Rice Farming in Central Java, Indonesia—Adoption of Sustainable Farming Practices, Impacts and Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Questionnaire Development
2.2. Sampling
2.3. Data Analysis
3. Results
3.1. Sample Description
3.2. Farm Characteristics
3.3. Technology Adoption
3.4. Income Allocation
3.5. Perception of Change Due to the Adoption of Best Management Practices
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campbell, B.M.; Hansen, J.; Rioux, J.; Stirling, C.M.; Twomlow, S.; Wollenberg, E. Urgent action to combat climate change and its impacts (SDG 13): Transforming agriculture and food systems. Curr. Opin. Environ. Sustain. 2018, 34, 13–20. [Google Scholar] [CrossRef]
- Chandra, A.; McNamara, K.E.; Dargusch, P. Climate-smart agriculture: Perspectives and framings. Clim. Policy 2018, 18, 526–541. [Google Scholar] [CrossRef]
- Partey, S.T.; Zougmoré, R.B.; Ouédraogo, M.; Campbell, B.M. Developing climate-smart agriculture to face climate variability in West Africa: Challenges and lessons learnt. J. Clean. Prod. 2018, 187, 285–295. [Google Scholar] [CrossRef]
- Indonesia, S. Statistical Yearbook of Indonesia 2017; Statistics Indonesia: Jakarta, Indonesia, 2017.
- GRiSP. Rice Almanac, 4th ed.; International Rice Research Institute: Los Baños, Philippines, 2013; p. 283. [Google Scholar]
- Rondhi, M.; Khasan, A.F.; Mori, Y.; Kondo, T. Assessing the Role of the Perceived Impact of Climate Change on National Adaptation Policy: The Case of Rice Farming in Indonesia. Land 2019, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Agriculture. Agricultural Statistics; Susanti, A.A., Waryanto, B., Eds.; Center for Agricultural Data and Information System (Ministry of Agriculture): Jakarta, Indonesia, 2018. [Google Scholar]
- Boer, R. The threat of global climate change on Indonesia’s food security. Agromedia 2011, 15, 16–20. [Google Scholar]
- Dewi, E.R.; Whitebread, A.M. Use of climate forecast information to manage lowland rice-based cropping systems in Jakenan, Central Java, indonesia. Asian J. Agric. Res. 2017, 11, 66–77. [Google Scholar] [CrossRef] [Green Version]
- Sembiring, H.; Subekti, N.A.; Erythrina, N.D.; Priatmojo, B.; Stuart, A.M. Yield Gap Management under Seawater Intrusion Areas of Indonesia to Improve Rice Productivity and Resilience to Climate Change. Agriculture 2020, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Lakitan, B.; Hadi, B.; Herlinda, S.; Siaga, E.; Widuri, L.I.; Kartika, K.; Lindiana, L.; Yunindyawati, Y.; Meihana, M. Recognizing farmers’ practices and constraints for intensifying rice production at Riparian Wetlands in Indonesia. NJAS-Wagening. J. Life Sci. 2018, 85, 10–20. [Google Scholar] [CrossRef]
- FAO. Climate-Smart Agriculture Sourcebook; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Lampayan, R.M.; Rejesus, R.M.; Singleton, G.R.; Bouman, B.A. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crop. Res. 2015, 170, 95–108. [Google Scholar] [CrossRef]
- Sander, B.O.; Wassmann, R.; Siopongco, J.D.L.C. Mitigating Greenhouse Gas Emissions from Rice Production through Water-Saving Techniques: Potential, Adoption and Empirical Evidence. In Climate Change and Agricultural Water Management in Developing Countries; Hoanh, C.T., Johnston, R., Smakhtin, V., Eds.; CABI Publishing: Wallingford, UK, 2016; pp. 193–207. [Google Scholar]
- Minh, T.T.; Friederichsen, R.; Neef, A.; Hoffmann, V. Niche action and system harmonization for institutional change: Prospects for demand-driven agricultural extension in Vietnam. J. Rural Stud. 2014, 36, 273–284. [Google Scholar] [CrossRef]
- Klerkx, L.; Leeuwis, C. Matching demand and supply in the agricultural knowledge infrastructure: Experiences with innovation intermediaries. Food Policy 2008, 33, 260–276. [Google Scholar] [CrossRef]
- Pamuk, H.; Bulte, E.H.; Adekunle, A.A. Do decentralized innovation systems promote agricultural technology adoption? Experimental evidence from Africa. Food Policy 2014, 44, 227–236. [Google Scholar] [CrossRef]
- Connor, M.; Tuan, L.A.; DeGuia, A.H.; Wehmeyer, H. Sustainable rice production in the Mekong River Delta: Factors influencing farmers’ adoption of the integrated technology package “One Must Do, Five Reductions” (1M5R). Outlook Agric. 2021, 50. [Google Scholar] [CrossRef]
- Dai, X.; Chen, J.; Chen, D.; Han, Y. Factors affecting adoption of agricultural water-saving technologies in Heilongjiang Province, China. Water Policy 2015, 17, 581–594. [Google Scholar] [CrossRef]
- Joffre, O.M.; Poortvliet, P.M.; Klerkx, L. To cluster or not to cluster farmers? Influences on network interactions, risk perceptions, and adoption of aquaculture practices. Agric. Syst. 2019, 173, 151–160. [Google Scholar] [CrossRef]
- Ali, A.; Rahut, D.B. Impact of Agricultural Extension Services on Technology Adoption and Crops Yield: Empirical Evidence from Pakistan. Asian J. Agric. Rural Dev. 2013, 11, 801–812. [Google Scholar]
- Dang, H.L.; Li, E.; Nuberg, I.; Bruwer, J. Farmers’ assessments of private adaptive measures to climate change and influential factors: A study in the Mekong Delta. Vietnam. Nat. Hazards 2014, 71, 385–401. [Google Scholar] [CrossRef]
- Bopp, C.; Engler, A.; Poortvliet, P.M.; Jara-Rojas, R. The role of farmers’ intrinsic motivation in the effectiveness of policy incentives to promote sustainable agricultural practices. J. Environ. Manag. 2019, 244, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Dilling, L.; Prakash, A.; Zommers, Z.; Ahmad, F.; Singh, N.; De Wit, S.; Nalau, J.; Daly, M.; Bowman, K. Is adaptation success a flawed concept? Nat. Clim. Chang. 2019, 9, 572–574. [Google Scholar] [CrossRef]
- Eriksen, S.; Schipper, E.L.F.; Scoville-Simonds, M.; Vincent, K.; Adam, H.N.; Brooks, N.; Harding, B.; Khatri, D.; Lenaerts, L.; Liverman, D.; et al. Adaptation interventions and their effect on vulnerability in developing countries: Help, hindrance or irrelevance? World Dev. 2021, 141, 105383. [Google Scholar] [CrossRef]
- Schipper, E.; Eriksen, S.; Carril, L.F.; Glavovic, B.; Shawoo, Z. Turbulent transformation: Abrupt societal disruption and climate resilient development. Clim. Dev. 2020, 1–8. [Google Scholar] [CrossRef]
- Connor, M.; San, S.S. Sustainable rice farming and its impact on rural women in Myanmar. Dev. Pract. 2020, 31, 1–10. [Google Scholar] [CrossRef]
- Connor, M.; San, S.S. Sustainable rice production in Myanmar impacts and food security and livelihood changes. J. Agric. Sustain. 2020, 31, 49–58. [Google Scholar]
- Lambrecht, I.; Vanlauwe, B.; Merckx, R.; Maertens, M. Understanding the Process of Agricultural Technology Adoption: Mineral Fertilizer in Eastern DR Congo. World Dev. 2014, 59, 132–146. [Google Scholar] [CrossRef]
- Wehmeyer, H.; De Guia, A.H.; Connor, M. Reduction of Fertilizer Use in South China—Impacts and Implications on Smallholder Rice Farmers. Sustainability 2020, 12, 2240. [Google Scholar] [CrossRef] [Green Version]
- Stuart, A.M.; Pame, A.R.P.; Silva, J.V.; Dikitanan, R.C.; Rutsaert, P.; Malabayabas, A.J.B.; Lampayan, R.M.; Radanielson, A.M.; Singleton, G.R. Yield gaps in rice-based farming systems: Insights from local studies and prospects for future analysis. Field Crop. Res. 2016, 194, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, J.; Woltering, L.; Krupnik, T.J.; Baudron, F.; Boa, M.; Govaerts, B. Scaling agricultural mechanization services in smallholder farming systems: Case studies from sub-Saharan Africa, South Asia, and Latin America. Agric. Syst. 2020, 180, 102792. [Google Scholar] [CrossRef]
- Glover, D.; Sumberg, J.; Ton, G.; Andersson, J.; Badstue, L. Rethinking technological change in smallholder agriculture. Outlook Agric. 2019, 48, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Hellin, J.; Ridaura, S.L. Soil and water conservation on Central American hillsides: If more technologies is the answer, what is the question? Aims Agric. Food 2016, 1, 194–207. [Google Scholar] [CrossRef]
- Sumberg, J. Constraints to the Adoption of Agricultural Innovations: Is it Time for a Re-Think? Outlook Agric. 2005, 34, 7–10. [Google Scholar] [CrossRef]
- Glover, D.; Sumberg, J.; Andersson, J.A. The Adoption Problem; or Why We Still Understand so Little about Technological Change in African Agriculture. Outlook Agric. 2016, 45, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Parhusip, D.; Manurung, E.D.; Girsang, S.S. Reduction of rice yield gap by fertilizer and new varieties in North Sumatera. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 484, p. 012061. [Google Scholar]
- Klerkx, L.; Aarts, N. The interaction of multiple champions in orchestrating innovation networks: Conflicts and complementarities. Technovation 2013, 33, 193–210. [Google Scholar] [CrossRef]
- Hunecke, C.; Engler, A.; Jara-Rojas, R.; Poortvliet, P.M. Understanding the role of social capital in adoption decisions: An application to irrigation technology. Agric. Syst. 2017, 153, 221–231. [Google Scholar] [CrossRef]
- Van Rijn, F.; Bulte, E.; Adekunle, A. Social capital and agricultural innovation in Sub-Saharan Africa. Agric. Syst. 2012, 108, 112–122. [Google Scholar] [CrossRef]
- Sumberg, J. Opinion: The effects of technology adoption on food security: Linking methods, concepts and data. Food Secur. 2016, 8, 1037–1038. [Google Scholar] [CrossRef]
- Woltering, L.; Fehlenberg, K.; Gerard, B.; Ubels, J.; Cooley, L. Scaling—from “reaching many” to sustainable systems change at scale: A critical shift in mindset. Agric. Syst. 2019, 176, 102652. [Google Scholar] [CrossRef]
Technology or Practice | Explanation | CSA Aspects |
---|---|---|
Improved varieties | High-yielding rice varieties Ciheang and Inpari 6–30 were introduced | Quality seeds and planting materials, well adapted, high-yielding varieties [12] |
Alternate wetting and drying (AWD | The field is not continuously flooded, the soil is allowed to dry out for one or several days after the disappearance of ponded water before it is flooded again [13]. | Water management technique, mitigating greenhouse gas emissions from rice production [14] |
Drum seeder | Plants rice seeds, preferably pre-germinated, directly in neat rows | Sustainable mechanization, efficient cropping process |
Mechanical transplanter | Mechanical transplanting machine | Transplanting rice reduces fuel, labor costs, and water requirements, sustainable mechanization with direct and indirect reduction in greenhouse gases |
Combine harvester | Mechanical harvest | Reduce post-harvest losses, sustainable mechanization, timely availability of equipment allows for cropping process to be efficient, direct and indirect reduction in greenhouse gases [12] |
Superbag | Hermetic storage bag for cereal grains to be stored safely for extended periods | Extends the germination life of seeds from 6 to 12 months, controls insect grain pests without chemicals, improves head rice recovery, and, therefore, provide quality seeds a part of CSA [12] |
Parameters | Dry Season 2017 (n = 44) | Wet Season 2017/2018 (n = 145) | Wet Season 2018 (n = 133) | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
Area cultivated for rice (ha) | 0.14 | 0.10 | 0.13 | 0.09 | 0.12 | 0.07 |
Seed rate (kg/ha) | 51.36 | 30.77 | 49.32 | 23.09 | 104.06 | 121.16 |
Revenue | ||||||
(1) Yield (kg/ha) | 5937.01 | 2271.31 | 5796.82 | 1931.27 | 5738.02 | 1732.83 |
(2) Farm gate price (USD/kg) | 0.32 | 0.04 | 0.32 | 0.07 | 0.31 | 0.04 |
(3) Value of production (USD/ha) (1*2) | 1899.84 | 726.82 | 1854.98 | 618.01 | 1778.79 | 537.18 |
Production Cost | ||||||
Seeds (USD/ha) | 38.58 | 24.44 | 41.58 | 39.82 | 43.27 | 54.73 |
Fertilizer (USD/ha) | 135.05 | 90.41 | 120.07 | 62.75 | 121.82 | 56.40 |
Pest control (USD/ha) | 29.97 | 31.23 | 24.02 | 15.54 | 21.39 | 12.68 |
Herbicide | 27.88 | 19.90 | 16.43 | 11.41 | 12.49 | 7.51 |
Irrigation (USD/ha) | 44.99 | 18.74 | 11.26 | 9.50 | 68.16 | 113.41 |
Machine rental cost | ||||||
Hauling and transportation | 12.09 | - | 30.44 | 31.79 | 30.44 | 31.79 |
Land preparation | 104.16 | 34.11 | 106.16 | 37.48 | 106.61 | 38.48 |
Planting | 104.82 | 24.18 | 121.45 | 34.42 | 119.04 | 36.41 |
Harvesting | 238.93 | 127.43 | 232.53 | 143.16 | 211.63 | 46.79 |
Hired labor | 185.21 | 133.72 | 174.44 | 141.16 | 175.91 | 139.83 |
(4) Total production cost (USD/ha) | 466.76 | 228.86 | 440.45 | 192.23 | 447.67 | 192.87 |
(5) Net profit (3–4) | 1433.08 | 655.87 | 1414.53 | 570.25 | 1331.11 | 523.41 |
Change Parameters | Dry Season | Wet Season 1 | Wet Season 2 | |||
Mean | SD | Mean | SD | Mean | SD | |
Yield pre-adoption (kg/ha) | 5607.20 | 2402.51 | 5401.82 | 1958.50 | 5347.39 | 1723.39 |
Yield change (kg/ha) | 329.80 | 545.01 | 368.71 | 666.85 | 390.63 | 901.49 |
Reduced cost (USD/ha) | - | - | 56.72 | 63.12 | 37.26 | 39.70 |
Added revenue (USD/ha) | 105.54 | 174.40 | 117.99 | 213.39 | 121.10 | 279.46 |
Net added income (USD/ha) | 105.54 | 174.40 | 121.07 | 213.47 | 122.22 | 279.50 |
Technology | Utilization (n) | Uptake (Year) | Length of Adoption (Years) | ||||
---|---|---|---|---|---|---|---|
Farmers Introduced | Adopted | Still Practicing in 2018 | Mean | SD | Mean | SD | |
Alternate wetting and drying | 36 | 29 | 16 | 0.6 | 1.2 | 2.8 | 1.8 |
Solar bubble dryer | 2 | 0 | 0 | na | na | na | na |
Combine harvester | 34 | 18 | 4 | 0.2 | 0.7 | 1.4 | 1.2 |
Drum seeder | 26 | 14 | 1 | 0.1 | 0.4 | 1.4 | 1.2 |
Ecologically Based Rodent Management (EBRM) | 4 | 3 | 2 | 0.0 | 0.0 | 5.3 | 3.8 |
Improved variety | 153 | 148 | 138 | 1.7 | 4.7 | 7.8 | 9.0 |
Mechanical transplanter | 33 | 17 | 0 | 0.2 | 0.4 | 0.9 | 0.9 |
Strip harvester | 4 | 1 | 0 | 0.0 | - | 1.0 | - |
IRRI superbag | 13 | 6 | 1 | 0.0 | - | 1.5 | 1.8 |
Reason to Discontinue Use | Improved Variety (n = 10) | Alternate Wetting and Drying (n = 13) | Combine Harvester (n = 14) | Drum Seeder (n = 13) | Mechanical Transplanter (n = 17) | IRRI Superbag (n = 5) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Low yield | 3.80 | 1.48 | 2.46 | 1.56 | 2.07 | 1.07 | 3.23 | 1.74 | 2.59 | 1.23 | 3.60 | 1.95 |
Does not fit cropping pattern | 3.50 | 1.18 | 2.31 | 1.32 | 2.36 | 1.28 | 3.00 | 1.29 | 3.00 | 1.37 | 3.40 | 1.82 |
Does not satisfy my preference | 2.90 | 1.20 | 2.23 | 1.17 | 2.57 | 1.45 | 3.54 | 1.66 | 3.00 | 1.37 | 3.20 | 1.79 |
Bad quality | 3.10 | 1.20 | 2.54 | 1.51 | 2.14 | 1.17 | 3.38 | 1.39 | 2.59 | 1.00 | 3.20 | 1.30 |
Not needed any longer-outdated | 3.10 | 0.88 | 2.46 | 1.27 | 2.21 | 1.19 | 2.92 | 1.50 | 2.35 | 1.22 | 3.20 | 1.30 |
Replaced by different technology | 4.00 | 0.94 | 2.15 | 0.90 | 2.14 | 1.35 | 3.46 | 1.61 | 2.47 | 1.07 | 3.20 | 1.30 |
Lodging | 3.00 | 1.25 | 1.92 | 0.76 | 2.21 | 1.25 | 2.54 | 1.20 | 2.41 | 0.94 | 2.80 | 1.10 |
No market for the variety | 2.90 | 1.10 | 2.38 | 1.19 | 1.93 | 0.83 | 2.00 | 0.91 | 2.18 | 0.95 | 2.40 | 1.34 |
Time constraints (too busy) | 3.00 | 1.05 | 2.92 | 1.55 | 2.79 | 1.53 | 3.77 | 1.69 | 3.18 | 1.51 | 3.40 | 1.52 |
Damage (pest, drought) | 2.90 | 1.45 | 2.31 | 1.32 | 2.29 | 1.14 | 3.08 | 1.89 | 2.35 | 1.00 | 2.60 | 1.14 |
Too difficult to apply | 3.20 | 1.14 | 2.92 | 1.50 | 2.50 | 1.22 | 3.15 | 1.82 | 3.00 | 1.27 | 2.60 | 1.34 |
Too expensive | 2.60 | 1.07 | 1.92 | 0.64 | 2.43 | 1.50 | 2.46 | 1.56 | 2.76 | 1.44 | 3.00 | 1.58 |
Labor shortage | 2.40 | 0.97 | 2.23 | 1.30 | 2.64 | 1.60 | 3.08 | 1.89 | 3.06 | 1.43 | 2.80 | 1.30 |
Labor costs are too high | 2.20 | 0.79 | 2.08 | 1.19 | 2.36 | 1.22 | 3.00 | 1.87 | 2.53 | 1.42 | 2.40 | 0.89 |
Weather conditions did not allow use | 2.30 | 0.67 | 2.00 | 1.00 | 2.29 | 1.07 | 2.69 | 1.18 | 2.35 | 0.93 | 2.60 | 0.89 |
Technology is not available | 2.80 | 1.23 | 2.00 | 1.00 | 2.64 | 1.15 | 2.54 | 1.20 | 2.41 | 0.71 | 3.20 | 1.30 |
Technology is not suitable for my field conditions | 3.10 | 1.37 | 2.46 | 1.56 | 2.07 | 1.00 | 3.31 | 1.80 | 2.59 | 1.42 | 3.80 | 1.48 |
Plants died | 1.70 | 0.67 | 2.46 | 1.56 | 1.79 | 0.58 | 1.77 | 1.09 | 1.94 | 0.56 | 3.50 | 1.18 |
Expenditure | n | % n | % Allocated | IQR |
---|---|---|---|---|
Food | 21 | 53.8 | 30 | 35 |
Meat and fish | 14 | 35.9 | 20 | 14 |
Fruit and vegetables | 15 | 38.5 | 20 | 8 |
Dairy | 8 | 20.5 | 5 | 11 |
Rice (for consumption) | 5 | 12.8 | 100 | 23 |
Special food | 2 | 5.1 | 5 | 0 |
Healthcare | 5 | 12.8 | 10 | 0 |
Clothing | 7 | 17.9 | 10 | 3 |
Communication | 2 | 5.1 | 25 | 25 |
School Fees | 7 | 17.9 | 30 | 23 |
University tuition | 3 | 7.7 | 25 | 20 |
Private transport | 6 | 15.4 | 12.5 | 31 |
Public transport | 1 | 2.6 | 5 | 0 |
Rice inputs | 22 | 56.4 | 35 | 43 |
Electricity (home utility) | 6 | 15.4 | 10 | 0 |
Machine rental for rice production | 11 | 28.2 | 15 | 22 |
Machine purchase for rice production | 3 | 7.7 | 10 | 8 |
Savings | 7 | 17.9 | 32.5 | 30 |
Home improvement | 5 | 12.8 | 7.5 | 5 |
Description (All Items Concern Farmers’ Perceptions) | Number of Items | Cronbach’s α | Mean | SD | |
---|---|---|---|---|---|
Financial capital | Access and use of financial support | 3 | 0.535 | 2.49 | 0.94 |
Employment | Uptake of additional employment by family members, increased on farm employment opportunities | 3 | 0.640 | 2.70 | 1.07 |
Agricultural production | Yield change, perception of production changes and changes in workload | 6 | 0.643 | 3.23 | 0.54 |
Physical capital | Ability to purchase farming equipment (e.g., machineries) | 5 | 0.913 | 2.02 | 1.03 |
Poverty | Ability to spend money | 3 | 0.491 | 3.66 | 0.76 |
Land tenure | Ability purches more farming land | 4 | 0.839 | 1.70 | 0.74 |
Social capital | Ability to disseminate the knowledge gained | 3 | 0.861 | 4.16 | 1.00 |
Human capital | Ability to apply new knowledge | 4 | 0.797 | 3.91 | 0.91 |
Natural capital | Increase in biodiversity (flora and fauna) | 4 | 0.617 | 2.46 | 0.82 |
Food security | Ability to eat more food, to eat more frequently, to eat a greater diversity of food products | 8 | 0.892 | 2.90 | 0.88 |
Cultural capital | Changes in cultural habits | 6 | 0.881 | 2.74 | 1.07 |
Health | Increase in health outcomes | 3 | 0.674 | 2.67 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Connor, M.; de Guia, A.H.; Pustika, A.B.; Sudarmaji; Kobarsih, M.; Hellin, J. Rice Farming in Central Java, Indonesia—Adoption of Sustainable Farming Practices, Impacts and Implications. Agronomy 2021, 11, 881. https://doi.org/10.3390/agronomy11050881
Connor M, de Guia AH, Pustika AB, Sudarmaji, Kobarsih M, Hellin J. Rice Farming in Central Java, Indonesia—Adoption of Sustainable Farming Practices, Impacts and Implications. Agronomy. 2021; 11(5):881. https://doi.org/10.3390/agronomy11050881
Chicago/Turabian StyleConnor, Melanie, Annalyn H. de Guia, Arlyna Budi Pustika, Sudarmaji, Mahargono Kobarsih, and Jon Hellin. 2021. "Rice Farming in Central Java, Indonesia—Adoption of Sustainable Farming Practices, Impacts and Implications" Agronomy 11, no. 5: 881. https://doi.org/10.3390/agronomy11050881
APA StyleConnor, M., de Guia, A. H., Pustika, A. B., Sudarmaji, Kobarsih, M., & Hellin, J. (2021). Rice Farming in Central Java, Indonesia—Adoption of Sustainable Farming Practices, Impacts and Implications. Agronomy, 11(5), 881. https://doi.org/10.3390/agronomy11050881