Influence of Tillage and Crop Rotations in Organic and Conventional Farming Systems on Soil Organic Matter, Bulk Density and Enzymatic Activities in a Short-Term Field Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Crops Yield of the Experimental Fields
2.4. Soil Sampling
2.5. Physical-Chemical Parameters
2.6. Soil Organic Matter Parameters
2.7. Enzyme Activities
2.8. Soil Aggregate Stability
2.9. Statistical Analyses
3. Results
3.1. Soil Physical Parameters
3.2. Soil Organic Carbon and Humic Fraction Content
3.3. Interaction between Soil Organic Matter and Soil Stability
3.4. Enzymatic Activity
3.5. Canonical Discriminant Analysis
4. Discussion
4.1. Soil Organic Matter and Stability Indexes
4.2. Enzymatic Activities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Mahalanobis Distances | |||||
Managements | Org SGR + C | Org SGR | Org PBF + P | Org PBF | Conv WR |
Org SGR + C | 0 | 34.67 | 7.91 | 12.60 | 55.09 |
Org SGR | 34.67 | 0 | 10.23 | 7.82 | 15.41 |
Org PBF + P | 7.91 | 10.23 | 0 | 2.28 | 26.64 |
Org PBF | 12.60 | 7.82 | 2.28 | 0 | 17.92 |
Conv WR | 55.09 | 15.41 | 26.64 | 17.92 | 0 |
Significance of Mahalanobis Distances | |||||
Org SGR + C | Org SGR | Org PBF + P | Org PBF | Conv WR | |
Org SGR + C | 1.000 | <0.0001 | 0.0001 | <0.0001 | <0.0001 |
Org SGR | <0.0001 | 1.000 | <0.0001 | 0.0001 | <0.0001 |
Org PBF + P | 0.0001 | <0.0001 | 1.000 | 0.073 | <0.0001 |
Org PBF | <0.0001 | 0.0001 | 0.073 | 1.000 | <0.0001 |
Conv WR | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 1.000 |
Factors | CAN 1 | CAN 2 | ||
---|---|---|---|---|
Pearson Cor. | p | Pearson Cor. | p | |
β-Glucosidase | 0.89991 | <0.0001 | 0.13598 | 0.458 |
Phosphomonoesterase | 0.69523 | <0.0001 | 0.42232 | 0.016 |
HC | 0.62265 | 0.0001 | 0.56273 | 0.0008 |
Phosphodiesterase | 0.66125 | <0.0001 | 0.46454 | 0.0074 |
ASA | 0.55407 | 0.001 | 0.49636 | 0.0039 |
Average bulk density | −0.13675 | 0.4555 | −0.27578 | 0.1266 |
References
- Godfray, H.C.J.; Garnett, T. Food security and sustainable intensification. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20120273. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Barao, L.; Alaoui, A.; Ferreira, C.; Basch, G.; Schwilch, G.; Geissen, V.; Sukkel, W.; Lemesle, J.; Garcia-Orenes, F.; Morugan-Coronado, A.; et al. Assessment of promising agricultural management practices. Sci. Total Environ. 2019, 649, 610–619. [Google Scholar] [CrossRef]
- FAO; ITPS. Status of the World’s Soil Resources (SWSR)-Main Report; Food and Agriculture Organization of the United Nations: Rome, Italy; Intergovernmental Technical Panel on Soils: Rome, Italy, 2015. [Google Scholar]
- Stockdale, E.A.; Shepherd, M.A.; Fortune, S.; Cuttle, S.P. Soil fertility in organic farming systems-fundamentally different? Soil Use Manag. 2002, 18, 301–308. [Google Scholar] [CrossRef]
- A European Green Deal|Euopena Commission. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 25 March 2021).
- Watson, C.A.; Atkinson, D.; Gosling, P.; Jackson, L.R.; Rayns, F.W. Managing soil fertility in organic farming systems. Soil Use Manag. 2002, 18, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Monokrousos, N.; Papatheodorou, E.M.; Stamou, G.P. The response of soil biochemical variables to organic and conventional cultivation of Asparagus sp. Soil Biol. Biochem. 2008, 40, 198–206. [Google Scholar] [CrossRef]
- Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 2009, 60, 158–169. [Google Scholar] [CrossRef]
- Tu, C.; Ristaino, J.B.; Hu, S.J. Soil microbial biomass and activity in organic tomato farming systems: Effects of organic inputs and straw mulching. Soil Biol. Biochem. 2006, 38, 247–255. [Google Scholar] [CrossRef]
- Six, J.; Paustian, K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biol. Biochem. 2014, 68, A4–A9. [Google Scholar] [CrossRef]
- Le Bissonnais, Y. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 1996, 47, 425–437. [Google Scholar] [CrossRef]
- Dal Ferro, N.; Berti, A.; Francioso, O.; Ferrari, E.; Matthews, G.P.; Morari, F. Investigating the effects of wettability and pore size distribution on aggregate stability: The role of soil organic matter and the humic fraction. Eur. J. Soil Sci. 2012, 63, 152–164. [Google Scholar] [CrossRef]
- Bachmann, J.; Guggenberger, G.; Baumgartl, T.; Ellerbrock, R.H.; Urbanek, E.; Goebel, M.-O.; Kaiser, K.; Horn, R.; Fischer, W.R. Physical carbon-sequestration mechanisms under special consideration of soil wettability. J. Plant Nutr. Soil Sci. 2008, 171, 14–26. [Google Scholar] [CrossRef]
- Singh, G.; Bhattacharyya, R.; Das, T.K.; Sharma, A.R.; Ghosh, A.; Das, S.; Jha, P. Crop rotation and residue management effects on soil enzyme activities, glomalin and aggregate stability under zero tillage in the Indo-Gangetic Plains. Soil Tillage Res. 2018, 184, 291–300. [Google Scholar] [CrossRef]
- Renella, G.; Szukics, U.; Landi, L.; Nannipieri, P. Quantitative assessment of hydrolase production and persistence in soil. Biol. Fertil. Soils 2007, 44, 321–329. [Google Scholar] [CrossRef]
- Gil-Sotres, F.; Trasar-Cepeda, C.; Leiros, M.C.; Seoane, S. Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 2005, 37, 877–887. [Google Scholar] [CrossRef]
- Riffaldi, R.; Saviozzi, A.; Levi-Minzi, R.; Cardelli, R. Biochemical properties of a Mediterranean soil as affected by long-term crop management systems. Soil Tillage Res. 2002, 67, 109–114. [Google Scholar] [CrossRef]
- Marinari, S.; Mancinelli, R.; Carnpiglia, E.; Grego, S. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecol. Indic. 2006, 6, 701–711. [Google Scholar] [CrossRef]
- Grayston, S.J.; Wang, S.Q.; Campbell, C.D.; Edwards, A.C. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 1998, 30, 369–378. [Google Scholar] [CrossRef]
- Miller, H.J.; Henken, G.; Vanveen, J.A. Variation and composition of bacterial-populations in the rhizospheres of maize, wheat, and grass cultivars. Can. J. Microbiol. 1989, 35, 656–660. [Google Scholar] [CrossRef]
- Houlden, A.; Timms-Wilson, T.M.; Day, M.J.; Bailey, M.J. Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiol. Ecol. 2008, 65, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality-A critical review. Soil Biol. Bio-Chem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Barbi, A.; Cagnati, A.; Cola, G.; Checchetto, F.; Chiaudani, A.; Crepaz, A.; Delillo, I.; Mariani, L.; Marigo, G.; Meneghin, P.; et al. Atlante Climatico del Veneto; Regione del Veneto: Mestre, Italy, 2013. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Sibbesen, E.; Skjøth, F.; Rubæk, G.H. Tillage caused dispersion of phosphorus and soil in four 16-year old field experiments. Soil Tillage Res. 2000, 54, 91–100. [Google Scholar] [CrossRef]
- Grossman, R.B.; Reinsch, T.G. Bulk Density and Linear Extensibility. In Methods of Soil Analysis: Physical Methods, Part 4; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 201–228. [Google Scholar]
- Sitzia, T.; Pizzeghello, D.; Dainese, M.; Ertani, A.; Carletti, P.; Semenzato, P.; Nardi, S.; Cattaneo, D. Topsoil organic matter properties in contrasted hedgerow vegetation types. Plant Soil 2014. [Google Scholar] [CrossRef]
- Sumner, M.; Miller, W. Cation exchange capacity, and exchange coefficients. In Methods of soil Analysis. Part 2: Chemical Properties, 3rd ed.; Sparks, D., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1201–1229. [Google Scholar]
- Olsen, S.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis. Part 2; Page, A., Miller, R., Keeney, D., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 421–422. [Google Scholar]
- FAO. Standard operating procedure for soil calcium carbonate equivalent. In Volumetric Calcimeter Method; FAO: Rome, Italy, 2020. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- USDA-NRCS United States. Department of Agriculture-Natural Resources Conservation Service, Soil Survey Laboratory Methods Manual; Version No. 4.0; Soil Survey Investigations Report No. 42 (2004); USDA-NRCS: Lincoln, NE, USA, 2004.
- Cardinali, A.; Carletti, P.; Nardi, S.; Zanin, G. Design of riparian buffer strips affects soil quality parameters. Appl. Soil Ecol. 2014, 80, 67–76. [Google Scholar] [CrossRef]
- Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Nannipieri, P.; Kandeler, E.; Ruggiero, P. Enzyme activities and microbiological and biochemical processes in soil. In Enzymes in the Environment; Burns, R.G., Dick, R.P., Eds.; Marcel Dekker: New York, NY, USA, 2002; pp. 1–34. [Google Scholar]
- Masciandaro, G.; Ceccanti, B.; Ronchi, V.; Bauer, C. Kinetic parameters of dehydrogenase in the assessment of the response of soil to vermicompost and inorganic fertilisers. Biol. Fertil. Soils 2000, 32, 479–483. [Google Scholar] [CrossRef]
- Browman, M.G.; Tabatabai, M.A. Phosphodiesterase Activity of Soils. Soil Sci. Soc. Am. J. 1978, 42, 284–290. [Google Scholar] [CrossRef]
- Eivazi, F.; Tabatabai, M.A. Glucosidases and galactosidases in soils. Soil Biol. Biochem. 1988, 20, 601–606. [Google Scholar] [CrossRef]
- Adam, G.; Duncan, H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 2001, 33, 943–951. [Google Scholar] [CrossRef] [Green Version]
- Douglas, J.T.; Goss, M.J. Stability and organic matter content of surface soil aggregates under different methods of cultivation and in grassland. Soil Tillage Res. 1982, 2, 155–175. [Google Scholar] [CrossRef]
- Bocchi, S.; Confalonieri, R.; Frigeni, S.; Morari, F.; Patruno, A. Wet Aggregate Stability Index: Precision assessment of Tiulin method through an inter-laboratory test. Agrochimica 2008, 52, 71–82. [Google Scholar]
- Henin, S.; Monnier, G.; Combeau, A. Methode pour l’etude de la stabilitè structurale des sols. Ann. Agron. 1958, 9, 73–92. [Google Scholar]
- Field, A. Discovering Statistics Using SPSS, 2nd ed.; SAGE Publications Ltd.: London, UK, 2005. [Google Scholar]
- Dal Ferro, N.; Quinn, C.; Morari, F. A Bayesian belief network framework to predict SOC dynamics of alternative management scenarios. Soil Tillage Res. 2018, 179, 114–124. [Google Scholar] [CrossRef]
- Camarotto, C.; Piccoli, I.; Dal Ferro, N.; Polese, R.; Chiarini, F.; Furlan, L.; Morari, F. Have we reached the turning point? Looking for evidence of SOC increase under conservation agriculture and cover crop practices. Eur. J. Soil Sci. 2020. [Google Scholar] [CrossRef]
- Dal Ferro, N.; Piccoli, I.; Berti, A.; Polese, R.; Morari, F. Organic carbon storage potential in deep agricultural soil layers: Evidence from long-term experiments in northeast Italy. Agric. Ecosyst. Environ. 2020, 300, 106967. [Google Scholar] [CrossRef]
- Koch, H.-J.; Stockfisch, N. Loss of soil organic matter upon ploughing under a loess soil after several years of conservation tillage. Soil Tillage Res. 2006, 86, 73–83. [Google Scholar] [CrossRef]
- VandenBygaart, A.J.; Kay, B.D. Persistence of Soil Organic Carbon after Plowing a Long-Term No-Till Field in Southern Ontario, Canada. Soil Sci. Soc. Am. J. 2004, 68, 1394–1402. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- An, S.; Mentler, A.; Mayer, H.; Blum, W.E.H. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. CATENA 2010, 81, 226–233. [Google Scholar] [CrossRef]
- Le Bissonnais, Y.; Arrouays, D. Aggregate stability and assessment of soil crustability and erodibility: II. Application to humic loamy soils with various organic carbon contents. Eur. J. Soil Sci. 1997, 48, 39–48. [Google Scholar] [CrossRef]
- Piccoli, I.; Camarotto, C.; Lazzaro, B.; Furlan, L.; Morari, F. Conservation Agriculture Had a Poor Impact on the Soil Porosity of Veneto Low-lying Plain Silty Soils after a 5-year Transition Period. Land Degrad. Dev. 2017, 28, 2039–2050. [Google Scholar] [CrossRef]
- Patle, P.N.; Navnage, N.P.; Barange, P.K. Fluorescein Diacetate (FDA): Measure of Total Microbial Activity and as Indicator of Soil Quality. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2103–2107. [Google Scholar] [CrossRef]
- Lupwayi, N.Z.; Larney, F.J.; Blackshaw, R.E.; Kanashiro, D.A.; Pearson, D.C. Phospholipid fatty acid biomarkers show positive soil microbial community responses to conservation soil management of irrigated crop rotations. Soil Tillage Res. 2017, 168, 1–10. [Google Scholar] [CrossRef]
- Muscolo, A.; Settineri, G.; Attinà, E. Early warning indicators of changes in soil ecosystem functioning. Ecol. Indic. 2015, 48, 542–549. [Google Scholar] [CrossRef]
- Weerasekara, C.S.; Udawatta, R.P.; Gantzer, C.J.; Kremer, R.J.; Jose, S.; Veum, K.S. Effects of Cover Crops on Soil Quality: Selected Chemical and Biological Parameters. Commun. Soil Sci. Plant. Anal. 2017, 48, 2074–2082. [Google Scholar] [CrossRef]
- Lange, M.; Eisenhauer, N.; Sierra, C.A.; Bessler, H.; Engels, C.; Griffiths, R.I.; Mellado-Vazquez, P.G.; Malik, A.A.; Roy, J.; Scheu, S.; et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 2015, 6, 6707. [Google Scholar] [CrossRef]
- Chu, H.; Lin, X.; Fujii, T.; Morimoto, S.; Yagi, K.; Hu, J.; Zhang, J. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol. Biochem. 2007, 39, 2971–2976. [Google Scholar] [CrossRef]
- Garcia, C.; Hernandez, T.; Costa, F. Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Commun. Soil Sci. Plant. Anal. 1997, 28, 123–134. [Google Scholar] [CrossRef]
- Nannipieri, P.; Giagnoni, L.; Landi, L.; Renella, G. Role of Phosphatase Enzymes in Soil. In Phosphorus in Action; Springer: Berlin/Heidelberg, Germany, 2011; pp. 215–243. [Google Scholar] [CrossRef]
- Deng, S.P.; Tabatabai, M.A. Effect of tillage and residue management on enzyme activities in soils. 3. Phosphatases and arylsulfatase. Biol. Fertil. Soils 1997, 24, 141–146. [Google Scholar] [CrossRef]
- Liu, S.; Liu, S.; Zhang, Z.; Wei, H.; Qi, J.; Duan, J. Influence of garlic continuous cropping on rhizosphere soil microorganisms and enzyme activities. Sci. Agric. Sin. 2010, 43, 1000–1006. [Google Scholar]
- Zhou, X.; Yu, G.; Wu, F. Effects of intercropping cucumber with onion or garlic on soil enzyme activities, microbial communities and cucumber yield. Eur. J. Soil Biol. 2011, 47, 279–287. [Google Scholar] [CrossRef]
- Wang, M.; Wu, C.; Cheng, Z.; Meng, H.; Zhang, M.; Zhang, H. Soil chemical property changes in eggplant/garlic relay intercropping systems under continuous cropping. PLoS ONE 2014, 9, e111040. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Mo, Y.; Liu, C.; Wang, Y.; Ma, J.; Zhang, Y.; Li, H.; Zhang, X. The Effects of Cattle Manure and Garlic Rotation on Soil under Continuous Cropping of Watermelon (Citrullus lanatus L.). PLoS ONE 2016, 11, e0156515. [Google Scholar] [CrossRef]
- Izaguirre-Mayoral, M.L.; Flores, S.; Carballo, O. Determination of acid phosphatase and dehydrogenase activities in the rhizosphere of nodulated legume species native to two contrasting savanna sites in Venezuela. Biol. Fertil. Soils 2002, 35, 470–472. [Google Scholar] [CrossRef]
- Kandeler, E.; Marschner, P.; Tscherko, D.; Gahoonia, T.S.; Nielsen, N.E. Microbial community composition and functional diversity in the rhizosphere of maize. Plant. Soil 2002, 238, 301–312. [Google Scholar] [CrossRef]
- Geisseler, D.; Horwath, W. Regulation of extracellular protease activity in soil in response to different sources and concentrations of nitrogen and carbon. Soil Biol. Biochem. 2008, 40, 3040–3048. [Google Scholar] [CrossRef]
- Deng, S.P.; Tabatabai, M.A. Effect of tillage and residue management on enzyme activities in soils. 1. Amidohydrolases. Biol. Fertil. Soils 1996, 22, 202–207. [Google Scholar] [CrossRef]
- Tully, K.L.; McAskill, C. Promoting soil health in organically managed systems: A review. Org. Agric. 2020, 10, 339–358. [Google Scholar] [CrossRef]
- Renella, G.; Egamberdiyeva, D.; Landi, L.; Mench, M.; Nannipieri, P. Microbial activity and hydrolase activities during decomposition of root exudates released by an artificial root surface in Cd-contaminated soils. Soil Biol. Biochem. 2006, 38, 702–708. [Google Scholar] [CrossRef]
- Renella, G.; Landi, L.; Valori, F.; Nannipieri, P. Microbial and hydrolase activity after release of low molecular weight organic compounds by a model root surface in a clayey and a sandy soil. Appl. Soil Ecol. 2007, 36, 124–129. [Google Scholar] [CrossRef]
Soil Parameters | Sand | Clay | Silt | EC | pH | CEC | SOC |
---|---|---|---|---|---|---|---|
Management | % | mS cm−1 | mmol 100 g−1 | g kg−1 | |||
Conv WR | 66.25 ± 4.32 | 16.75 ± 1.49 | 17.00 ± 4.35 | 370.00 ± 21.68 | 7.62 ± 0.48 | 13.47 ± 0.61 | 6.10 ± 1.04 |
Org SGR + C | 64.33 ± 5.36 | 19.67 ± 1.20 | 16.00 ± 4.16 | 463.00 ± 81.10 | 7.76 ± 0.03 | 14.60 ± 0.50 | 12.96 ± 1.51 |
Org SGR | 73.00 ± 11.35 | 16.67 ± 7.20 | 10.33 ± 4.25 | 543.00 ± 138.62 | 7.70 ± 0.00 | 13.47 ± 3.18 | 10.46 ± 2.33 |
Org PBF + P | 64.00 ± 5.50 | 20.00 ± 2.51 | 14.67 ± 1.76 | 458.33 ± 93.68 | 7.67 ± 0.09 | 14.83 ± 1.16 | 11.39 ± 2.84 |
Org PBF | 70.33 ± 11.14 | 13.67 ± 4.91 | 16.00 ± 6.93 | 445.33 ± 54.01 | 7.70 ± 0.10 | 11.90 ± 2.14 | 9.76 ± 3.43 |
exch. Ca | exch. Mg | exch. Na | exch. K | total N | ass. P | CaCO3 | |
g kg−1 | |||||||
Conv WR | 3.07 ± 0.38 | 0.25 ± 0.05 | 0.21 ± 0.03 | 0.41 ± 0.17 | 0.50 ± 0.13 | 0.11 ± 0.03 | 0.02 ± 0.01 |
Org SGR + C | 4.05 ± 1.05 | 0.32 ± 0.05 | 0.27 ± 0.05 | 0.38 ± 0.02 | 0.78 ± 0.34 | 0.11 ± 0.02 | 0.02 ± 0.06 |
Org SGR | 4.93 ± 1.94 | 0.29 ± 0.04 | 0.23 ± 0.04 | 0.25 ± 0.05 | 0.88 ± 0.16 | 0.09 ± 0.01 | 0.02 ± 0.08 |
Org PBF + P | 3.87 ± 0.84 | 0.29 ± 0.04 | 0.17 ± 0.02 | 0.35 ± 0.01 | 1.10 ± 0.23 | 0.10 ± 0.03 | 0.02 ± 0.00 |
Org PBF | 4.32 ± 0.73 | 0.34 ± 0.06 | 0.24 ± 0.05 | 0.32 ± 0.02 | 1.1 ± 0.21 | 0.09 ± 0.01 | 0.03 ± 0.01 |
Management | Turn Over and Cover/Intercropping | Manuring | Tilling Depth | ||||||
---|---|---|---|---|---|---|---|---|---|
1st Sem 2008 | 2nd Sem 2008 | 1st Sem 2009 | 2nd Sem 2009 | Organo Mineral NPK | Urea | (NH4)2SO4 | Organic Amendement | ||
t ha−1 | kg ha−1 | t ha−1 | cm | ||||||
CONV WR | R | WR | WR | W | 36 | 50 | 200 | 0 | 35 + 15 |
Org SGR + C | CS | CS/G | CG | CG/Rad | 0 | 0 | 0 | 1.5 + 0.25 | 20 |
Org SGR | S | S/G | G | G/Rad | 2.5 + 3 + 6 + 0.25 | ||||
Org PBF + P | Pu | Pu/BP | BP | F | 3 + 0.25 | ||||
Org PBF | Pu | Pu/B | B | F | 2.5 + 3 + 6 + 0.25 |
Sorghum | Garlic | Radicchio | Pumpkin | Barley | Pea | Fennel | |
---|---|---|---|---|---|---|---|
t ha-1 | |||||||
Org SGR + C | 13.03 | 1.11 | 13.55 | - | - | - | - |
Org SGR | 28.72 | 3.14 | 13.35 | - | - | - | - |
Org PBF + P | - | - | - | 22.17 | 1.90 | 0.78 | 20.94 |
Org PBF | - | - | - | 22.03 | 1.87 | - | 19.86 |
Bulk Density | 2008 | 2009 |
---|---|---|
Management | g cm−3 | |
Conv WR | 1.60 ± 0.05 a | 1.54 ± 0.04 a |
Org SGR + C | 1.55 ± 0.08 a | 1.49 ± 0.05 a |
Org SGR | 1.48 ± 0.00 a | 1.49 ± 0.06 a |
Org PBF + P | 1.63 ± 0.02 a | 1.46 ± 0.06 a |
Org PBF | 1.33 ± 0.04 b | 1.45 ± 0.08 a |
F | p | |
Time | 0.84 | 0.37 |
Management | 3.71 | 0.02 * |
Time * Management | 1.98 | 0.13 |
A WASI | WSA 2008 | WSA 2009 | BSA 2008 | BSA 2009 | ASA 2008 | ASA 2009 | |
Management | % | ||||||
Conv WR | 3.3 ± 1.0 b | 2.5 ± 0.6 b | 3.6 ± 1.4 b | 4.0 ± 2.0 a | 29.9 ± 7.3 b | 14.3 ± 4.4 b | |
Org SGR + C | 13.4 ± 1.9 ab | 15.4 ± 3.6 ab | 11.2 ± 2.2 a | 6.4 ± 1.4 a | 62.8 ± 7.4 a | 44.8 ± 8.5 a | |
Org SGR | 19.1 ± 7.3 a | 13.4 ± 5.5 ab | 10.8 ± 2.3 a | 5.1 ± 1.8 a | 60.3 ± 6.8 a | 46 ± 9.8 a | |
Org PBF + P | 16.3 ± 3.3 a | 16.9 ± 1.7 b | 11.6 ± 0.6 a | 8.9 ± 2 a | 65.5 ± 1.9 a | 48.5 ± 7.8 a | |
Org PBF | 10.7 ± 3.1 ab | 17.3 ± 6.7 b | 11.8 ± 3.5 a | 7.5 ± 2 a | 65 ± 8.4 a | 49.1 ± 11.3 a | |
F | p | F | p | F | p | ||
Time | 0.05 | 0.82 | 7.19 | 0.01 * | 11.17 | 0.003 * | |
Management | 5.14 | 0.004 * | 3.75 | 0.02 * | 9.03 | 0.00 * | |
Time * Management | 0.64 | 0.64 | 0.79 | 0.54 | 0.016 | 0.999 | |
B Soil Organic Carbon | March 2008 | July 2008 | November 2008 | March 2009 | July 2009 | November 2009 | M Average |
Management | g kg−1 | ||||||
Conv WR | 6.8 ± 0.9 | 6.0 ± 0.1 | 4.8 ± 0.7 | 4.6 ± 0.5 | 4.2 ± 0.5 | 4.8 ± 0.7 | 5.2 ± 0.4 b |
Org SGR + C | 11.0 ± 1.7 | 10.4 ± 1.3 | 10.8 ± 1.7 | 10.7 ± 1.5 | 9.9 ± 1.1 | 10.1 ± 1.8 | 10.5 ± 0.2 a |
Org SGR | 9.2 ± 1.8 | 8.6 ± 1.4 | 9.2 ± 1.4 | 9.4 ± 1.9 | 9.2 ± 1.9 | 9.6 ± 1.3 | 9.2 ± 0.1 a |
Org PBF + P | 10.3 ± 1.3 | 9.4 ± 1.3 | 9.8 ± 1.5 | 10.4 ± 1.7 | 10.7 ± 1.5 | 10.0 ± 1.6 | 10.1 ± 0.2 a |
Org PBF | 11.0 ± 1.3 | 8.8 ± 0.9 | 9.8 ± 1.1 | 10.0 ± 1.4 | 9.8 ± 0.9 | 9.2 ± 0.9 | 9.8 ± 0.3 a |
T Average | 9.5 ± 0.7 a | 8.5 ± 0.6 a | 8.6 ± 0.8 a | 8.7 ± 0.8 a | 8.5 ± 0.8 a | 8.5 ± 0.7 a | |
F | p | ||||||
Time | 3.808 | 0.005 * | |||||
Management | 3.487 | 0.045 * | |||||
Time * Management | 1.978 | 0.024 * | |||||
C Humic Fractions | F1 March 2008 | F1 November 2009 | F2 March 2008 | F2 November 2009 | F3 March 2008 | F3 November 2009 | |
Management | % | ||||||
Conv WR | 25.6 ± 2.4 a | 17.6 ± 0.5 ab | 52.9 ± 0.6 a | 67.5 ± 1.2 a | 21.5 ± 2.2 b | 14.8 ± 0.6 b | |
Org SGR + C | 29.9 ± 3.2 a | 17.6 ± 0.9 ab | 48.0 ± 2.7 a | 66.7 ± 0.2 a | 22.1 ± 1.7 b | 15.7 ± 0.8 b | |
Org SGR | 32.7 ± 1.5 a | 23.3 ± 4.4 a | 47.2 ± 0.6 a | 61.4 ± 5.0 a | 20.1 ± 1.5 b | 15.3 ± 0.7 b | |
Org PBF + P | 24.0 ± 4.4 a | 17.4 ± 1.2 ab | 47.0 ± 3.7 a | 67.2 ± 0.9 a | 29.0 ± 5.97 ab | 15.4 ± 1.5 b | |
Org PBF | 10.1 ± 2.1 b | 11.0 ± 1.1 b | 52.4 ± 1.1 a | 67.1 ± 0.5 a | 37.5 ± 2.5 a | 21.9 ± 1.5 a | |
F | p | F | p | F | p | ||
Time | 20.54 | 0.00 * | 150.74 | 0.00 * | 38.33 | 0.00 * | |
Management | 15.57 | 0.00 * | 2.49 | 0.07 | 10.09 | 0.00 * | |
Time * Management | 2.25 | 0.097 | 0.82 | 0.53 | 2.16 | 0.11 | |
D Humic Carbon | March 2008 | July 2008 | November 2008 | March 2009 | July 2009 | November 2009 | M Average |
Management | g kg−1 | ||||||
Conv WR | 1.1 ± 0.3 | 1.2 ± 0.2 | 1.8 ± 0.2 | 1.2 ± 0.2 | 1.2 ± 0.3 | 1.2 ± 0.3 | 1.2 ± 0.1 b |
Org SGR + C | 4.1 ± 0.4 | 5.1 ± 0.4 | 5.2 ± 0.3 | 3.7 ± 0.2 | 2.9 ± 0.2 | 3.3 ± 1.0 | 4.1 ± 0.4 a |
Org SGR | 3.4 ± 0.7 | 4.8 ± 0.6 | 4.3 ± 0.7 | 4.0 ± 0.7 | 3.1 ± 0.3 | 2.9 ± 0.8 | 3.7 ± 0.3 a |
Org PBF + P | 4.4 ± 0.6 | 5.0 ± 0.5 | 4.7 ± 0.2 | 4.2 ± 0.0 | 3.4 ± 0.4 | 2.6 ± 0.3 | 4.0 ± 0.0 a |
Org PBF | 3.7 ± 0.7 | 4.2 ± 0.3 | 5.0 ± 0.3 | 3.2 ± 0.2 | 3.0 ± 0.5 | 2.7 ± 0.7 | 3.6 ± 0.3 a |
T Average | 3.2 ± 0.4 ab | 3.9 ± 0.4 a | 4.0 ± 0.4 a | 3.1 ± 0.3 ab | 2.6 ± 0.3 b | 2.4 ± 0.3 b | |
F | p | ||||||
Time | 19.60 | 0.00 * | |||||
Management | 15.47 | 0.00 * | |||||
Time * Management | 1.55 | 0.10 |
Dehydrogenase | March 2008 | March 2009 | July 2008 | July 2009 | November 2008 | November 2009 | M Average |
---|---|---|---|---|---|---|---|
Management | g INTF g−1 dry soil h−1 | ||||||
Conv WR | (R) - | (WR) 0.04 ± 0.00 | (-) 0.04 ± 0.00 | (W) 0.03 ± 0.00 | (WR) 0.02 ± 0.00 | (W) 0.05 ± 0.01 | 0.04 ± 0.00 b |
Org SGR + C | (C) - | (CG) 0.11 ± 0.02 | (CS) 0.20 ± 0.03 | (CG) 0.23 ± 0.04 | (CG) 0.12 ± 0.02 | (R) 0.09 ± 0.01 | 0.15 ± 0.025 a |
Org SGR | (-) - | (G) 0.13 ± 0.02 | (S) 0.14 ± 0.02 | (G) 0.12 ± 0.01 | (G) 0.09 ± 0.02 | (R) 0.07 ± 0.02 | 0.11 ± 0.01 a |
Org PBF + P | (C) - | (BP) 0.13 ± 0.01 | (Pu) 0.14 ± 0.02 | (F) 0.17 ± 0.01 | (BP) 0.10 ± 0.02 | (-) 0.10 ± 0.02 | 0.13 ± 0.01 a |
Org PBF | (-) - | (B) 0.11 ± 0.02 | (Pu) 0.10 ± 0.03 | (F) 0.13 ± 0.05 | (B) 0.10 ± 0.01 | (-) 0.07 ± 0.01 | 0.10 ± 0.01 a |
T Average | - | 0.10 ± 0.01 abc | 0.12 ± 0.02 ab | 0.13 ± 0.02 a | 0.08 ± 0.01 bc | 0.08 ± 0.01 c | |
F | p | ||||||
Time | 12.1 | 0.005 * | |||||
Management | 9.24 | 0.002 * | |||||
Time * Management | 4.056 | 0.029 * |
Phosphodiesterase | March 2008 | March 2009 | July 2008 | July 2009 | November 2008 | November 2009 | M Average |
---|---|---|---|---|---|---|---|
Management | g of bis-p-nitrophenol g−1 of dry soil h−1 | ||||||
Conv WR | (R) 22.09 ± 1.69 | (WR) 25.24 ± 2.67 | (-) 20.13 ± 1.66 | (W) 24.96 ± 5.36 | (WR) 16.86 ± 2.09 | (W) 15.68 ± 2.25 | 20.83 ± 1.64 b |
Org SGR + C | (C) 70.72 ± 5.37 | (CG) 77.25 ± 10.66 | (CS) 61.37 ± 3.93 | (CG) 106.12 ± 6.71 | (CG) 62.78 ± 5.14 | (R) 40.09 ± 3.67 | 61.33 ± 8.90 a |
Org SGR | (-) 61.62 ± 14.15 | (G) 71.90 ± 9.37 | (S) 52.78 ± 8.28 | (G) 92.98 ± 15.03 | (G) 61.68 ± 14.76 | (R) 33.00 ± 2.15 | 62.33 ± 8.13 a |
Org PBF + P | (C) 61.78 ± 2.73 | (BP) 91.86 ± 14.08 | (Pu) 60.74 ± 5.83 | (F) 92.42 ± 5.50 | (BP) 68.19 ± 10.60 | (-) 42.36 ± 1.17 | 69.56 ± 7.96 a |
Org PBF | (-) 66.91 ± 12.03 | (B) 79.64 ± 8.56 | (Pu) 44.16 ± 1.31 | (F) 82.39 ± 4.69 | (B) 59.30 ± 10.33 | (-) 35.59 ± 2.46 | 69.72 ± 7.68 a |
6T Average | 54.47 ± 5.80 bc | 66.43 ± 7.25 ab | 46.11 ± 4.54 cd | 76.35 ± 8.47 a | 51.45 ± 6.24 bc | 32.24 ± 2.77 d | |
F | p | ||||||
Time | 42.65 | 0.00 * | |||||
Management | 17.30 | 0.00 * | |||||
Time * Management | 2.71 | 0.002 * |
Protease | March 2008 | March 2009 | July 2008 | July 2009 | November 2008 | November 2009 | M Average |
---|---|---|---|---|---|---|---|
Management | NH4+-N g−1 dry soil h−1 | ||||||
Conv WR | (R) 1.52 ± 0.27 | (WR) 1.84 ± 0.35 | (-) 2.75 ± 0.51 | (W) 1.98 ± 0.43 | (WR) 2.01 ± 0.31 | (W) 1.65 ± 0.34 | 1.96 ± 0.16 b |
Org SGR + C | (C) 4.80 ± 0.46 | (CG) 4.30 ± 0.79 | (CS) 7.20 ± 0.45 | (CG) 4.40 ± 0.37 | (CG) 5.90 ± 0.29 | (R) 3.70 ± 0.57 | 5.05 ± 0.52 a |
Org SGR | (-) 2.80 ± 0.68 | (G) 3.50 ± 0.59 | (S) 5.70 ± 0.92 | (G) 3.90 ± 0.47 | (G) 4.80 ± 0.32 | (R) 2.80 ± 0.20 | 3.92 ± 0.47 a |
Org PBF + P | (C) 4.50 ± 0.28 | (BP) 4.50 ± 0.67 | (Pu) 6.50 ± 0.25 | (F) 5.60 ± 0.90 | (BP) 5.80 ± 0.19 | (-) 3.70 ± 0.43 | 5.10 ± 0.42 a |
Org PBF | (-) 4.40 ± 1.27 | (B) 3.90 ± 0.58 | (Pu) 6.20 ± 0.40 | (F) 4.60 ± 0.32 | (B) 4.90 ± 0.41 | (-) 2.90 ± 0.22 | 4.48 ± 0.47 a |
T Average | 3.47 ± 0.42 bc | 3.50 ± 0.34 bc | 5.48 ± 0.48 a | 3.97 ± 0.39 bc | 4.52 ± 0.41 ab | 2.87 ± 0.25 c | |
F | p | ||||||
Time | 31.746 | 0.00 * | |||||
Management | 12.923 | 0.00 * | |||||
Time * Management | 1.515 | 0.114 |
Urease | March 2008 | March 2009 | July 2008 | July 2009 | November 2008 | November 2009 | M Average |
---|---|---|---|---|---|---|---|
Management | NH4+-N g−1 dry soil h−1 | ||||||
Conv WR | (R) 0.27 ± 0.07 | (WR) 0.15 ± 0.03 | (-) 0.29 ± 0.09 | (W) 0.26 ± 0.08 | (WR) 0.15 ± 0.05 | (W) 0.42 ± 0.07 | 0.26 ± 0.03 b |
Org SGR + C | (C) 0.81 ± 0.16 | (CG) 0.71 ± 0.04 | (CS) 1.51 ± 0.24 | (CG) 0.83 ± 0.08 | (CG) 0.99 ± 0.09 | (R) 0.91 ± 0.10 | 0.96 ± 0,08 a |
Org SGR | (-) 0.62 ± 0.10 | (G) 0.57 ± 0.13 | (S) 1.08 ± 0.22 | (G) 0.65 ± 0.12 | (G) 0.78 ± 0.13 | (R) 0.61 ± 0.06 | 0.72 ± 0.06 a |
Org PBF + P | (C) 0.84 ± 0.09 | (BP) 0.72 ± 0.05 | (Pu) 1.17 ± 0.10 | (F) 0.77 ± 0.06 | (BP) 0.86 ± 0.06 | (-) 1.04 ± 0.14 | 0.90 ± 0.07 a |
Org PBF | (-) 0.69 ± 0.08 | (B) 0.71 ± 0.03 | (Pu) 1.07 ± 0.25 | (F) 0.88 ± 0.21 | (B) 0.67 ± 0.22 | (-) 0.88 ± 0.15 | 0.82 ± 0.06 a |
T Average | 0.62 ± 0.07 b | 0.55 ± 0.06 b | 0.98 ± 0.13 a | 0.65 ± 0.07 b | 0.66 ± 0.09 b | 0.75 ± 0.07 ab | |
F | p | ||||||
Time | 13.573 | 0.00 * | |||||
Management | 13.069 | 0.00 * | |||||
Time * Management | 1.63 | 0.078 |
Phosphomonoesterase | March 2008 | March 2009 | July 2008 | July 2009 | November 2008 | November 2009 | M Average |
---|---|---|---|---|---|---|---|
Management | g of bis-p-nitrophenol g of dry soil −1 h−1 | ||||||
Conv WR | (R) 129.99 ± 64.99 | (WR) 125.67 ± 19.68 | (-) 137.73 ± 14.25 | (W) 118.47 ± 10.85 | (WR) 94.50 ± 10.79 | (W) 159.93 ± 23.45 | 127.71 ± 12.01 c |
Org SGR + C | (C) 360.29 ± 40.09 | (CG) 301.94 ± 7.00 | (CS) 458.72 ± 19.99 | (CG) 250.89 ± 7.85 | (CG) 319.10 ± 4.62 | (R) 289.83 ± 4.03 | 330.13 ± 13.87 a |
Org SGR | (-) 276.83 ± 21.86 | (G) 268.76 ± 15.42 | (S) 345.20 ± 39.69 | (G) 251.82 ± 10.39 | (G) 250.82 ± 8.18 | (R) 291.14 ± 2.82 | 280.76 ± 13.87 b |
Org PBF + P | (C) 308.57 ± 35.89 | (BP) 294.39 ± 14.70 | (Pu) 409.98 ± 13.29 | (F) 247.12 ± 5.68 | (BP) 293.00 ± 11.71 | (-) 280.81 ± 5.61 | 305.65 ± 13.87 ab |
Org PBF | (-) 287.94 ± 19.54 | (B) 298.20 ± 14.48 | (Pu) 343.14 ± 34.38 | (F) 249.26 ± 4.48 | (B) 256.86 ± 23.28 | (-) 282.64 ± 2.53 | 286.34 ± 13.87 ab |
T Average | 263.80 ± 23.41 b | 249.54 ± 19.66 b | 326.38 ± 31.64 a | 216.95 ± 15.07 b | 233.59 ± 22.21 b | 254.56 ± 15.13 b | |
F | p | ||||||
Time | 25.885 | 0.00 * | |||||
Management | 40.825 | 0.00 * | |||||
Time * Management | 6.606 | 0.006 * |
FDA | March 2008 | March 2009 | July 2008 | July 2009 | November 2008 | November 2009 | M Average |
---|---|---|---|---|---|---|---|
Management | g fluorescein g−1 dry soil h−1 | ||||||
Conv WR | (R) 0.10 ± 0.02 | (WR) 0.32 ± 0.08 | (-) 0.31 ± 0.02 | (W) 0.31 ± 0.04 | (WR) 0.09 ± 0.03 | (W) 0.41 ± 0.11 | 0.26 ± 0.05 d |
Org SGR + C | (C) 0.66 ± 0.11 | (CG) 0.95 ± 0.11 | (CS) 1.61 ± 0.19 | (CG) 1.46 ± 0.10 | (CG) 1.00 ± 0.13 | (R) 1.50 ± 0.20 | 1.20 ± 0.15 ab |
Org SGR | (-) 0.38 ± 0.04 | (G) 1.00 ± 0.17 | (S) 1.16 ± 0.27 | (G) 1.24 ± 0.23 | (G) 0.66 ± 0.16 | (R) 0.90 ± 0.14 | 0.89 ± 0.13 c |
Org PBF + P | (C) 0.59 ± 0.02 | (BP) 1.27 ± 0.29 | (Pu) 1.49 ± 0.02 | (F) 1.56 ± 0.14 | (BP) 1.04 ± 0.12 | (-) 1.56 ± 0.04 | 1.25 ± 0.16 a |
Org PBF | (-) 0.67 ± 0.26 | (B) 1.01 ± 0.18 | (Pu) 1.12 ± 0.16 | (F) 1.10 ± 0.21 | (B) 0.69 ± 0.14 | (-) 0.93 ± 0.13 | 0.92 ± 0.08 bc |
T Average | 0.45 ± 0.07 c | 0.87 ± 0.11 ab | 1.09 ± 0.14 a | 1.08 ± 0.13 a | 0.66 ± 0.10 bc | 1.02 ± 0.12 a | |
F | p | ||||||
Time | 24.256 | 0.00 * | |||||
Management | 22.393 | 0.00* | |||||
Time * Management | 1.662 | 0.07 |
β-Glucosidase | March 2008 | March 2009 | July 2008 | July 2009 | November 2008 | November 2009 | M Average |
---|---|---|---|---|---|---|---|
Management | g p-nitrophenol g−1 dry soil h−1 | ||||||
Conv WR | (R) 16.13 ± 3.58 | (WR) 15.75 ± 2.83 | (-) 17.35 ± 2.84 | (W) 18.29 ± 1.28 | (WR) 8.61 ± 1.10 | (W) 24.64 ± 4.47 | 16.80 ± 2.10 c |
Org SGR + C | (C) 64.79 ± 2.89 | (CG) 105.63 ± 8.57 | (CS) 114.17 ± 17.40 | (CG) 154.60 ± 6.59 | (CG) 73.54 ± 6.21 | (R) 103.52 ± 18.77 | 102.70 ± 13.07 a |
Org SGR | (-) 55.96 ± 10.66 | (G) 56.80 ± 8.90 | (S) 53.96 ± 7.81 | (G) 67.33 ± 14.87 | (G) 38.78 ± 5.99 | (R) 58.68 ± 4.57 | 55.25 ± 3.80 b |
Org PBF + P | (C) 80.04 ± 18.59 | (BP) 80.73 ± 7.05 | (Pu) 108.29 ± 12.00 | (F) 115.45 ± 11.02 | (BP) 82.97 ± 12.87 | (-) 104.08 ± 7.26 | 95.26 ± 6.45 a |
Org PBF | (-) 58.43 ± 11.59 | (B) 55.86 ± 6.38 | (Pu) 60.32 ± 7.13 | (F) 99.13 ± 26.06 | (B) 46.54 ± 3.64 | (-) 67.51 ± 7.16 | 64.63 ± 7.44 b |
T Average | 52.64 ± 7.05 b | 60.00 ± 8.42 ab | 67.48 ± 10.36 ab | 86.42 ± 13.39 a | 47.49 ± 7.53 b | 68.75 ± 8.79 ab | |
F | p | ||||||
Time | 15.116 | 0.00 * | |||||
Management | 35.554 | 0.00 * | |||||
Time * Management | 2.415 | 0.005 * |
A | WSA | BSA | ASA | Frac 1 | Frac 2 | Frac 3 |
SOC | 0.59 ** | 0.63 ** | 0.80 ** | 0.46 ** | −0.18 | −0.26 |
0.00 | 0.00 | 0.00 | 0.01 | 0.32 | 0.15 | |
HC | 0.59 ** | 0.63 ** | 0.73 ** | 0.66 ** | −0.10 | −0.56 ** |
0.00 | 0.00 | 0.00 | 0.00 | 0.59 | 0.00 | |
B | Frac 1 | Frac 2 | Frac 3 | |||
WSA | 0.63 ** | −0.07 | −0.55 ** | |||
0.00 | 0.69 | 0.00 | ||||
BSA | 0.70 ** | −0.39 * | −0.28 | |||
0.00 | 0.03 | 0.12 | ||||
ASA | 0.73 ** | −0.43 * | −0.26 | |||
0.00 | 0.01 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pittarello, M.; Dal Ferro, N.; Chiarini, F.; Morari, F.; Carletti, P. Influence of Tillage and Crop Rotations in Organic and Conventional Farming Systems on Soil Organic Matter, Bulk Density and Enzymatic Activities in a Short-Term Field Experiment. Agronomy 2021, 11, 724. https://doi.org/10.3390/agronomy11040724
Pittarello M, Dal Ferro N, Chiarini F, Morari F, Carletti P. Influence of Tillage and Crop Rotations in Organic and Conventional Farming Systems on Soil Organic Matter, Bulk Density and Enzymatic Activities in a Short-Term Field Experiment. Agronomy. 2021; 11(4):724. https://doi.org/10.3390/agronomy11040724
Chicago/Turabian StylePittarello, Marco, Nicola Dal Ferro, Francesca Chiarini, Francesco Morari, and Paolo Carletti. 2021. "Influence of Tillage and Crop Rotations in Organic and Conventional Farming Systems on Soil Organic Matter, Bulk Density and Enzymatic Activities in a Short-Term Field Experiment" Agronomy 11, no. 4: 724. https://doi.org/10.3390/agronomy11040724
APA StylePittarello, M., Dal Ferro, N., Chiarini, F., Morari, F., & Carletti, P. (2021). Influence of Tillage and Crop Rotations in Organic and Conventional Farming Systems on Soil Organic Matter, Bulk Density and Enzymatic Activities in a Short-Term Field Experiment. Agronomy, 11(4), 724. https://doi.org/10.3390/agronomy11040724