Assessing Opportunities to Increase Yield and Profit in Rainfed Lowland Rice Systems in Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Information Access
2.3. Cropping Intensity
2.4. Recommended Practices (RPs) and Farmers’ Practices (FPs)
2.5. Yield Gap between RP and FP
3. Results
3.1. Grain Yield Compared between RPs and FPs
3.2. Profit Analysis between RPs and FPs
3.3. Yield Gap between Attanaible Yield, RPs and FPs
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobermann, A.; Cassman, K.G. Cropping systems: Irrigated continuous rice systems of tropical and subtropical Asia. In Encyclopedia of Plant and Crop Science; Goodman, R.M., Ed.; CRC Press: Marcel Dekker, NY, USA, 2004; pp. 349–354. ISBN 9780824709440. [Google Scholar]
- Agus, F.; Andrade, J.F.; Edreira, J.I.R.; Deng, N.; Purwantomo, D.K.G.; Agustiani, N.; Aristya, V.E.; Batubara, S.F.; Herniwati; Hosang, E.Y.; et al. Yield gaps in intensive rice-maize cropping sequences in the humid tropics of Indonesia. Field Crops Res. 2019, 237, 12–22. [Google Scholar] [CrossRef]
- Boling, A.; Tuong, T.P.; Jatmiko, S.Y.; Burac, M.A. Yield constraints of rainfed lowland rice in Central Java, Indonesia. Field Crops Res. 2004, 90, 351–360. [Google Scholar] [CrossRef]
- Hayashi, K.; Llorca, L.; Izaya, R.; Prihasto, S.; Zaini, Z. Reducing vulnerability of rainfed agriculture through seasonal weather forecast: A case study on the rainfed rice production in Southeast Asia. Agric. Syst. 2018, 162, 66–76. [Google Scholar] [CrossRef]
- Sulaiman, A.A.; Candradijaya, A.; Syakir, M. Technological advancement and the economic benefit of Indonesian rainfed farming development. Adv. Agric. 2019, 2019, 9689037. [Google Scholar] [CrossRef]
- Maji, S.; Das, A.; Nath, R.; Bandopadhyay, P.; Das, R.; Gupta, S. Cool season food legumes in rice fallows: An Indian perspective. In Agronomic Crops; Hasanuzzaman, M., Ed.; Springer: Singapore, 2019; pp. 561–605. ISBN 978-981-32-9151-5. [Google Scholar]
- CAS. Agricultural Statistics 2018; Center for Agricultural Data and Information System, Ministry of Agriculture: Jakarta, Indonesia, 2018; 382p, ISBN 979-8958-65-9. [Google Scholar]
- Sulaiman, A.A.; Kasdi, S.; Las, I.; Zaini, Z.; Suryani, E.; Susilowati, S.H.; Heryani, N.; Mulyani, A.; Hamdani, A. Membangkitkan Empat Juta Hektar Lahan Sawah Tadah Hujan: Mendukung Swasembada Pangan Berkelanjutan (Generating Four Million Hectares of Rainfed Lowland: Supporting Sustainable Food Self-sufficiency); Hermanto, H., Ed.; IAARD Press: Jakarta, Indonesia, 2018; ISBN 978-602-344-224-9.
- Oue, H.; Laban, S. Water use of rice and mung bean cultivations in a downstream area of an irrigation system in South Sulawesi in the 2nd dry season. Paddy Water Environ. 2020, 18, 87–98. [Google Scholar] [CrossRef]
- Yazar, A.; Ali, A. Water Harvesting in Dry Environments. In Innovations in Dryland Agriculture; Farooq, M., Siddique, K., Eds.; Springer: Cham, Switzerland, 2016; pp. 49–98. ISBN 978-3-319-47928-6. [Google Scholar]
- Hund, S.V.; Allen, D.M.; Morillas, L.; Johnson, M.S. Groundwater recharge indicator as tool for decision makers to increase socio-hydrological resilience to seasonal drought. J. Hydrol. 2018, 563, 1119–1134. [Google Scholar] [CrossRef]
- Murtado, A.D.; Marlina, N. Organic fertilization for optimizing dryland rice production. AJCS 2019, 13, 1318–1325. [Google Scholar] [CrossRef]
- Qureshi, A.S. Groundwater governance in Pakistan: From colossal development to neglected management. Water 2020, 12, 3017. [Google Scholar] [CrossRef]
- Heryani, N.; Kartiwa, B.; Hamdani, A.; Rahayu, B. Analisis ketersediaan dan kebutuhan air irigasi pada lahan sawah: Studi kasus di Provinsi Sulawesi Selatan (Analysis of availability and needs of irrigation water in paddy fields: A Case Study in South Sulawesi Province). Indones. Soil Clim. J. 2017, 41, 135–148. [Google Scholar] [CrossRef]
- President Instruction of the Republic of Indonesia Number 1, 2018, Concerning Accelerating the Provision of Small Water Reservoir and other Water Reservoir Infrastructure in the Village. Jakarta, Indonesia, 11 January 2018. Available online: http://jdih.pertanian.go.id/ (accessed on 4 February 2021).
- Wenbin, W.; Qiangyi, Y.; Liangzhi, Y.; Kevin, C.; Huajun, T.; Jianguo, L. Global cropping intensity gaps: Increasing food production without cropland expansion. Land Use Policy 2018, 76, 515–525. [Google Scholar] [CrossRef]
- Erythrina; Sahardi; Mardiharini, M.; Purnamayani, R.; Apriyatna, Y.; Syahbuddin, H.; Ratule, M.T. Technical Guidelines of Implementing Activities for the Application of Agricultural Technology Innovations to Increase the Planting Index; ICATAD Publ.: Bogor, Indonesia, 2020; ISBN 978-602-6954-38-1.
- Bagheri, A.; Bondori, A.; Damalas, A.C. Modeling cereal farmers’ intended and actual adoption of integrated crop management (ICM) practices. J. Rural. Stud. 2019, 70, 58–65. [Google Scholar] [CrossRef]
- IAARD. Technical Guidelines for Integrated Crop Management (ICM) for Irrigated Rice; Indonesian Agency for Agriculture Research and Development, Ministry of Agriculture; IAARD Press: Jakarta, Indonesia, 2016; ISBN 978-979-1159-29-6.
- Syurmaeni, E.; Syahbuddin, H. Onset of planting season criteria: Review of planting time prediction for rice in Indonesia. J. Litbang Pertan. 2016, 35, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Surmaini, E.; Hadi, T.W.; Subagyono, K.; Syahputra, M.R. Integrating seasonal prediction with crop model for adjusting rice planting time. Indones. Soil Clim. J. 2018, 42, 99–110. [Google Scholar] [CrossRef]
- Bhuiyan, S.I.; Zeigler, R.S. On-Farm Rainwater Storage and Conservation System for Drought Alleviation: Issues and Challenges. In On-Farm Reservoir Systems for Rainfed Ricelands; Bhuiyan, S.I., Ed.; International Rice Research Institute: Manila, Philippines, 1994; pp. 1–6. ISBN 971-22-0066-3. [Google Scholar]
- Ahmed, J. The role of small-scale irrigation to household food security in Ethiopia: A review paper. J. Resour. Dev. Manag. 2019, 60, 20–25. [Google Scholar] [CrossRef]
- Sembiring, H.; Erythrina. Pendekatan Pengelolaan Tanaman Terpadu (Integrated Crop Management Approach). In Teknologi Padi Mendukung Lumbung Pangan Dunia; 2045 (Rice Technology Supports World Food 2045); Zaini, Z., Las, I., Eds.; IAARD Press: Jakarta, Indonesia, 2017; pp. 7–28. ISBN 978-602-344-181-5. [Google Scholar]
- Wihardjaka, A.; Harsanti, E.S.; Sutriadi, M.T. Anticipate of climate change impacts in rainfed lowland rice through applying appropriate technology. IOP Conf. Ser. Earth Environ. Sci. 2019, 393, 012098. [Google Scholar] [CrossRef]
- Devkota, K.P.; Pasuquin, E.; Elmido-Mabilangan, A.; Dikitanan, R.; Singleton, G.R.; Stuart, A.M.; Vithoonjit, D.; Vidiyangkura, L.; Pustika, A.B.; Afriani, R.; et al. Economic and environmental indicators of sustainable rice cultivation: A comparison across intensive irrigated rice cropping systems in six Asian countries. Ecol. Indic. 2019, 105, 199–214. [Google Scholar] [CrossRef]
- Rumanti, I.A.; Hairmansis, A.; Nugraha, Y.; Susanto, U.N.; Wardana, P.; Subandiono, R.E.; Zaini, Z.; Sembiring, H.; Khan, N.I.; Singh, R.K.; et al. Development of tolerant rice varieties for stress-prone ecosystems in the coastal deltas of Indonesia. Field Crop Res. 2018, 223, 75–82. [Google Scholar] [CrossRef]
- Subekti, N.A.; Sembiring, H.; Erythrina; Nugraha, D.; Priatmojo, B.; Nafisah. Yield of different rice cultivars at two levels of soil salinity under seawater intrusion in West Java, Indonesia. Biodiversitas J. Biol. Divers. 2020, 21, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Buresh, R.J.; Zaini, Z.; Syam, M.; Kartaatmadja, S.; Suyamto; Castillo, R.; dela Torre, J.; Sinohin, P.J.; Girsang, S.S.; Thalib, A.; et al. Nutrient Manager for Rice: A Mobile Phone and Internet Application Increases Rice Yield and Profit in Rice Farming. In Proceedings of the International Rice Seminar, Indonesian Center for Rice Research-Sukamandi, West Java, Indonesia, 22 August 2012. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; Wiley: Singapore, 2004; pp. 187–240. [Google Scholar]
- MOA. Regulation of the Minister of Agriculture of the Republic of Indonesia Number 61/Permentan/ OT.140/10/2011, Concerning Testing, Assessing, Release and Withdrawal of Varieties; MOA: Jakarta, Indonesia, 2011. [Google Scholar]
- Stuart, A.M.; Pame, A.R.P.; Silva, J.V.; Dikitanan, R.C.; Rutsaert, P.; Malabayabas, A.J.B.; Lampayan, R.M.; Radanielson, A.M.; Singleton, G.R. Yield gaps in rice-based farming systems: Insights from local studies and prospects for future analysis. Field Crops Res. 2016, 194, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Boughton, D.; Crawford, E.; Krause, M.; de Frahan, B.H. Economic Analysis of on-Farm Trials: A Review of Approaches and Implications for Research Program Design; Michigan State University: East Lansing, MI, USA, 1990; 52p. [Google Scholar]
- Sembiring, H.; Subekti, N.A.; Erythrina; Nugraha, N.; Priatmojo, B.; Stuart, A.M. Yield gap management under seawater intrusion areas of Indonesia to improve rice productivity and resilience to climate change. Agriculture 2020, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Central Bureau of Statistics Indonesia. Statistics of Paddy Producer Price in Indonesia 2019; Statistics Indonesia: Jakarta, Indonesia, 2019; p. 302. ISSN 1978-6018. Available online: https://www.bps.go.id/publication.html (accessed on 4 February 2021).
- Neupane, G.; Dhakal, A.; Bhattarai, K.; Teli, P.K. Management options for drought prone rainfed lowland rice in Asia: A Review. Rev. Food Agric. 2020, 1, 82–84. [Google Scholar] [CrossRef]
- Leigh, K.V.; Molesworth, A.; Lefroy, R.D.B. Balancing rice and non-rice crops: Managing the risks from soil constraints in Mainland Southeast Asian rice systems. Field Crop Res. 2020, 246. [Google Scholar] [CrossRef]
- Reynolds, T.W.; Waddington, S.R.; Anderson, C.L. Environmental impacts and constraints associated with the production of major food crops in Sub-Saharan Africa and South Asia. Food Sec. 2015, 7, 795–822. [Google Scholar] [CrossRef] [Green Version]
- Hairmansis, A.; Yullianida; Hermanasari, R.; Lestari, A.P.; Sasmita, P.; Suwarno. Drought tolerant rice breeding lines developed for rainfed lowland areas. In Proceedings of the 4th International Conference on Climate Change 2019 (The 4th ICCC 2019), Yogyakarta, Indonesia, 18–19 November 2019. [Google Scholar] [CrossRef]
- Jairin, J.; Kotchasatit, U.; Saleeto, S.; Jearakongman, S.; Srivilai, K.; Chamarerk, V.; Kothcharerk, J.; Pattawatang, P.; Korinsak, S.; Wongsaprom, C.; et al. Application of marker-assisted breeding to improve biotic stress resistance for rainfed lowland rice in Northeastern Thailand. SABRAO J. Breed. Genet. 2017, 49, 168–178. [Google Scholar]
- Dey, A.R.; Singh, G. Climate risk adjustment paddy flood management socio-economic non-climatic factors. In Proceedings of the National Conference on Harmony with Nature in Context of Bioresources and Environmental Health (HARMONY—2015), Aurangabad, India, 23–25 November 2015; pp. 893–907. [Google Scholar]
- Banayo, N.P.M.; Rahon, R.E.; Cruz, P.S.; Kato, Y. Fertilizer responsiveness of high-yielding drought- tolerant rice in rainfed lowlands. Plant Prod. Sci. 2020, 1–9. [Google Scholar] [CrossRef]
- Sharma, S.; Rout, K.K.; Khanda, C.M.; Tripathi, R.; Shahid, M.; Nayak, A.; Satpathy, S.; Banik, N.C.; Iftikar, W.; Parida, N.; et al. Field-specific nutrient management using Rice Crop Manager decision support tool in Odisha, India. Field Crops Res. 2019, 241. [Google Scholar] [CrossRef] [PubMed]
- Erdiansyah, I.; Damanhuri. Performance of Resistance of Rice Varieties Recommendation of Jember Regency to Brown Planthopper Pest (Nilaparvata lugens Stal.). In Proceedings of the 1st International Conference on Food and Agriculture 2018, Bali, Indonesia, 20–21 October 2018. [Google Scholar] [CrossRef]
- Chaerani, C.; Damayanti, D.; Trisnaningsih, T.; Yuriyah, S.; Kusumanegara, K.; Dadang, A.; Sutrisno, S.; Bahagiawati, B. Virulence of brown planthopper and development of core collection of the pest. J. Food Crops Agric. Res. 2016, 35, 109–117. [Google Scholar] [CrossRef]
- Banayo, N.P.M.C.; Haefele, S.M.; Desamero, N.V.; Kato, Y. On-farm assessment of site-specific nutrient management for rainfed lowland rice in the Philippines. Field Crops Res. 2018, 220, 88–96. [Google Scholar] [CrossRef]
- Buresh, R.J.; Castillo, R.L.; Dela Torre, J.C.; Laureles, E.V.; Samson, M.I.; Sinohin, P.J.; Guerra, M. Site-specific nutrient management for rice in the Philippines: Calculation of field-specific fertilizer requirements by Rice Crop Manager. Field Crops Res. 2019, 239, 56–70. [Google Scholar] [CrossRef]
- Harris, D.; Orr, A. Is rainfed agriculture really a pathway from poverty? Agric. Syst. 2014, 123, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Lampayan, R.M.; Rejesus, R.M.; Singleton, G.R.; Bouman, B.A.M. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Res. 2015, 170, 95–108. [Google Scholar] [CrossRef]
- Bugayong, I.D.; Hayashi, K.; Querijero, N.N.V.B.; Orden, M.E.M.; Agustiani, N.; Hadiawati, L.; Siregar, I.H.; Carada, W.B.; Atienza, V.A. Technology transfer pathways of information and communication technologies for development (ICT4D): The case of the weather-rice-nutrient integrated decision support system (WeRise) in Indonesia. J. ISSAAS 2019, 25, 104–117. [Google Scholar]
- McLeod, M.K.; Sufardi, S.; Harden, S. Soil fertility constraints and management to increase crop yields in the dryland farming systems of Aceh, Indonesia. Soil Res. 2020, 59, 68–82. [Google Scholar] [CrossRef]
- Agustiani, N.; Deng, N.; Edreira, J.I.R.; Girsang, S.S.; Syafruddin; Sitaresmi, T.; Pasuquin, J.M.C.; Agus, F.; Grassini, P. Simulating rice and maize yield potential in the humid tropical environment of Indonesia. Eur. J. Agron. 2018, 101, 10–19. [Google Scholar] [CrossRef]
- Kwesiga, J.; Grotelüschen, K.; Senthilkumar, K.; Neuhoff, D.; Döring, T.F.; Becker, M. Rice yield gaps in smallholder systems of the Kilombero floodplain in Tanzania. Agronomy 2020, 10, 1135. [Google Scholar] [CrossRef]
- Wood, S.A.; Jina, A.S.; Jain, M.; Kristjanson, P.; DeFries, R.S. Smallholder farmer cropping decisions related to climate variability across multiple regions. Glob. Environ. Chang. 2014, 25, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, S.; Biradar, R.; Rathod, A.; Sharanappa, P. Impact of frontline demonstration on adoption of improved practices of sunflower (Helinathus annuuss L.). Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2511–2515. [Google Scholar] [CrossRef]
- Patle, G.T.; Kumar, M.; Khanna, M. Climate-smart water technologies for sustainable agriculture: A review. J. Water Clim. Chang. 2020, 11, 1455–1466. [Google Scholar] [CrossRef]
- van Ittersum, M.K.; van Bussel, L.G.J.; Wolf, J.; Grassini, P.; Van Wart, J.; Guilpart, N.; Claessens, L.; de Groot, H.; Wiebe, K.; Mason-D’Croz, D.; et al. Can sub-Saharan Africa feed itself? Proc. Natl. Acad. Sci. USA 2016, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Province | District | Sub-District | Village | Farmer Group | Coordinate | Dem Area (ha) | No. of Farmers | Water Source * |
---|---|---|---|---|---|---|---|---|---|
Wet Climate of Western Indonesia | |||||||||
1 | North Sumatra | Deli Serdang | Beringin | Serdang | Perdamean | 3°36′46″; 98°51′11″ | 5 | 15 | Long storage |
2 | Bengkulu | Seluma | Sukaraja | Air Petai | Kromo Bali | −3°53′38″; 102°22′24″ | 8 | 22 | Long storage |
3 | West Java | Sumedang | Ujung- jaya | Kebon Cau | Sri Mekar Jaya | 6°44′37″; 108°8′41″ | 14 | 35 | Trench dam |
4 | Yogyakarta | Gunung-kidul | Playen | Logan- deng | Gemah Ripah | 7°56′1″; 110°34′44″ | 8 | 66 | Deep well |
5 | West Kalimantan | Sanggau | Balai | Kebadu | Cadok Mayang | 0°8′56″; 110°7′54″ | 7 | 20 | Long storage |
6 | South Sulawesi | Maros | Banti- murung | Baruga | Lallo tengae II | 4°96′5″; 475°11′16″ | 11 | 38 | Surface water |
7 | Papua | Sarmi | Bonggo | Bebon Jaya | Maju Karya | −6°74′40″; 108°14′68″ | 5 | 15 | Surface water |
Dry Climate of Eastern Indonesia | |||||||||
8 | Southeast Sulawesi | Konawe Selatan | Buku | Andoolo Utama | Merdi Tani I | 4°17′5″; 122°12′39″ | 10 | 15 | Surface water |
9 | West Nusa Tenggara | Lombok Tengah | Praya Barat | Penujak | Beriuk Angen | −8°46′30″; 116°13′8″ | 5 | 11 | Surface water |
10 | East Nusa Tenggara | Manggarai Barat | Komodo | Golo Bilas | Tiwu Dangkung | −8°55′14″; 119°54′00 | 2 | 25 | Long storage |
Average | 7.5 | 26.2 |
No. | Provinces | Program Socialization | Technical Guidance Meeting | Farmer Field Day | ||
---|---|---|---|---|---|---|
Local Government | Farmer Group | Technology Dissemination | Institutional Services | |||
Wet climate of Western Indonesia | ||||||
1 | North Sumatra | 2 | 3 | 3 | 2 | 1 |
2 | Bengkulu | 3 | 2 | 3 | 2 | 1 |
3 | West Java | 2 | 1 | 5 | 5 | 1 |
4 | Yogyakarta | 2 | 3 | 3 | 3 | 1 |
5 | West Kalimantan | 2 | 3 | 3 | 4 | 1 |
6 | South Sulawesi | 1 | 3 | 2 | 2 | 1 |
7 | Papua | 3 | 3 | 3 | 3 | 1 |
Dry climate of Eastern Indonesia | ||||||
8 | Southeast Sulawesi | 4 | 5 | 6 | 4 | 1 |
9 | West Nusa Tenggara | 1 | 3 | 2 | 4 | 1 |
10 | East Nusa Tenggara | 2 | 5 | 4 | 5 | 1 |
Average | 2.2 | 3.1 | 3.4 | 3.4 | 1.0 |
No. | Province | Rainfed Area (ha) | Rice Planted Area (ha) | Cropping Intensity |
---|---|---|---|---|
Wet Climate of Western Indonesia | ||||
1 | North Sumatra | 161,560 | 303,262 | 1.88 |
2 | Bengkulu | 23,117 | 33,831 | 1.46 |
3 | West Java | 179,647 | 323,918 | 1.80 |
4 | Yogyakarta | 9267 | 16,444 | 1.77 |
5 | West Kalimantan | 270,931 | 228,232 | 0.84 |
6 | South Sulawesi | 258,422 | 408,375 | 1.58 |
7 | Papua | 46,045 | 50,661 | 1.10 |
Dry Climate of Eastern Indonesia | ||||
8 | Southeast Sulawesi | 19,831 | 15,634 | 0.79 |
9 | West Nusa Tenggara | 64,491 | 58,432 | 0.91 |
10 | East Nusa Tenggara | 77,322 | 68,359 | 0.88 |
Total | 1,110,633 | 1,507,148 | 1.30 |
No. | Provinces | Crop Management | Number | Rice Variety | Sowing Date | Planting Density (m2) | Fertilizer Rate (kg ha−1) | |||
---|---|---|---|---|---|---|---|---|---|---|
of Farmer (n) | N | P2O5 | K2O | Organic Fertilizer | ||||||
Wet climate of Western Indonesia | ||||||||||
1 | North Sumatra | RP | 15 | Inpari 43 | 1 Jul. | 25 | 127.5 | 37.5 | 37.5 | 0 |
FP | 10 | Ciherang | 22 Jul. | 16 | 60.0 | 32.5 | 15.0 | 0 | ||
2 | Bengkulu | RP | 22 | Inpari 41 | 25 Jun. | 33 | 93.8 | 26.3 | 26.3 | 2000 |
FP | 10 | Local var. | 14 Jul. | 14 | 37.5 | 15.0 | 15.0 | 0 | ||
3 | West Java | RP | 35 | Inpari 32 | 5 Jul. | 21 | 195.0 | 37.5 | 37.5 | 1000 |
FP | 10 | Inpari 32 | 21 Jul. | 16 | 112.5 | 37.5 | 37.5 | 0 | ||
4 | Yogyakarta | RP | 66 | Inpari 19 | 27 Mar. | 28 | 105.0 | 37.5 | 37.5 | 2000 |
FP | 10 | IR-64 | 2 Apr. | 21 | 52.5 | 30.0 | 30.0 | 500 | ||
5 | West Kalimantan | RP | 20 | Inpari 32 | 4 Jul. | 24 | 82.5 | 37.5 | 37.5 | 2000 |
FP | 10 | Inpago 8 | 2 Jul. | 16 | 60.0 | 15.0 | 15.0 | 500 | ||
6 | South Sulawesi | RP | 38 | Inpari 42 | 2 Aug. | 21 | 105.0 | 30.0 | 30.0 | 0 |
FP | 10 | Ciherang | 1 Aug. | 16 | 90.0 | 15.0 | 15.0 | 500 | ||
7 | Papua | RP | 15 | Inpari 19 | 4 Aug. | 33 | 90.0 | 36.0 | 30.0 | 2000 |
FP | 10 | IR 64 | 12 Aug. | 16 | 22.5 | 18.0 | 15.0 | 0 | ||
Dry climate of Eastern Indonesia | ||||||||||
8 | Southeast Sulawesi | RP | 15 | Inpari 40 | 6 Sep. | 25 | 110.0 | 47.5 | 30.0 | 1500 |
FP | 10 | Ciliwung | 2 Sep. | 16 | 90.0 | 36.0 | 0 | 0 | ||
9 | West Nusa Tenggara | RP | 11 | Inpari 32 | 5 Apr. | 28 | 135.0 | 45.0 | 45.0 | 1000 |
FP | 10 | Situbagendit | 4 Apr. | 16 | 90.0 | 30.0 | 30.0 | 0 | ||
10 | East Nusa Tenggara | RP | 25 | Inpari 32 | 14 Apr. | 21 | 120.0 | 30.0 | 30.0 | 0 |
FP | 10 | Ciherang | 11 Apr. | 16 | 60.0 | 15.0 | 15.0 | 0 |
No. | Province | Mean Recommended Practices (RPs) | Mean Farmers’ Practices (FPs) | Yield Increase | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RP | Std. Dev | Min | Max | FP | Std. Dev | Min | Max | ||||
Grain Yield at 14% m.c. (t ha−1) | (t ha−1) | (%) | |||||||||
Wet Climate of Western Indonesia | |||||||||||
1 | North Sumatra | 6.797 a | 0.379 | 5998 | 7341 | 4.453 b | 0.206 | 4117 | 4782 | 2.344 | 52.64 |
2 | Bengkulu | 4.616 a | 0.265 | 4160 | 5108 | 2.360 b | 0.189 | 2155 | 2763 | 2.256 | 95.59 |
3 | West Java | 7.572 a | 0.216 | 7028 | 7812 | 5.464 b | 0.287 | 4908 | 5800 | 2.108 | 38.58 |
4 | Yogyakarta | 5.127 a | 0.181 | 4718 | 5521 | 4.023 b | 0.182 | 3875 | 4421 | 1.104 | 27.44 |
5 | West Kalimantan | 4.175 a | 0.141 | 3990 | 4448 | 2.699 b | 0.183 | 2432 | 3105 | 1.476 | 54.69 |
6 | South Sulawesi | 5.196 a | 0.209 | 4902 | 5520 | 3.642 b | 0.161 | 2461 | 3129 | 1.554 | 42.67 |
7 | Papua | 4.960 a | 0.138 | 4830 | 5389 | 3.168 b | 0.160 | 2890 | 3421 | 1.792 | 56.67 |
Sub-average | 5.492 | 0.218 | 5089 | 5877 | 3.687 | 0.195 | 3263 | 3917 | 1.805 | 52.60 | |
Dry Climate of Eastern Indonesia | |||||||||||
8 | Southeast Sulawesi | 5.578 a | 0.148 | 5325 | 5872 | 3.525 b | 0.163 | 3305 | 3775 | 2.053 | 58.24 |
9 | West Nusa Tenggara | 5.064 a | 0.167 | 4902 | 5420 | 3.129 b | 0.126 | 2927 | 3362 | 1.935 | 61.84 |
10 | East Nusa Tenggara | 4.608 a | 0.274 | 4237 | 5005 | 2.461 b | 0.235 | 2058 | 2685 | 2.147 | 87.24 |
Sub-average | 5.083 | 0.196 | 4821 | 5432 | 3.038 | 0.175 | 2763 | 3274 | 2.045 | 69.11 | |
Average | 5.288 | 0.207 | 4955 | 5655 | 3.363 | 0.185 | 3013 | 3596 | 1.925 | 60.85 |
No. | Province | Yield | Benefit | Additional Cost | Change in | ||
---|---|---|---|---|---|---|---|
Increased | Fertilizers | Irrigation | Total | Benefit | |||
(t ha−1) | (USD ha−1) | ||||||
Wet climate of Western Indonesia | |||||||
1 | North Sumatra | 2.344 | 897.8 | 29.8 | 0 | 29.8 | 867.9 |
2 | Bengkulu | 2.256 | 855.0 | 133.0 | 0 | 133.0 | 722.0 |
3 | West Java | 2.108 | 805.3 | 82.8 | 0 | 82.8 | 722.4 |
4 | Yogyakarta | 1.104 | 410.7 | 47.7 | 96.8 | 144.6 | 266.1 |
5 | West Kalimantan | 1.476 | 574.2 | 62.8 | 0 | 62.8 | 511.4 |
6 | South Sulawesi | 1.554 | 536.1 | 85.3 | −14.0 | 71.2 | 464.9 |
7 | Papua | 1.792 | 754.4 | 92.6 | 17.5 | 110.2 | 644.3 |
Sub-average | 1.805 | 690.5 | 76.3 | 14.3 | 90.6 | 599.9 | |
Dry climate of Eastern Indonesia | |||||||
8 | Southeast Sulawesi | 2.053 | 763.7 | −1.4 | 21.6 | 20.2 | 743.5 |
9 | West Nusa Tenggara | 1.935 | 716.0 | 44.2 | 0 | 44.2 | 671.7 |
10 | East Nusa Tenggara | 2.147 | 772.9 | 21.1 | 31.6 | 52.6 | 720.3 |
Sub-average | 2.045 | 750.9 | 21.3 | 17.7 | 39.0 | 711.8 | |
Average | 1.925 | 720.7 | 48.8 | 16.0 | 64.8 | 655.9 |
No. | Provinces | Variety | Attainable | Total | Exploitable |
---|---|---|---|---|---|
Yield | Yield Gap | Yield Gap | |||
(t ha–1) | (%) | (%) | |||
Wet climate of Western Indonesia | |||||
1 | North Sumatra | Inpari 43 | 9.20 | 51.60 | 34.49 |
2 | Bengkulu | Inpari 41 | 7.83 | 69.86 | 48.87 |
3 | West Java | Inpari 32 | 8.40 | 34.95 | 27.84 |
4 | Yogyakarta | Inpari 19 | 9.50 | 57.65 | 21.53 |
5 | West Kalimantan | Inpari 32 | 8.40 | 67.87 | 35.35 |
6 | South Sulawesi | Inpari 42 | 10.60 | 65.64 | 29.91 |
7 | Papua | Inpari 19 | 9.50 | 66.65 | 36.13 |
Sub-average | 9.06 | 59.18 | 33.45 | ||
Dry climate of Eastern Indonesia | |||||
8 | Southeast Sulawesi | Inpari 40 | 9.60 | 63.28 | 36.81 |
9 | West Nusa Tenggara | Inpari 32 | 8.40 | 62.75 | 38.21 |
10 | East Nusa Tenggara | Inpari 32 | 8.40 | 70.70 | 46.59 |
Sub-average | 8.80 | 65.58 | 40.54 | ||
Average | 8.93 | 62.38 | 36.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erythrina, E.; Anshori, A.; Bora, C.Y.; Dewi, D.O.; Lestari, M.S.; Mustaha, M.A.; Ramija, K.E.; Rauf, A.W.; Mikasari, W.; Surdianto, Y.; et al. Assessing Opportunities to Increase Yield and Profit in Rainfed Lowland Rice Systems in Indonesia. Agronomy 2021, 11, 777. https://doi.org/10.3390/agronomy11040777
Erythrina E, Anshori A, Bora CY, Dewi DO, Lestari MS, Mustaha MA, Ramija KE, Rauf AW, Mikasari W, Surdianto Y, et al. Assessing Opportunities to Increase Yield and Profit in Rainfed Lowland Rice Systems in Indonesia. Agronomy. 2021; 11(4):777. https://doi.org/10.3390/agronomy11040777
Chicago/Turabian StyleErythrina, Erythrina, Arif Anshori, Charles Y. Bora, Dina O. Dewi, Martina S. Lestari, Muhammad A. Mustaha, Khadijah E. Ramija, Abdul W. Rauf, Wilda Mikasari, Yanto Surdianto, and et al. 2021. "Assessing Opportunities to Increase Yield and Profit in Rainfed Lowland Rice Systems in Indonesia" Agronomy 11, no. 4: 777. https://doi.org/10.3390/agronomy11040777
APA StyleErythrina, E., Anshori, A., Bora, C. Y., Dewi, D. O., Lestari, M. S., Mustaha, M. A., Ramija, K. E., Rauf, A. W., Mikasari, W., Surdianto, Y., Suriadi, A., Purnamayani, R., Darwis, V., & Syahbuddin, H. (2021). Assessing Opportunities to Increase Yield and Profit in Rainfed Lowland Rice Systems in Indonesia. Agronomy, 11(4), 777. https://doi.org/10.3390/agronomy11040777