Optimizing Carbon Sequestration in Croplands: A Synthesis
Abstract
:1. Introduction
- (1)
- Mineral fertilization
- (2)
- Organic amendments
- (3)
- Crop residues
- (4)
- Plant cultivation, including cover and deep-rooting crops
- (5)
- Tillage
- (6)
- Organic farming
- (7)
- Irrigation
- (8)
- Biochar
- (9)
- Lignocellulosic crops (e.g., agroforestry, bioenergy production) and
- (10)
- Application of inorganic carbon.
2. Scientific Foundation
2.1. Carbon Saturation Concept
2.2. Carbon Sequestration
2.3. Carbon Storage
3. Cropland Management Practices
3.1. Mineral Nitrogen Fertilization
3.1.1. Knowledge Gaps
3.1.2. Trade-Offs
3.2. Organic Amendments
3.2.1. Farmyard Manure
3.2.2. Compost Application
3.2.3. Knowledge Gaps
3.2.4. Trade-Offs
3.3. Crop Residues
3.3.1. Knowledge Gaps
3.3.2. Trade-Offs
3.4. Plant Cultivation
3.4.1. Crop Species
3.4.2. Crop Rotation
Cultivation of Deep-Rooting Crops
Catch Crops
3.4.3. Knowledge Gaps
3.4.4. Trade-Offs
3.5. Tillage
3.5.1. Knowledge Gaps
3.5.2. Trade-Offs
3.6. Organic Farming
3.6.1. Knowledge Gaps
3.6.2. Trade-Offs
3.7. Irrigation/Water Table Management
3.7.1. Knowledge Gaps
3.7.2. Trade-Offs
3.8. Biochar
3.8.1. Knowledge Gaps
3.8.2. Trade-Offs
3.9. Lignocellulosic Crops
3.9.1. Agroforestry
3.9.2. Bioenergy Production
3.9.3. Knowledge Gaps
3.9.4. Trade-Offs
3.10. Application of Inorganic Carbon
3.10.1. Carbonate Minerals (Liming)
3.10.2. Silicate Minerals
3.10.3. Knowledge Gaps
3.10.4. Trade-Offs
4. Synopsis—Are Soils an Unlimited Carbon Sink?
4.1. Bare Fallow—A Threat for SOC Stocks?
4.2. Climate Change
4.3. Soil Sealing
4.4. Consumer Behaviour
4.5. Socio-Economic Limitations and Practical Considerations of Farmers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davidson, E.A.; Janssens, I.A. Temperature Sensitivity of Soil Carbon Decomposition and Feedbacks to Climate Change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-Smart Soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Sarkar, B.; Sarkar, S.; Churchman, J.; Bolan, N.; Mandal, S.; Menon, M.; Purakayastha, T.J.; Beerling, D.J. Stabilization of Soil Organic Carbon as Influenced by Clay Mineralogy. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2018; Volume 148, pp. 33–84. ISBN 978-0-12-815179-2. [Google Scholar]
- Janzen, H.H. Carbon Cycling in Earth Systems—A Soil Science Perspective. Agric. Ecosyst. Environ. 2004, 104, 399–417. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil Quality–A Critical Review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- COM(2006) 231; Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions-Thematic Strategy for Soil Protection; European Commission: Brussels, Belgium; Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2006:0231:FIN:EN:PDF (accessed on 1 October 2020).
- European Comission New Soil Strategy-Healthy Soil for a Healthy Life. Available online: https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12634-Healthy-soils-new-EU-soil-strategy (accessed on 1 October 2020).
- Van de Broek, M.; Baert, L.; Temmerman, S.; Govers, G. Soil Organic Carbon Stocks in a Tidal Marsh Landscape Are Dominated by Human Marsh Embankment and Subsequent Marsh Progradation. Eur. J. Soil Sci. 2019, 70, 338–349. [Google Scholar] [CrossRef]
- Rumpel, C.; Amiraslani, F.; Koutika, L.-S.; Smith, P.; Whitehead, D.; Wollenberg, E. Put More Carbon in Soils to Meet Paris Climate Pledges. Nature 2018, 564, 32–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Don, A.; Flessa, H.; Marx, K. Die 4-Promille-Initiative “Böden Für Ernährungssicherung Und Klima”—Wissenschaftliche Bewertung Und Diskussion Möglicher Beiträge in Deutschland; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2018. [Google Scholar]
- Spiegel, H. Impacts of Arable Management on Soil Organic Carbon and Nutritionally Relevant Elements in the Soil-Plant System; Habiliation; University of Natural Resources and Life Sciences (BOKU): Vienna, Austria, 2012. [Google Scholar]
- Körschens, M.; Albert, E.; Armbruster, M.; Barkusky, D.; Baumecker, M.; Behle-Schalk, L.; Bischoff, R.; Čergan, Z.; Ellmer, F.; Herbst, F.; et al. Effect of Mineral and Organic Fertilization on Crop Yield, Nitrogen Uptake, Carbon and Nitrogen Balances, as Well as Soil Organic Carbon Content and Dynamics: Results from 20 European Long-Term Field Experiments of the Twenty-First Century. Arch. Agron. Soil Sci. 2013, 59, 1017–1040. [Google Scholar] [CrossRef]
- Bradford, M.A.; Carey, C.J.; Atwood, L.; Bossio, D.; Fenichel, E.P.; Gennet, S.; Fargione, J.; Fisher, J.R.B.; Fuller, E.; Kane, D.A.; et al. Soil Carbon Science for Policy and Practice. Nat. Sustain. 2019, 2, 1070–1072. [Google Scholar] [CrossRef]
- Lehmann, J.; Hansel, C.M.; Kaiser, C.; Kleber, M.; Maher, K.; Manzoni, S.; Nunan, N.; Reichstein, M.; Schimel, J.P.; Torn, M.S.; et al. Persistence of Soil Organic Carbon Caused by Functional Complexity. Nat. Geosci. 2020, 13, 529–534. [Google Scholar] [CrossRef]
- Liang, C.; Schimel, J.P.; Jastrow, J.D. The Importance of Anabolism in Microbial Control over Soil Carbon Storage. Nat. Microbiol. 2017, 2. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of Soil Organic Matter as an Ecosystem Property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Poeplau, C.; Don, A.; Six, J.; Kaiser, M.; Benbi, D.; Chenu, C.; Cotrufo, M.F.; Derrien, D.; Gioacchini, P.; Grand, S.; et al. Isolating Organic Carbon Fractions with Varying Turnover Rates in Temperate Agricultural Soils—A Comprehensive Method Comparison. Soil Biol. Biochem. 2018, 125, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Poeplau, C.; Don, A. Sensitivity of Soil Organic Carbon Stocks and Fractions to Different Land-Use Changes across Europe. Geoderma 2013, 192, 189–201. [Google Scholar] [CrossRef]
- Vos, C.; Jaconi, A.; Jacobs, A.; Don, A. Hot Regions of Labile and Stable Soil Organic Carbon in Germany–Spatial Variability and Driving Factors. SOIL 2018, 4, 153–167. [Google Scholar] [CrossRef] [Green Version]
- Ontl, T.A.; Cambardella, C.A.; Schulte, L.A.; Kolka, R.K. Factors Influencing Soil Aggregation and Particulate Organic Matter Responses to Bioenergy Crops across a Topographic Gradient. Geoderma 2015, 255–256, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chenu, C.; Angers, D.A.; Barré, P.; Derrien, D.; Arrouays, D.; Balesdent, J. Increasing Organic Stocks in Agricultural Soils: Knowledge Gaps and Potential Innovations. Soil Tillage Res. 2019, 188, 41–52. [Google Scholar] [CrossRef]
- Spiegel, H.; Mosleitner, T.; Sandén, T.; Zaller, J.G. Effects of Two Decades of Organic and Mineral Fertilization of Arable Crops on Earthworms and Standardized Litter Decomposition. Die Bodenkult. J. Land Manag. Food Environ. 2018, 69, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Bolinder, M.A.; Crotty, F.; Elsen, A.; Frac, M.; Kismányoky, T.; Lipiec, J.; Tits, M.; Tóth, Z.; Kätterer, T. The Effect of Crop Residues, Cover Crops, Manures and Nitrogen Fertilization on Soil Organic Carbon Changes in Agroecosystems: A Synthesis of Reviews. Mitig. Adapt. Strateg. Glob. Chang. 2020. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil Carbon 4 per Mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Rumpel, C.; Amiraslani, F.; Chenu, C.; Garcia Cardenas, M.; Kaonga, M.; Koutika, L.-S.; Ladha, J.; Madari, B.; Shirato, Y.; Smith, P.; et al. The 4p1000 Initiative: Opportunities, Limitations and Challenges for Implementing Soil Organic Carbon Sequestration as a Sustainable Development Strategy. Ambio 2020, 49, 350–360. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Kleber, M. The Contentious Nature of Soil Organic Matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Hassink, J. The Capacity of Soils to Preserve Organic C and N by Their Association with Clay and Silt Particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization Mechanisms of Soil Organic Matter: Implications for C-Saturation of Soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Stewart, C.E.; Plante, A.F.; Paustian, K.; Conant, R.T.; Six, J. Soil Carbon Saturation: Linking Concept and Measurable Carbon Pools. Soil Sci. Soc. Am. J. 2008, 72, 379–392. [Google Scholar] [CrossRef]
- Beare, M.H.; McNeill, S.J.; Curtin, D.; Parfitt, R.L.; Jones, H.S.; Dodd, M.B.; Sharp, J. Estimating the Organic Carbon Stabilisation Capacity and Saturation Deficit of Soils: A New Zealand Case Study. Biogeochemistry 2014, 120, 71–87. [Google Scholar] [CrossRef]
- Barré, P.; Angers, D.A.; Basile-Doelsch, I.; Bispo, A.; Cécillon, L.; Chenu, C.; Chevallier, T.; Derrien, D.; Eglin, T.K.; Pellerin, S. Ideas and Perspectives: Can We Use the Soil Carbon Saturation Deficit to Quantitatively Assess the Soil Carbon Storage Potential, or Should We Explore Other Strategies? Biogeosciences Discussions, European Geosciences Union: Munich, Germany, 2017. [Google Scholar]
- Gubler, A.; Wächter, D.; Schwab, P.; Müller, M.; Keller, A. Twenty-Five Years of Observations of Soil Organic Carbon in Swiss Croplands Showing Stability Overall but with Some Divergent Trends. Environ. Monit. Assess. 2019, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stumpf, F.; Keller, A.; Schmidt, K.; Mayr, A.; Gubler, A.; Schaepman, M. Spatio-Temporal Land Use Dynamics and Soil Organic Carbon in Swiss Agroecosystems. Agric. Ecosyst. Environ. 2018, 258, 129–142. [Google Scholar] [CrossRef]
- Olson, K.R.; Al-Kaisi, M.M.; Lal, R.; Lowery, B. Experimental Consideration, Treatments, and Methods in Determining Soil Organic Carbon Sequestration Rates. Soil Sci. Soc. Am. J. 2014, 78, 348–360. [Google Scholar] [CrossRef] [Green Version]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Kanagawa, Japan; IPCC: Geneva, Switzerland, 2006; ISBN 978-4-88788-032-0. [Google Scholar]
- Chaudhary, S.; Dheri, G.S.; Brar, B.S. Long-Term Effects of NPK Fertilizers and Organic Manures on Carbon Stabilization and Management Index under Rice-Wheat Cropping System. Soil Tillage Res. 2017, 166, 59–66. [Google Scholar] [CrossRef]
- Recous, S.; Robin, D.; Darwis, D.; Mary, B. Soil Inorganic N Availability: Effect on Maize Residue Decomposition. Soil Biol. Biochem. 1995, 27, 1529–1538. [Google Scholar] [CrossRef]
- Ladha, J.K.; Reddy, C.K.; Padre, A.T.; van Kessel, C. Role of Nitrogen Fertilization in Sustaining Organic Matter in Cultivated Soils. J. Environ. Qual. 2011, 40, 1756–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Groenigen, J.W.; van Kessel, C.; Hungate, B.A.; Oenema, O.; Powlson, D.S.; van Groenigen, K.J. Sequestering Soil Organic Carbon: A Nitrogen Dilemma. Environ. Sci. Technol. 2017, 51, 4738–4739. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Zhou, X.; Luo, Y.; Yang, Y.; Fang, C.; Chen, J.; Li, B. Minor Stimulation of Soil Carbon Storage by Nitrogen Addition: A Meta-Analysis. Agric. Ecosyst. Environ. 2011, 140, 234–244. [Google Scholar] [CrossRef]
- Gmach, M.R.; Cherubin, M.R.; Kaiser, K.; Cerri, C.E.P. Processes That Influence Dissolved Organic Matter in the Soil: A Review. Sci. Agric. 2020, 77. [Google Scholar] [CrossRef]
- Bol, R.; Poirier, N.; Balesdent, J.; Gleixner, G. Molecular Turnover Time of Soil Organic Matter in Particle-Size Fractions of an Arable Soil. Rapid Commun. Mass Spectrom. 2009, 23, 2551–2558. [Google Scholar] [CrossRef]
- Kleber, M.; Sollins, P.; Sutton, R. A Conceptual Model of Organo-Mineral Interactions in Soils: Self-Assembly of Organic Molecular Fragments into Zonal Structures on Mineral Surfaces. Biogeochemistry 2007, 85, 9–24. [Google Scholar] [CrossRef]
- Chen, R.; Senbayram, M.; Blagodatsky, S.; Myachina, O.; Dittert, K.; Lin, X.; Blagodatskaya, E.; Kuzyakov, Y. Soil C and N Availability Determine the Priming Effect: Microbial N Mining and Stoichiometric Decomposition Theories. Glob. Chang. Biol. 2014, 20, 2356–2367. [Google Scholar] [CrossRef] [PubMed]
- Derrien, D.; Plain, C.; Courty, P.-E.; Gelhaye, L.; Moerdijk-Poortvliet, T.C.W.; Thomas, F.; Versini, A.; Zeller, B.; Koutika, L.-S.; Boschker, H.T.S.; et al. Does the Addition of Labile Substrate Destabilise Old Soil Organic Matter? Soil Biol. Biochem. 2014, 76, 149–160. [Google Scholar] [CrossRef]
- Kirkby, C.A.; Richardson, A.E.; Wade, L.J.; Passioura, J.B.; Batten, G.D.; Blanchard, C.; Kirkegaard, J.A. Nutrient Availability Limits Carbon Sequestration in Arable Soils. Soil Biol. Biochem. 2014, 68, 402–409. [Google Scholar] [CrossRef]
- Erhart, E.; Tomasetti, A.; Pantic, S.; Haas, D.; Fuchs, K.; Bonell, M.; Hartl, W. Carbon Storage in Soil Size-Density Fractions after 20 Years of Compost Fertilization. Acta Fytotechnica Zootechnica 2015, 18, 110–112. [Google Scholar] [CrossRef]
- Baumgarten, A.; Geitner, C.; Haslmayr, H.-P.; Zechmeister-Boltenstern, S. Der Einfluss Des Klimawandels Auf Die Pedosphäre. In Österreichischer Sachstandsbericht Klimawandel 2014 (AAR14); Verlag der Österreichischen Akademie der Wissenschaften: Vienna, Austria, 2014; ISBN 978-3-7001-7723-4. [Google Scholar]
- Poulton, P.; Johnston, J.; Macdonald, A.; White, R.; Powlson, D. Major Limitations to Achieving “4 per 1000” Increases in Soil Organic Carbon Stock in Temperate Regions: Evidence from Long-Term Experiments at Rothamsted Research, United Kingdom. Glob. Chang. Biol. 2018, 24, 2563–2584. [Google Scholar] [CrossRef] [Green Version]
- Freibauer, A.; Rounsevell, M.D.A.; Smith, P.; Verhagen, J. Carbon Sequestration in the Agricultural Soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar] [CrossRef]
- Francaviglia, R.; Di Bene, C.; Farina, R.; Salvati, L.; Vicente-Vicente, J.L. Assessing “4 per 1000” Soil Organic Carbon Storage Rates under Mediterranean Climate: A Comprehensive Data Analysis. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 795–818. [Google Scholar] [CrossRef]
- Yang, J.; Gao, W.; Ren, S. Long-Term Effects of Combined Application of Chemical Nitrogen with Organic Materials on Crop Yields, Soil Organic Carbon and Total Nitrogen in Fluvo-Aquic Soil. Soil Tillage Res. 2015, 151, 67–74. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, Z.; Zhou, H.; Wang, D.; Peng, X. The Effect of 34-Year Continuous Fertilization on the SOC Physical Fractions and Its Chemical Composition in a Vertisol. Sci. Rep. 2019, 9, 2505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Sun, B.; Lu, F.; Wang, X.; Zhuang, T.; Zhang, G.; Ouyang, Z. Roles of Nitrogen, Phosphorus, and Potassium Fertilizers in Carbon Sequestration in a Chinese Agricultural Ecosystem. Clim. Chang. 2017, 142, 587–596. [Google Scholar] [CrossRef]
- Liang, F.; Li, J.; Yang, X.; Huang, S.; Cai, Z.; Gao, H.; Ma, J.; Cui, X.; Xu, M. Three-Decade Long Fertilization-Induced Soil Organic Carbon Sequestration Depends on Edaphic Characteristics in Six Typical Croplands. Sci. Rep. 2016, 6, 30350. [Google Scholar] [CrossRef]
- Joner, E.J. The Effect of Long-Term Fertilization with Organic or Inorganic Fertilizers on Mycorrhiza-Mediated Phosphorus Uptake in Subterranean Clover. Biol. Fertil. Soils 2000, 32, 435–440. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Li, D.; Xu, C.; Xiang, X. Differential Responses of Arbuscular Mycorrhizal Fungal Communities to Mineral and Organic Fertilization. Microbiol. Open 2020, 9. [Google Scholar] [CrossRef] [Green Version]
- Parihar, M.; Rakshit, A.; Meena, V.S.; Gupta, V.K.; Rana, K.; Choudhary, M.; Tiwari, G.; Mishra, P.K.; Pattanayak, A.; Bisht, J.K.; et al. The Potential of Arbuscular Mycorrhizal Fungi in C Cycling: A Review. Arch. Microbiol. 2020, 202, 1581–1596. [Google Scholar] [CrossRef] [PubMed]
- Coonan, E.C.; Kirkby, C.A.; Kirkegaard, J.A.; Amidy, M.R.; Strong, C.L.; Richardson, A.E. Microorganisms and Nutrient Stoichiometry as Mediators of Soil Organic Matter Dynamics. Nutr. Cycl. Agroecosyst 2020, 117, 273–298. [Google Scholar] [CrossRef]
- Crowther, T.W.; Riggs, C.; Lind, E.M.; Borer, E.T.; Seabloom, E.W.; Hobbie, S.E.; Wubs, J.; Adler, P.B.; Firn, J.; Gherardi, L.; et al. Sensitivity of Global Soil Carbon Stocks to Combined Nutrient Enrichment. Ecol. Lett. 2019, 22, 936–945. [Google Scholar] [CrossRef] [PubMed]
- Poeplau, C.; Bolinder, M.A.; Kirchmann, H.; Kätterer, T. Phosphorus Fertilisation under Nitrogen Limitation Can Deplete Soil Carbon Stocks: Evidence from Swedish Meta-Replicated Long-Term Field Experiments. Biogeosciences 2016, 13, 1119–1127. [Google Scholar] [CrossRef] [Green Version]
- Canadell, J.G.; Schulze, E.D. Global Potential of Biospheric Carbon Management for Climate Mitigation. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickie, A.; Streck, C.; Roe, S.; Zurek, M.; Haupt, F.; Dolginow, A. Strategies for Mitigating Climate Change in Agriculture: Recommendations for Philanthropy—Executive Summary. In Climate Focus and California Environmental Associates, Prepared with the Support of the Climate and Land Use Alliance; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Huang, T.; Ju, X.; Yang, H. Nitrate Leaching in a Winter Wheat-Summer Maize Rotation on a Calcareous Soil as Affected by Nitrogen and Straw Management. Sci. Rep. 2017, 7, 42247. [Google Scholar] [CrossRef] [Green Version]
- Schlesinger, W.H.; Amundson, R. Managing for Soil Carbon Sequestration: Let’s Get Realistic. Glob. Chang. Biol. 2019, 25, 386–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.-M.; Chen, Q.-L.; He, C.; Shi, Q.; Chen, S.-C.; Reid, B.J.; Zhu, Y.-G.; Sun, G.-X. Organic Carbon Amendments Affect the Chemodiversity of Soil Dissolved Organic Matter and Its Associations with Soil Microbial Communities. Environ. Sci. Technol. 2019, 53, 50–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, A.; Poeplau, C.; Weiser, C.; Fahrion-Nitschke, A.; Don, A. Exports and Inputs of Organic Carbon on Agricultural Soils in Germany. Nutr. Cycl. Agroecosystems 2020, 118, 249–271. [Google Scholar] [CrossRef]
- Mathew, I.; Shimelis, H.; Mutema, M.; Minasny, B.; Chaplot, V. Crops for Increasing Soil Organic Carbon Stocks—A Global Meta Analysis. Geoderma 2020, 367, 114230. [Google Scholar] [CrossRef]
- Sykes, A.J.; Macleod, M.; Eory, V.; Rees, R.M.; Payen, F.; Myrgiotis, V.; Williams, M.; Sohi, S.; Hillier, J.; Moran, D.; et al. Characterising the Biophysical, Economic and Social Impacts of Soil Carbon Sequestration as a Greenhouse Gas Removal Technology. Glob. Chang. Biol. 2020, 26, 1085–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maillard, É.; Angers, D.A. Animal Manure Application and Soil Organic Carbon Stocks: A Meta-Analysis. Glob. Chang. Biol. 2014, 20, 666–679. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Mayer, S.; Burmeister, J.; Hübner, R.; Kögel-Knabner, I. Feasibility of the 4 per 1000 Initiative in Bavaria: A Reality Check of Agricultural Soil Management and Carbon Sequestration Scenarios. Geoderma 2020, 369, 114333. [Google Scholar] [CrossRef]
- Powlson, D.S.; Stirling, C.M.; Jat, M.L.; Gerard, B.G.; Palm, C.A.; Sanchez, P.A.; Cassman, K.G. Limited Potential of No-till Agriculture for Climate Change Mitigation. Nat. Clim. Chang. 2014, 4, 678–683. [Google Scholar] [CrossRef]
- Bolan, N.S.; Adriano, D.C.; Kunhikrishnan, A.; James, T.; McDowell, R.; Senesi, N. Dissolved Organic Matter. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2011; Volume 110, pp. 1–75. ISBN 978-0-12-385531-2. [Google Scholar]
- Shahbaz, M.; Kumar, A.; Kuzyakov, Y.; Börjesson, G.; Blagodatskaya, E. Interactive Priming Effect of Labile Carbon and Crop Residues on SOM Depends on Residue Decomposition Stage: Three-Source Partitioning to Evaluate Mechanisms. Soil Biol. Biochem. 2018, 126, 179–190. [Google Scholar] [CrossRef]
- Hu, T.; Sørensen, P.; Olesen, J.E. Soil Carbon Varies between Different Organic and Conventional Management Schemes in Arable Agriculture. Eur. J. Agron. 2018, 94, 79–88. [Google Scholar] [CrossRef]
- Zavattaro, L.; Bechini, L.; Grignani, C.; van Evert, F.K.; Mallast, J.; Spiegel, H.; Sandén, T.; Pecio, A.; Giráldez Cervera, J.V.; Guzmán, G.; et al. Agronomic Effects of Bovine Manure: A Review of Long-Term European Field Experiments. Eur. J. Agron. 2017, 90, 127–138. [Google Scholar] [CrossRef]
- Powlson, D.S.; Glendining, M.J.; Coleman, K.; Whitmore, A.P. Implications for Soil Properties of Removing Cereal Straw: Results from Long-Term Studies. Agron. J. 2011, 103, 279–287. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Lazcano, C.; Christensen, T.H.; Muñoz, P.; Rieradevall, J.; Møller, J.; Antón, A.; Boldrin, A. Compost Benefits for Agriculture Evaluated by Life Cycle Assessment. A Review. Agron. Sustain. Dev. 2013, 33, 721–732. [Google Scholar] [CrossRef] [Green Version]
- Zavattaro, L.; Costamagna, C.; Grignani, C.; Bechini, L. Impacts of Soil Management on Productivity. Catch-C Deliverable D3.324. Available online: http://www.catch-c.eu/deliverables/WP3%20Task%203.2%20Productivity_D3.324_fin.pdf (accessed on 23 September 2020).
- Lehtinen, T.; Dersch, G.; Söllinger, J.; Baumgarten, A.; Schlatter, N.; Aichberger, K.; Spiegel, H. Long-Term Amendment of Four Different Compost Types on a Loamy Silt Cambisol: Impact on Soil Organic Matter, Nutrients and Yields. Arch. Agron. Soil Sci. 2017, 63, 663–673. [Google Scholar] [CrossRef]
- Lashermes, G.; Nicolardot, B.; Parnaudeau, V.; Thuriès, L.; Chaussod, R.; Guillotin, M.L.; Linères, M.; Mary, B.; Metzger, L.; Morvan, T.; et al. Indicator of Potential Residual Carbon in Soils after Exogenous Organic Matter Application. Eur. J. Soil Sci. 2009, 60, 297–310. [Google Scholar] [CrossRef]
- Tiefenbacher, A.; Weigelhofer, G.; Klik, A.; Pucher, M.; Santner, J.; Wenzel, W.; Eder, A.; Strauss, P. Short-Term Effects of Fertilization on Dissolved Organic Matter in Soil Leachate. Water 2020, 12, 1617. [Google Scholar] [CrossRef]
- Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.K.; Conant, R.T.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerber, P.; Gill, M.; et al. Greenhouse Gas Mitigation Potentials in the Livestock Sector. Nat. Clim. Chang. 2016, 6, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Bronick, C.J.; Lal, R. Soil Structure and Management: A Review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Lehtinen, T.; Schlatter, N.; Baumgarten, A.; Bechini, L.; Krüger, J.; Grignani, C.; Zavattaro, L.; Costamagna, C.; Spiegel, H. Effect of Crop Residue Incorporation on Soil Organic Carbon and Greenhouse Gas Emissions in European Agricultural Soils. Soil Use Manag. 2014, 30, 524–538. [Google Scholar] [CrossRef]
- Trajanov, A.; Spiegel, H.; Debeljak, M.; Sandén, T. Using Data Mining Techniques to Model Primary Productivity from International Long-Term Ecological Research (ILTER) Agricultural Experiments in Austria. Reg. Environ. Chang. 2019, 19, 325–337. [Google Scholar] [CrossRef] [Green Version]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in Northern, Western and South-Western Europe: A Review of Problems and Opportunities for Crop Production and the Environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Heiling, M.; Resch, C.; Mbaye, M.; Gruber, R.; Dercon, G. Does Maize and Legume Crop Residue Mulch Matter in Soil Organic Carbon Sequestration? Agric. Ecosyst. Environ. 2018, 265, 123–131. [Google Scholar] [CrossRef]
- Hansen, S.; Berland Frøseth, R.; Stenberg, M.; Stalenga, J.; Olesen, J.E.; Krauss, M.; Radzikowski, P.; Doltra, J.; Nadeem, S.; Torp, T.; et al. Reviews and Syntheses: Review of Causes and Sources of N2O emissions and NO3 Leaching from Organic Arable Crop Rotations. Biogeosciences 2019, 16, 2795–2819. [Google Scholar] [CrossRef] [Green Version]
- Wiesmeier, M.; Hübner, R.; Kögel-Knabner, I. Stagnating Crop Yields: An Overlooked Risk for the Carbon Balance of Agricultural Soils? Sci. Total Environ. 2015, 536, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Goll, D.S.; Manzoni, S.; Ciais, P.; Guenet, B.; Huang, Y. Modeling the Effects of Litter Stoichiometry and Soil Mineral N Availability on Soil Organic Matter Formation Using CENTURY-CUE (v1.0). Geosci. Model Dev. 2018, 11, 4779–4796. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Liu, C.; Chen, Y.; Dong, F.; Chen, S.; Zhang, D.; Zhu, J. Structural Characteristics, Analytical Techniques and Interactions with Organic Contaminants of Dissolved Organic Matter Derived from Crop Straw: A Critical Review. RSC Adv. 2018, 8, 36927–36938. [Google Scholar] [CrossRef] [Green Version]
- Poeplau, C.; Don, A. Carbon Sequestration in Agricultural Soils via Cultivation of Cover Crops—A Meta-Analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Tellez-Rio, A.; Vallejo, A.; García-Marco, S.; Martin-Lammerding, D.; Tenorio, J.L.; Rees, R.M.; Guardia, G. Conservation Agriculture Practices Reduce the Global Warming Potential of Rainfed Low N Input Semi-Arid Agriculture. Eur. J. Agron. 2017, 84, 95–104. [Google Scholar] [CrossRef]
- Wesseler, J.; Drabik, D. Prices Matter: Analysis of Food and Energy Competition Relative to Land Resources in the European Union. NJAS Wagening. J. Life Sci. 2016, 77, 19–24. [Google Scholar] [CrossRef]
- Raich, J.W.; Potter, C.S. Global Patterns of Carbon Dioxide Emissions from Soils. Glob. Biogeochem. Cycles 1995, 9, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Ostle, N.; Whiteley, A.S.; Bailey, M.J.; Sleep, D.; Ineson, P.; Manefield, M. Active Microbial RNA Turnover in a Grassland Soil Estimated Using a 13CO2 Spike. Soil Biol. Biochem. 2003, 35, 877–885. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Domanski, G. Carbon Input by Plants into the Soil. Review. J. Plant Nutr. Soil Sci. 2000, 163, 421–431. [Google Scholar] [CrossRef]
- Wang, C.; Guo, L.; Li, Y.; Wang, Z. Systematic Comparison of C3 and C4 Plants Based on Metabolic Network Analysis. BMC Syst. Biol. 2012, 6, S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gherardi, L.A.; Sala, O.E. Global Patterns and Climatic Controls of Belowground Net Carbon Fixation. Proc. Natl. Acad. Sci. USA 2020, 117, 20038–20043. [Google Scholar] [CrossRef] [PubMed]
- Kätterer, T.; Bolinder, M.A.; Andrén, O.; Kirchmann, H.; Menichetti, L. Roots Contribute More to Refractory Soil Organic Matter than Above-Ground Crop Residues, as Revealed by a Long-Term Field Experiment. Agric. Ecosyst. Environ. 2011, 141, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Vandecasteele, B.; Zavattaro, L.; Sacco, D.; Wendland, M.; Boeckx, P.; Haesaert, G.; Sleutel, S. Maize Root-derived C in Soil and the Role of Physical Protection on Its Relative Stability over Shoot-derived C. Eur. J. Soil Sci. 2019. [Google Scholar] [CrossRef]
- Hu, T.; Sørensen, P.; Wahlström, E.M.; Chirinda, N.; Sharif, B.; Li, X.; Olesen, J.E. Root Biomass in Cereals, Catch Crops and Weeds Can Be Reliably Estimated without Considering Aboveground Biomass. Agric. Ecosyst. Environ. 2018, 251, 141–148. [Google Scholar] [CrossRef]
- Kaiser, K.; Kalbitz, K. Cycling Downwards–Dissolved Organic Matter in Soils. Soil Biol. Biochem. 2012, 52, 29–32. [Google Scholar] [CrossRef]
- Jarecki, M.K.; Lal, R. Crop Management for Soil Carbon Sequestration. Crit. Rev. Plant Sci. 2003, 22, 471–502. [Google Scholar] [CrossRef]
- Finney, D.M.; Kaye, J.P. Functional Diversity in Cover Crop Polycultures Increases Multifunctionality of an Agricultural System. J. Appl. Ecol. 2017, 54, 509–517. [Google Scholar] [CrossRef]
- Tiemann, L.K.; Grandy, A.S.; Atkinson, E.E.; Marin-Spiotta, E.; McDaniel, M.D. Crop Rotational Diversity Enhances Belowground Communities and Functions in an Agroecosystem. Ecol. Lett. 2015, 18, 761–771. [Google Scholar] [CrossRef]
- Bolinder, M.A.; Kätterer, T.; Andrén, O.; Parent, L.E. Estimating Carbon Inputs to Soil in Forage-Based Crop Rotations and Modeling the Effects on Soil Carbon Dynamics in a Swedish Long-Term Field Experiment. Can. J. Soil Sci. 2012, 92, 821–833. [Google Scholar] [CrossRef]
- Tidåker, P.; Sundberg, C.; Öborn, I.; Kätterer, T.; Bergkvist, G. Rotational Grass/Clover for Biogas Integrated with Grain Production–A Life Cycle Perspective. Agric. Syst. 2014, 129, 133–141. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation: A Global Data Analysis. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef] [Green Version]
- Börjesson, G.; Bolinder, M.A.; Kirchmann, H.; Kätterer, T. Organic Carbon Stocks in Topsoil and Subsoil in Long-Term Ley and Cereal Monoculture Rotations. Biol. Fertil. Soils 2018, 54, 549–558. [Google Scholar] [CrossRef] [Green Version]
- Sokol, N.W.; Kuebbing, S.E.; Karlsen-Ayala, E.; Bradford, M.A. Evidence for the Primacy of Living Root Inputs, Not Root or Shoot Litter, in Forming Soil Organic Carbon. New Phytol. 2019, 221, 233–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutschera, L. Wurzelatlas, mitteleuropäischer Ackerunkräuter und Kulturpflanzen; Band 1; DLG Verlags GmbH: Frankfurt, Germany, 2010; ISBN 978-3-7690-0758-8. [Google Scholar]
- Thorup-Kristensen, K.; Halberg, N.; Nicolaisen, M.; Olesen, J.E.; Crews, T.E.; Hinsinger, P.; Kirkegaard, J.; Pierret, A.; Dresbøll, D.B. Digging Deeper for Agricultural Resources, the Value of Deep Rooting. Trends Plant Sci. 2020, 25, 406–417. [Google Scholar] [CrossRef] [Green Version]
- Poeplau, C.; Bolinder, M.A.; Eriksson, J.; Lundblad, M.; Kätterer, T. Positive Trends in Organic Carbon Storage in Swedish Agricultural Soils Due to Unexpected Socio-Economic Drivers. Biogeosciences 2015, 12, 3241–3251. [Google Scholar] [CrossRef] [Green Version]
- Poffenbarger, H.J.; Olk, D.C.; Cambardella, C.; Kersey, J.; Liebman, M.; Mallarino, A.; Six, J.; Castellano, M.J. Whole-Profile Soil Organic Matter Content, Composition, and Stability under Cropping Systems That Differ in Belowground Inputs. Agric. Ecosyst. Environ. 2020, 291, 106810. [Google Scholar] [CrossRef] [Green Version]
- Lugato, E.; Leip, A.; Jones, A. Mitigation Potential of Soil Carbon Management Overestimated by Neglecting N2O Emissions. Nat. Clim. Chang. 2018, 8, 219–223. [Google Scholar] [CrossRef]
- Lynch, J.P.; Wojciechowski, T. Opportunities and Challenges in the Subsoil: Pathways to Deeper Rooted Crops. J. Exp. Bot. 2015, 66, 2199–2210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Weiner, J.; Yu, M.; Li, F. Evolutionary Agroecology: Trends in Root Architecture during Wheat Breeding. Evol. Appl. 2019, 12, 733–743. [Google Scholar] [CrossRef] [Green Version]
- Chahal, I.; Vyn, R.J.; Mayers, D.; Van Eerd, L.L. Cumulative Impact of Cover Crops on Soil Carbon Sequestration and Profitability in a Temperate Humid Climate. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Kanders, M.J.; Berendonk, C.; Fritz, C.; Watson, C.; Wichern, F. Catch Crops Store More Nitrogen Below-Ground When Considering Rhizodeposits. Plant Soil 2017, 417, 287–299. [Google Scholar] [CrossRef]
- Shackelford, G.E.; Kelsey, R.; Dicks, L.V. Effects of Cover Crops on Multiple Ecosystem Services: Ten Meta-Analyses of Data from Arable Farmland in California and the Mediterranean. Land Use Policy 2019, 88, 104204. [Google Scholar] [CrossRef]
- Strickland, M.S.; Thomason, W.E.; Avera, B.; Franklin, J.; Minick, K.; Yamada, S.; Badgley, B.D. Short-Term Effects of Cover Crops on Soil Microbial Characteristics and Biogeochemical Processes across Actively Managed Farms. Agrosystems Geosci. Environ. 2019, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A Critical Review of the Impacts of Cover Crops on Nitrogen Leaching, Net Greenhouse Gas Balance and Crop Productivity. Glob. Chang. Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef] [Green Version]
- Dabney, S.M.; Delgado, J.A.; Reeves, D.W. Using Winter Cover Crops to Improve Soil and Water Quality. Commun. Soil Sci. Plant Anal. 2001, 32, 1221–1250. [Google Scholar] [CrossRef]
- Koehler-Cole, K.; Elmore, R.W. Seeding Rates and Productivity of Broadcast Interseeded Cover Crops. Agronomy 2020, 10, 1723. [Google Scholar] [CrossRef]
- Lawson, A.; Cogger, C.; Bary, A.; Fortuna, A.-M. Influence of Seeding Ratio, Planting Date, and Termination Date on Rye-Hairy Vetch Cover Crop Mixture Performance under Organic Management. PLoS ONE 2015, 10, e0129597. [Google Scholar] [CrossRef]
- Bleuler, M.; Farina, R.; Francaviglia, R.; di Bene, C.; Napoli, R.; Marchetti, A. Modelling the Impacts of Different Carbon Sources on the Soil Organic Carbon Stock and CO 2 Emissions in the Foggia Province (Southern Italy). Agric. Syst. 2017, 157, 258–268. [Google Scholar] [CrossRef]
- Chambers, A.; Lal, R.; Paustian, K. Soil Carbon Sequestration Potential of US Croplands and Grasslands: Implementing the 4 per Thousand Initiative. J. Soil Water Conserv. 2016, 71, 68A–74A. [Google Scholar] [CrossRef] [Green Version]
- Jian, J.; Du, X.; Reiter, M.S.; Stewart, R.D. A Meta-Analysis of Global Cropland Soil Carbon Changes Due to Cover Cropping. Soil Biol. Biochem. 2020, 143, 107735. [Google Scholar] [CrossRef]
- Northup, R.R.; Dahlgren, R.A.; McColl, J.G. Polyphenols as Regulators of Plant-Litter-Soil Interactions in Northern California’s Pygmy Forest: A Positive Feedback? Biogeochemistry 1998, 42, 189–220. [Google Scholar] [CrossRef]
- White, K.E.; Brennan, E.B.; Cavigelli, M.A.; Smith, R.F. Winter Cover Crops Increase Readily Decomposable Soil Carbon, but Compost Drives Total Soil Carbon during Eight Years of Intensive, Organic Vegetable Production in California. PLoS ONE 2020, 15, e0228677. [Google Scholar] [CrossRef] [PubMed]
- Wille, L.; Messmer, M.M.; Studer, B.; Hohmann, P. Insights to Plant-Microbe Interactions Provide Opportunities to Improve Resistance Breeding against Root Diseases in Grain Legumes: Microbe-Supported Resistance Breeding in Legumes. Plant Cell Environ. 2019, 42, 20–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodner, G.; Mentler, A.; Klik, A.; Kaul, H.-P.; Zechmeister-Boltenstern, S. Do Cover Crops Enhance Soil Greenhouse Gas Losses during High Emission Moments under Temperate Central Europe Conditions? Die Bodenkult. J. Land Manag. Food Environ. 2018, 68, 171–187. [Google Scholar] [CrossRef] [Green Version]
- Dignac, M.-F.; Derrien, D.; Barré, P.; Barot, S.; Cécillon, L.; Chenu, C.; Chevallier, T.; Freschet, G.T.; Garnier, P.; Guenet, B.; et al. Increasing Soil Carbon Storage: Mechanisms, Effects of Agricultural Practices and Proxies. A Review. Agron. Sustain. Dev. 2017, 37. [Google Scholar] [CrossRef] [Green Version]
- De Clercq, T.; Heiling, M.; Dercon, G.; Resch, C.; Aigner, M.; Mayer, L.; Mao, Y.; Elsen, A.; Steier, P.; Leifeld, J.; et al. Predicting Soil Organic Matter Stability in Agricultural Fields through Carbon and Nitrogen Stable Isotopes. Soil Biol. Biochem. 2015, 88, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Six, J.; Elliott, E.T.; Paustian, K. Soil Macroaggregate Turnover and Microaggregate Formation: A Mechanism for C Sequestration under No-Tillage Agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Veloso, M.G.; Cecagno, D.; Bayer, C. Legume Cover Crops under No-Tillage Favor Organomineral Association in Microaggregates and Soil C Accumulation. Soil Tillage Res. 2019, 190, 139–146. [Google Scholar] [CrossRef]
- Beniston, J.W.; Shipitalo, M.J.; Lal, R.; Dayton, E.A.; Hopkins, D.W.; Jones, F.; Joynes, A.; Dungait, J.A.J. Carbon and Macronutrient Losses during Accelerated Erosion under Different Tillage and Residue Management: Soil C, N and P Losses during Erosion. Eur. J. Soil Sci. 2015, 66, 218–225. [Google Scholar] [CrossRef]
- Mazzoncini, M.; Antichi, D.; Di Bene, C.; Risaliti, R.; Petri, M.; Bonari, E. Soil Carbon and Nitrogen Changes after 28 Years of No-Tillage Management under Mediterranean Conditions. Eur. J. Agron. 2016, 77, 156–165. [Google Scholar] [CrossRef]
- Abid, M.; Lal, R. Tillage and Drainage Impact on Soil Quality: II. Tensile Strength of Aggregates, Moisture Retention and Water Infiltration. Soil Tillage Res. 2009, 103, 364–372. [Google Scholar] [CrossRef]
- Mikha, M.M.; Rice, C.W. Tillage and Manure Effects on Soil and Aggregate-Associated Carbon and Nitrogen. Soil Sci. Soc. Am. J. 2004, 68, 809. [Google Scholar] [CrossRef]
- Sanderman, J.; Farquharson, R.; Baldock, J.A. Soil Carbon Sequestration Potential: A Review for Australian Agriculture; CSIRO Land and Water, Australian Government: Canberra, Australia, 2010. [Google Scholar]
- Luo, Z.; Wang, E.; Sun, O.J. Can No-Tillage Stimulate Carbon Sequestration in Agricultural Soils? A Meta-Analysis of Paired Experiments. Agric. Ecosyst. Environ. 2010, 139, 224–231. [Google Scholar] [CrossRef]
- Ogle, S.M.; Alsaker, C.; Baldock, J.; Bernoux, M.; Breidt, F.J.; McConkey, B.; Regina, K.; Vazquez-Amabile, G.G. Climate and Soil Characteristics Determine Where No-Till Management Can Store Carbon in Soils and Mitigate Greenhouse Gas Emissions. Sci. Rep. 2019, 9, 11665. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Isberg, P.-E. How Does Tillage Intensity Affect Soil Organic Carbon? A Systematic Review. Environ. Evid. 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Valkama, E.; Kunypiyaeva, G.; Zhapayev, R.; Karabayev, M.; Zhusupbekov, E.; Perego, A.; Schillaci, C.; Sacco, D.; Moretti, B.; Grignani, C.; et al. Can Conservation Agriculture Increase Soil Carbon Sequestration? A Modelling Approach. Geoderma 2020, 369, 114298. [Google Scholar] [CrossRef]
- Husniev, I.; Romanenkov, V.; Minakova, O.; Krasilnikov, P. Modelling and Prediction of Organic Carbon Dynamics in Arable Soils Based on a 62-Year Field Experiment in the Voronezh Region, European Russia. Agronomy 2020, 10, 1607. [Google Scholar] [CrossRef]
- Virto, I.; Barré, P.; Burlot, A.; Chenu, C. Carbon Input Differences as the Main Factor Explaining the Variability in Soil Organic C Storage in No-Tilled Compared to Inversion Tilled Agrosystems. Biogeochemistry 2012, 108, 17–26. [Google Scholar] [CrossRef]
- Williams, H.; Colombi, T.; Keller, T. The Influence of Soil Management on Soil Health: An on-Farm Study in Southern Sweden. Geoderma 2020, 360, 114010. [Google Scholar] [CrossRef]
- Govaerts, B.; Verhulst, N.; Castellanos-Navarrete, A.; Sayre, K.D.; Dixon, J.; Dendooven, L. Conservation Agriculture and Soil Carbon Sequestration: Between Myth and Farmer Reality. Crit. Rev. Plant Sci. 2009, 28, 97–122. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global Spread of Conservation Agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Meurer, K.H.E.; Haddaway, N.R.; Bolinder, M.A.; Kätterer, T. Tillage Intensity Affects Total SOC Stocks in Boreo-Temperate Regions Only in the Topsoil—A Systematic Review Using an ESM Approach. Earth Sci. Rev. 2018, 177, 613–622. [Google Scholar] [CrossRef]
- Spiegel, H.; Dersch, G.; Hösch, J.; Baumgarten, A. Tillage Effects on Soil Organic Carbon and Nutrientavailability in a Long-Term Field Experiment in Austria. Die Bodenkult. J. Land Manag. Food Environ. 2007, 58, 47–58. [Google Scholar]
- Chauhan, B.S.; Gill, G.S.; Preston, C. Tillage System Effects on Weed Ecology, Herbicide Activity and Persistence: A Review. Aust. J. Exp. Agric. 2006, 46, 1557. [Google Scholar] [CrossRef]
- Moitzi, G.; Neugschwandtner, R.W.; Kaul, H.-P.; Wagentristl, H. Energy Efficiency of Winter Wheat in a Long-Term Tillage Experiment under Pannonian Climate Conditions. Eur. J. Agron. 2019, 103, 24–31. [Google Scholar] [CrossRef]
- Sanden, T.; Spiegel, H.; Stüger, H.-P.; Schlatter, N.; Haslmayr, H.-P.; Zavattaro, L.; Grignani, C.; Bechini, L.; D′Hose, T.; Molendijk, L.; et al. European Long-Term Field Experiments: Knowledge Gained about Alternative Management Practices. Soil Use Manag. 2018, 34, 167–176. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Francis, C.A.; Galusha, T.D. Does Organic Farming Accumulate Carbon in Deeper Soil Profiles in the Long Term? Geoderma 2017, 288, 213–221. [Google Scholar] [CrossRef]
- Leifeld, J.; Fuhrer, J. Organic Farming and Soil Carbon Sequestration: What Do We Really Know About the Benefits? AMBIO 2010, 39, 585–599. [Google Scholar] [CrossRef] [Green Version]
- Muller, A.; Bautze, L.; Meier, M.; Gattinger, A. Organic Farming, Climate Change Mitigation and beyond—Reducing the Environmental Impacts of EU Agriculture; IFOAM: Bonn, Germany, 2017. [Google Scholar]
- Autret, B.; Beaudoin, N.; Rakotovololona, L.; Bertrand, M.; Grandeau, G.; Gréhan, E.; Ferchaud, F.; Mary, B. Can Alternative Cropping Systems Mitigate Nitrogen Losses and Improve GHG Balance? Results from a 19-Yr Experiment in Northern France. Geoderma 2019, 342, 20–33. [Google Scholar] [CrossRef]
- Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N.; Mader, P.; Stolze, M.; Smith, P.; Scialabba, N.E.-H.; et al. Enhanced Top Soil Carbon Stocks under Organic Farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231. [Google Scholar] [CrossRef] [Green Version]
- Agrimonti, C.; Lauro, M.; Visioli, G. Smart Agriculture for Food Quality: Facing Climate Change in the 21st Century. Crit. Rev. Food Sci. Nutr. 2020, 1–11. [Google Scholar] [CrossRef]
- Bellarby, J.; Foereid, B.; Hastings, A.; Smith, P. Cool Farming: Climate Impacts of Agriculture and Mitigation Potential; University of Aberdeen/Greenpeace, Greenpace International: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Brückler, M.; Resl, T.; Reindl, A. Comparison of Organic and Conventional Crop Yields in Austria. Die Bodenkult. J. Land Manag. Food Environ. 2018, 68, 223–236. [Google Scholar] [CrossRef] [Green Version]
- Montanarella, L.; Panagos, P. The Relevance of Sustainable Soil Management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- Trost, B.; Prochnow, A.; Drastig, K.; Meyer-Aurich, A.; Ellmer, F.; Baumecker, M. Irrigation, Soil Organic Carbon and N2O Emissions. A Review. Agron. Sustain. Dev. 2013, 33, 733–749. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Zhou, L.; Nie, Y.; Fu, Y.; Du, Z.; Shao, J.; Zheng, Z.; Wang, X. Similar Responses of Soil Carbon Storage to Drought and Irrigation in Terrestrial Ecosystems but with Contrasting Mechanisms: A Meta-Analysis. Agric. Ecosyst. Environ. 2016, 228, 70–81. [Google Scholar] [CrossRef]
- Meena, R.S.; Kumar, S.; Yadav, G.S. Soil Carbon Sequestration in Crop Production. In Nutrient Dynamics for Sustainable Crop Production; Meena, R.S., Ed.; Springer: Singapore, 2020; pp. 1–39. ISBN 9789811386596. [Google Scholar]
- Hatfield, J.L.; Dold, C. Water-Use Efficiency: Advances and Challenges in a Changing Climate. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global Threats to Human Water Security and River Biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Snyder, C.S.; Bruulsema, T.W.; Jensen, T.L.; Fixen, P.E. Review of Greenhouse Gas Emissions from Crop Production Systems and Fertilizer Management Effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [Google Scholar] [CrossRef]
- Sohi, S.P. Carbon Storage with Benefits. Science 2012, 338, 1034–1035. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J. A Handful of Carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Ameloot, N.; De Neve, S.; Jegajeevagan, K.; Yildiz, G.; Buchan, D.; Funkuin, Y.N.; Prins, W.; Bouckaert, L.; Sleutel, S. Short-Term CO2 and N2O Emissions and Microbial Properties of Biochar Amended Sandy Loam Soils. Soil Biol. Biochem. 2013, 57, 401–410. [Google Scholar] [CrossRef]
- Kuzyakov, Y. Priming Effects: Interactions between Living and Dead Organic Matter. Soil Biol. Biochem. 2010, 42, 1363–1371. [Google Scholar] [CrossRef]
- Paetsch, L.; Mueller, C.W.; Kögel-Knabner, I.; von Lützow, M.; Girardin, C.; Rumpel, C. Effect of In-Situ Aged and Fresh Biochar on Soil Hydraulic Conditions and Microbial C Use under Drought Conditions. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Wardle, D.A.; Nilsson, M.-C.; Zackrisson, O. Fire-Derived Charcoal Causes Loss of Forest Humus. Science 2008, 320, 629. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.M.; Busscher, W.J.; Watts, D.W.; Laird, D.A.; Ahmedna, M.A.; Niandou, M.A.S. Short-Term CO2 Mineralization after Additions of Biochar and Switchgrass to a Typic Kandiudult. Geoderma 2010, 154, 281–288. [Google Scholar] [CrossRef]
- (Han) Weng, Z.; Van Zwieten, L.; Singh, B.P.; Tavakkoli, E.; Joseph, S.; Macdonald, L.M.; Rose, T.J.; Rose, M.T.; Kimber, S.W.L.; Morris, S.; et al. Biochar Built Soil Carbon over a Decade by Stabilizing Rhizodeposits. Nat. Clim. Chang. 2017, 7, 371–376. [Google Scholar] [CrossRef]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Barnes, R.T.; Gallagher, M.E.; Gonnermann, H. Impacts of Biochar Concentration and Particle Size on Hydraulic Conductivity and DOC Leaching of Biochar–Sand Mixtures. J. Hydrol. 2016, 533, 461–472. [Google Scholar] [CrossRef] [Green Version]
- Maestrini, B.; Nannipieri, P.; Abiven, S. A Meta-Analysis on Pyrogenic Organic Matter Induced Priming Effect. GCB Bioenergy 2015, 7, 577–590. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Soil Organic Carbon Sequestration in Agroforestry Systems. A Review. Agron. Sustain. Dev. 2014, 34, 443–454. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.-D.; Johnson, R.L.; Lehmann, J.; Olk, D.C.; Neves, E.G.; Thompson, M.L.; Schmidt-Rohr, K. Abundant and Stable Char Residues in Soils: Implications for Soil Fertility and Carbon Sequestration. Environ. Sci. Technol. 2012, 46, 9571–9576. [Google Scholar] [CrossRef]
- Solomon, D.; Lehmann, J.; Wang, J.; Kinyangi, J.; Heymann, K.; Lu, Y.; Wirick, S.; Jacobsen, C. Micro- and Nano-Environments of C Sequestration in Soil: A Multi-Elemental STXM–NEXAFS Assessment of Black C and Organomineral Associations. Sci. Total Environ. 2012, 438, 372–388. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Biochar Application to Soil for Climate Change Mitigation by Soil Organic Carbon Sequestration. J. Plant Nutr. Soil Sci. 2014, 177, 651–670. [Google Scholar] [CrossRef] [Green Version]
- Rumpel, C.; Kögel-Knabner, I. Deep Soil Organic Matter—a Key but Poorly Understood Component of Terrestrial C Cycle. Plant Soil 2011, 338, 143–158. [Google Scholar] [CrossRef]
- Liang, C.; Zhu, X.; Fu, S.; Méndez, A.; Gascó, G.; Paz-Ferreiro, J. Biochar Alters the Resistance and Resilience to Drought in a Tropical Soil. Environ. Res. Lett. 2014, 9, 064013. [Google Scholar] [CrossRef] [Green Version]
- Palansooriya, K.N.; Ok, Y.S.; Awad, Y.M.; Lee, S.S.; Sung, J.-K.; Koutsospyros, A.; Moon, D.H. Impacts of Biochar Application on Upland Agriculture: A Review. J. Environ. Manag. 2019, 234, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.-P.; Kammann, C.; Niggli, C.; Evangelou, M.W.H.; Mackie, K.A.; Abiven, S. Biochar and Biochar-Compost as Soil Amendments to a Vineyard Soil: Influences on Plant Growth, Nutrient Uptake, Plant Health and Grape Quality. Agric. Ecosyst. Environ. 2014, 191, 117–123. [Google Scholar] [CrossRef]
- Rechberger, M.V.; Kloss, S.; Wang, S.-L.; Lehmann, J.; Rennhofer, H.; Ottner, F.; Wriessnig, K.; Daudin, G.; Lichtenegger, H.; Soja, G.; et al. Enhanced Cu and Cd Sorption after Soil Aging of Woodchip-Derived Biochar: What Were the Driving Factors? Chemosphere 2019, 216, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Neogi, S.; Dutta, T.; Powel, M.A.; Banik, P. The Impact of Biochar on Soil Carbon Sequestration: Meta-Analytical Approach to Evaluating Environmental and Economic Advantages. J. Environ. Manag. 2019, 250, 109466. [Google Scholar] [CrossRef]
- Smith, P. Soil Carbon Sequestration and Biochar as Negative Emission Technologies. Glob. Chang. Biol. 2016, 22, 1315–1324. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable Biochar to Mitigate Global Climate Change. Nat. Commun. 2010, 1. [Google Scholar] [CrossRef] [Green Version]
- Leng, L.; Huang, H.; Li, H.; Li, J.; Zhou, W. Biochar Stability Assessment Methods: A Review. Sci. Total Environ. 2019, 647, 210–222. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Qayyum, M.F.; Ibrahim, M.; Zia-ur-Rehman, M.; Abbas, T.; Ok, Y.S. Mechanisms of Biochar-Mediated Alleviation of Toxicity of Trace Elements in Plants: A Critical Review. Environ. Sci. Pollut. Res. 2016, 23, 2230–2248. [Google Scholar] [CrossRef]
- Shi, L.; Feng, W.; Xu, J.; Kuzyakov, Y. Agroforestry Systems: Meta-Analysis of Soil Carbon Stocks, Sequestration Processes, and Future Potentials. Land Degrad. Dev. 2018, 29, 3886–3897. [Google Scholar] [CrossRef]
- Sun, H.; Koal, P.; Gerl, G.; Schroll, R.; Gattinger, A.; Joergensen, R.G.; Munch, J.C. Microbial Communities and Residues in Robinia- and Poplar-Based Alley-Cropping Systems under Organic and Integrated Management. Agrofor. Syst. 2018, 92, 35–46. [Google Scholar] [CrossRef]
- Cardinael, R.; Umulisa, V.; Toudert, A.; Olivier, A.; Bockel, L.; Bernoux, M. Revisiting IPCC Tier 1 Coefficients for Soil Organic and Biomass Carbon Storage in Agroforestry Systems. Environ. Res. Lett. 2018, 13, 124020. [Google Scholar] [CrossRef]
- Lal, R.; Smith, P.; Jungkunst, H.F.; Mitsch, W.J.; Lehmann, J.; Nair, P.K.R.; McBratney, A.B.; de Moraes Sá, J.C.; Schneider, J.; Zinn, Y.L.; et al. The Carbon Sequestration Potential of Terrestrial Ecosystems. J. Soil Water Conserv. 2018, 73, 145A–152A. [Google Scholar] [CrossRef] [Green Version]
- Soussana, J.F.; Lutfalla, S.; Ehrhardt, F.; Rosenstock, T.; Lamanna, C.; Havlík, P.; Richards, M.; Chotte, J.L.; Torquebiau, E.; Ciais, P.; et al. Matching Policy and Science: Rationale for the ‘4 per 1000-Soils for Food Security and Climate’ Initiative. Soil Tillage Res. 2019, 188, 3–15. [Google Scholar] [CrossRef]
- Liebhard, P.; Spiegel, H. Effects of long term cultivation of Miscanthus Giganteus on selected chemical and physicalparameters. In Proceedings of the Ernähren uns in der Zukunft Energiepflanzen? Raumberg-Gumpenstein, Austria, 26 May 2008. [Google Scholar]
- Chimento, C.; Almagro, M.; Amaducci, S. Carbon Sequestration Potential in Perennial Bioenergy Crops: The Importance of Organic Matter Inputs and Its Physical Protection. GCB Bioenergy 2016, 8, 111–121. [Google Scholar] [CrossRef]
- Kalt, G.; Mayer, A.; Theurl, M.C.; Lauk, C.; Erb, K.; Haberl, H. Natural Climate Solutions versus Bioenergy: Can Carbon Benefits of Natural Succession Compete with Bioenergy from Short Rotation Coppice? GCB Bioenergy 2019, 11, 1283–1297. [Google Scholar] [CrossRef]
- The Challenge of Sustaining Soils: Natural and Social Ramifications of Biomass Production in a Changing World; Winiwarter, V.; Gerzabek, M.H. (Eds.) Interdisciplinary Perspectives; Verlag der Österreichischen Akadademie der Wissenschaften: Wien, Austria, 2012; ISBN 978-3-7001-7212-3. [Google Scholar]
- Paradelo, R.; Virto, I.; Chenu, C. Net Effect of Liming on Soil Organic Carbon Stocks: A Review. Agric. Ecosyst. Environ. 2015, 202, 98–107. [Google Scholar] [CrossRef]
- Briedis, C.; Moraes Sá, J.C.; Caires, E.F.; Fátima Navarro, J.; Inagaki, T.M.; Boer, A.; Oliveira Ferreira, A.; Neto, C.Q.; Canalli, L.B.; Santos, J.B. Changes in Organic Matter Pools and Increases in Carbon Sequestration in Response to Surface Liming in an Oxisol under Long-Term No-Till. Soil Sci. Soc. Am. J. 2012, 76, 151–160. [Google Scholar] [CrossRef]
- Kowalenko, C.G.; Ihnat, M. Residual Effects of Combinations of Limestone, Zinc and Manganese Applications on Soil and Plant Nutrients under Mild and Wet Climatic Conditions. Can. J. Soil Sci. 2013, 93, 113–125. [Google Scholar] [CrossRef]
- Beerling, D.J.; Leake, J.R.; Long, S.P.; Scholes, J.D.; Ton, J.; Nelson, P.N.; Bird, M.; Kantzas, E.; Taylor, L.L.; Sarkar, B.; et al. Farming with Crops and Rocks to Address Global Climate, Food and Soil Security. Nat. Plants 2018, 4, 138–147. [Google Scholar] [CrossRef]
- Shao, S.; Driscoll, C.T.; Johnson, C.E.; Fahey, T.J.; Battles, J.J.; Blum, J.D. Long-Term Responses in Soil Solution and Stream-Water Chemistry at Hubbard Brook after Experimental Addition of Wollastonite. Environ. Chem. 2016, 13, 528. [Google Scholar] [CrossRef] [Green Version]
- Marschner, H.; Marschner, P. (Eds.) Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier/Academic Press: London, UK; Elsevier/Academic Press: Waltham, MA, USA, 2012; ISBN 978-0-12-384905-2. [Google Scholar]
- Kane, D. Carbon Sequestration Potential on Agricultural Lands: A Review of Current Sci-Ence and Available Practices; National Sustainable Agriculture Coalition Breakthrough Strategies and Solutions, LLC: Washington, DC, USA, 2015. [Google Scholar]
- Barré, P.; Eglin, T.; Christensen, B.T.; Ciais, P.; Houot, S.; Kätterer, T.; van Oort, F.; Peylin, P.; Poulton, P.R.; Romanenkov, V.; et al. Long-Term Bare Fallow Experiments Offer New Opportunities for the Quantification and the Study of Stable Carbon in Soil. Biogeosci. Discuss. 2010, 7, 4887–4917. [Google Scholar] [CrossRef] [Green Version]
- Keel, S.G.; Anken, T.; Büchi, L.; Chervet, A.; Fliessbach, A.; Flisch, R.; Huguenin-Elie, O.; Mäder, P.; Mayer, J.; Sinaj, S.; et al. Loss of Soil Organic Carbon in Swiss Long-Term Agricultural Experiments over a Wide Range of Management Practices. Agric. Ecosyst. Environ. 2019, 286, 106654. [Google Scholar] [CrossRef] [Green Version]
- Taghizadeh-Toosi, A.; Olesen, J.E. Modelling Soil Organic Carbon in Danish Agricultural Soils Suggests Low Potential for Future Carbon Sequestration. Agric. Syst. 2016, 145, 83–89. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Wang, J.; Zhu, P.; Cui, X.; Han, X.; Xu, M.; Lu, C. The Efficiency of Long-Term Straw Return to Sequester Organic Carbon in Northeast China’s Cropland. J. Integr. Agric. 2018, 17, 436–448. [Google Scholar] [CrossRef]
- Smith, P.; Fang, C.; Dawson, J.J.C.; Moncrieff, J.B. Impact of Global Warming on Soil Organic Carbon. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2008; Volume 97, pp. 1–43. ISBN 978-0-12-374352-7. [Google Scholar]
- Aaltonen, H.; Palviainen, M.; Zhou, X.; Köster, E.; Berninger, F.; Pumpanen, J.; Köster, K. Temperature Sensitivity of Soil Organic Matter Decomposition after Forest Fire in Canadian Permafrost Region. J. Environ. Manag. 2019, 241, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Moinet, G.Y.K.; Hunt, J.E.; Kirschbaum, M.U.F.; Morcom, C.P.; Midwood, A.J.; Millard, P. The Temperature Sensitivity of Soil Organic Matter Decomposition Is Constrained by Microbial Access to Substrates. Soil Biol. Biochem. 2018, 116, 333–339. [Google Scholar] [CrossRef]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon Emissions from Land-Use Change and Management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [Green Version]
- Post, W.M.; Kwon, K.C. Soil Carbon Sequestration and Land-Use Change: Processes and Potential: Soil Carbon Sequestration and Land-Use Change. Glob. Chang. Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Guenet, B.; Camino-Serrano, M.; Ciais, P.; Tifafi, M.; Maignan, F.; Soong, J.L.; Janssens, I.A. Impact of Priming on Global Soil Carbon Stocks. Glob. Chang. Biol. 2018, 24, 1873–1883. [Google Scholar] [CrossRef] [Green Version]
- Crowther, T.W.; Todd-Brown, K.E.O.; Rowe, C.W.; Wieder, W.R.; Carey, J.C.; Machmuller, M.B.; Snoek, B.L.; Fang, S.; Zhou, G.; Allison, S.D.; et al. Quantifying Global Soil Carbon Losses in Response to Warming. Nature 2016, 540, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Tiefenbacher, A.; Weigelhofer, G.; Klik, A.; Mabit, L.; Santner, J.; Wenzel, W.; Strauss, P. Antecedent Soil Moisture and Rain Intensity Control Pathways and Quality of Organic Carbon Exports from Arable Land. CATENA 2021, 202, 105297. [Google Scholar] [CrossRef]
- Gardi, C. Urban Expansion, Land Cover and Soil Ecosystem Services; Routledge: New York, NY, USA, 2017; ISBN 978-1-317-50470-2. [Google Scholar]
- Lu, C.; Kotze, D.J.; Setälä, H.M. Soil Sealing Causes Substantial Losses in C and N Storage in Urban Soils under Cool Climate. Sci. Total Environ. 2020, 725, 138369. [Google Scholar] [CrossRef] [PubMed]
- Scalenghe, R.; Marsan, F.A. The Anthropogenic Sealing of Soils in Urban Areas. Landsc. Urban Plan. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Aksoy, E.; Gregor, M.; Schröder, C.; Löhnertz, M.; Louwagie, G. Assessing and Analysing the Impact of Land Take Pressures on Arable Land. Solid Earth 2017, 8, 683–695. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Directorate General for the Environment. Hard Surfaces, Hidden Costs: Searching for Alternatives to Land Take and Soil Sealing; Publications Office: Luxembourg, 2013. [Google Scholar]
- Ronchi, S.; Salata, S.; Arcidiacono, A.; Piroli, E.; Montanarella, L. Policy Instruments for Soil Protection among the EU Member States: A Comparative Analysis. Land Use Policy 2019, 82, 763–780. [Google Scholar] [CrossRef]
- IPCC Summary for Policymakers. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Bmlrt, B.L. Regionen und Tourismus Grüner Bericht 2020; Bundesministerium für Landwirtschaft, Regionen und Tourismus (BMLRT): Vienna, Austria, 2020. [Google Scholar]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for Keeping the Food System within Environmental Limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Theurl, M.C.; Lauk, C.; Kalt, G.; Mayer, A.; Kaltenegger, K.; Morais, T.G.; Teixeira, R.F.M.; Domingos, T.; Winiwarter, W.; Erb, K.-H.; et al. Food Systems in a Zero-Deforestation World: Dietary Change Is More Important than Intensification for Climate Targets in 2050. Sci. Total Environ. 2020, 735, 139353. [Google Scholar] [CrossRef]
- Ingram, J.; Dwyer, J.; Gaskell, P.; Mills, J.; de Wolf, P. Reconceptualising Translation in Agricultural Innovation: A Co-Translation Approach to Bring Research Knowledge and Practice Closer Together. Land Use Policy 2018, 70, 38–51. [Google Scholar] [CrossRef]
- Ingram, J.; Mills, J.; Dibari, C.; Ferrise, R.; Ghaley, B.B.; Hansen, J.G.; Iglesias, A.; Karaczun, Z.; McVittie, A.; Merante, P.; et al. Communicating Soil Carbon Science to Farmers: Incorporating Credibility, Salience and Legitimacy. J. Rural Stud. 2016, 48, 115–128. [Google Scholar] [CrossRef]
- Piñeiro, V.; Arias, J.; Dürr, J.; Elverdin, P.; Ibáñez, A.M.; Kinengyere, A.; Opazo, C.M.; Owoo, N.; Page, J.R.; Prager, S.D.; et al. A Scoping Review on Incentives for Adoption of Sustainable Agricultural Practices and Their Outcomes. Nat. Sustain. 2020, 3, 809–820. [Google Scholar] [CrossRef]
- Ingram, J. Agricultural Transition: Niche and Regime Knowledge Systems’ Boundary Dynamics. Environ. Innov. Soc. Transit. 2018, 26, 117–135. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiefenbacher, A.; Sandén, T.; Haslmayr, H.-P.; Miloczki, J.; Wenzel, W.; Spiegel, H. Optimizing Carbon Sequestration in Croplands: A Synthesis. Agronomy 2021, 11, 882. https://doi.org/10.3390/agronomy11050882
Tiefenbacher A, Sandén T, Haslmayr H-P, Miloczki J, Wenzel W, Spiegel H. Optimizing Carbon Sequestration in Croplands: A Synthesis. Agronomy. 2021; 11(5):882. https://doi.org/10.3390/agronomy11050882
Chicago/Turabian StyleTiefenbacher, Alexandra, Taru Sandén, Hans-Peter Haslmayr, Julia Miloczki, Walter Wenzel, and Heide Spiegel. 2021. "Optimizing Carbon Sequestration in Croplands: A Synthesis" Agronomy 11, no. 5: 882. https://doi.org/10.3390/agronomy11050882
APA StyleTiefenbacher, A., Sandén, T., Haslmayr, H. -P., Miloczki, J., Wenzel, W., & Spiegel, H. (2021). Optimizing Carbon Sequestration in Croplands: A Synthesis. Agronomy, 11(5), 882. https://doi.org/10.3390/agronomy11050882