 3.24 ± 0.28 a | 11.9 ± 1.7 | 869 ± 190 a | 9.7 ± 0.3 |
2 | 7 | 15–30 | 10.5 ± 0.7 | −24.1 ± 1.0 | 1.88 ± 0.37 a | 1.63 ± 0.42 b | 8.1 ± 2.6 | 123 ± 37 b | 11.2 ± 0.9 |
POM | NEOM | FS | HS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cluster | n | N | C | δ13C | N | C | δ13C | N | C | δ13C | N | C | δ13C |
[g kg−1] | [g kg−1] | [‰] | [g kg−1] | [g kg−1] | [‰] | [g kg−1] | [g kg−1] | [‰] | [g kg−1] | [g kg−1] | [‰] | ||
*** | *** | *** | *** | *** | *** | *** | *** | * | *** | *** | ns | ||
1 | 5 | 0.216 ± 0.025 a | 4.90 ± 1.11 a | −28.4 ± 0.3 bc (n = 3) | 1.79 ± 0.25 a | 19.1 ± 3.27 b | −28.1 ± 0.1 b (n = 3) | 0.907 ± 0.229 a | 5.0 ± 1.9 b | Nd | 0.529 ± 0.085 a | 5.80 ± 1.09 a | −27.4 ± 0.4 (n = 3) |
2 | 20 | 0.007 ± 0.001 c | 0.13 ± 0.02 c | −24.1 ± 0.7 a (n = 19) | 1.07 ± 0.13 b | 12.3 ± 1.2 c | −26.5 ± 0.4 a (n = 19) | 0.107 ± 0.034 c | 1.1 ± 0.11 c | −25.0 ± 0.2 a (n = 18) | 0.064 ± 0.012 b | 0.50 ± 0.11 b | −26.2 ± 0.3 (n = 19) |
3 | 14 | 0.041 ± 0.010 b | 0.81 ± 0.20 b | −25.8 ± 0.1 c (n = 10) | 0.68 ± 0.14 c | 11.8 ± 2.2 c | −25.3 ± 0.2 b (n = 10) | 0.831 ± 0.108 a | 10.9 ± 0.79 a | Nd | 0.549 ± 0.126 a | 4.73 ± 0.79 a | −27.3 ± 0.2 (n = 10) |
4 | 12 | 0.011 ± 0.004 c | 0.22 ± 0.06 c | −25.6 ± 1.0 b (n = 12) | 2.09 ± 0.11 a | 36.7 ± 2.9 a | −26.4 ± 0.3 a (n = 12) | 0.146 ± 0.038 b | 1.6 ± 0.32 b | −25.9 ± 0.3 b (n = 11) | 0.360 ± 0.033 a | 4.34 ± 0.32 a | −26.9 ± 0.4 (n = 12) |
Cluster | n | Depth | C/N | δ13C | qCO2 | qMIN | qMIC | Dilly | SFI |
---|---|---|---|---|---|---|---|---|---|
cm | [‰] | [mg C-CO2 mg Cmic−1 h−1] | [mg C-CO2 g OC−1] | [g kg−1] | |||||
*** | ** | * | *** | ns | ** | ns | |||
1 | 5 | 0–15 | 15.6 ± 3.8 a | −27.4 ± 0.2 b | 0.31 ± 0.05 b | 2.06 ± 0.13 a | 1.11 ± 0.23 | 153 ± 69 ab | 12.8 ± 1.4 |
2 | 20 | 0–15 | 9.1 ± 0.2 c | −25.3 ± 0.5 a | 0.61 ± 0.18 b | 4.29 ± 0.69 a | 1.14 ± 0.14 | 293 ± 46 a | 12.1 ± 0.5 |
3 | 14 | 0–15 | 14.3 ± 0.4 a | −27.2 ± 0.1 b | 0.64 ± 0.18 b | 2.47 ± 0.24 a | 0.91 ± 0.16 | 372 ± 95 a | 11.1 ± 0.7 |
4 | 9 | 0–15 | 10.2 ± 0.5 b | −25.6 ± 0.7 a | 1.13 ± 0.27 a | 1.07 ± 0.14 b | 1.18 ± 0.31 | 89 ± 42 b | 10.8 ± 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vittori Antisari, L.; Trenti, W.; De Feudis, M.; Bianchini, G.; Falsone, G. Soil Quality and Organic Matter Pools in a Temperate Climate (Northern Italy) under Different Land Uses. Agronomy 2021, 11, 1815. https://doi.org/10.3390/agronomy11091815
Vittori Antisari L, Trenti W, De Feudis M, Bianchini G, Falsone G. Soil Quality and Organic Matter Pools in a Temperate Climate (Northern Italy) under Different Land Uses. Agronomy. 2021; 11(9):1815. https://doi.org/10.3390/agronomy11091815
Chicago/Turabian StyleVittori Antisari, Livia, William Trenti, Mauro De Feudis, Gianluca Bianchini, and Gloria Falsone. 2021. "Soil Quality and Organic Matter Pools in a Temperate Climate (Northern Italy) under Different Land Uses" Agronomy 11, no. 9: 1815. https://doi.org/10.3390/agronomy11091815
APA StyleVittori Antisari, L., Trenti, W., De Feudis, M., Bianchini, G., & Falsone, G. (2021). Soil Quality and Organic Matter Pools in a Temperate Climate (Northern Italy) under Different Land Uses. Agronomy, 11(9), 1815. https://doi.org/10.3390/agronomy11091815