Rice By-Products Reduce Seed and Seedlings Survival of Echinochloa crus-galli, Leptochloa chinensis and Fymbristylis miliacea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Seeds
2.2. Weed Seeds
2.3. Crystallized Rice by-Products
2.4. Solubilization of Crystallized Rice by-Products (Rice Extract)
2.5. Soil Preparation
2.6. Rice Materials and Chemicals Standards for HPLC Qualification
2.7. HPLC/UV-VIS Conditions
2.8. Exposure of Pre-Germinated Weed Seed to OM 5930 Crystallized Rice by-Product
2.9. Foliar Application of OM 5930 Rice Extract on Barnyardgrass, Red Sprangletop, and Grass-Like Fimbry Seedlings
2.10. Sample Preparation for Analysis
2.11. Validate Analytical Method
2.12. Optimization of Chromatographic Conditions
2.13. Data Analysis
3. Results
3.1. Response of Pre-Germinated Weed Seed to OM 5930 Crystallized Rice by-Product
3.2. Response of Weed Seedlings to Foliar Applications of OM 5930 Rice Extract
3.3. Comparison of OM 5930 Rice by-Products in Crystallized form Versus Soluble Extracts
3.4. HPLC Identification of Allelochemicals in OM 5930 Rice
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chin, V.D. Biology and management of barnyardgrass, red sprangletop and weedy rice. Weed Biol. Manag. 2001, 1, 37–41. [Google Scholar] [CrossRef]
- Labrada, R.; Caseley, J.C.; Parker, C. Weed Management for Developing Countries: Addendum, 1st ed.; Food and Agriculture Organization of the United Nations: Roma, Italy, 2003; p. 277. [Google Scholar]
- Xuan, T.D.; Chung, L.M.; Khanh, T.D.; Tawata, S. Identification of phytotoxic substances from early growth of barnyard grass (Echinochloa crusgalli) root exudates. J. Chem. Ecol. 2006, 32, 895–906. [Google Scholar] [CrossRef]
- Leroy, G.; Donald, L.; Plucknett, E.A.H. The World’s Worst Weeds: Distribution and Biology, 1st ed.; Published for the East-West Center by the University Press of Hawaii: Honolulu, HI, USA, 1977; p. 609. [Google Scholar]
- Stauber, L.G.; Smith, R.J., Jr.; Talbert, R.E. Density and spatial interference of barnyardgrass (Echinochloa crus-galli) with rice (Oryza sativa). Weed Sci. 1991, 39, 163–168. [Google Scholar] [CrossRef]
- Bergeron, E.A. Nealley’s Sprangletop (Leptochloa nealleyi Vasey) Management and Interference in Rice Production. Master’s Thesis, Louisiana State University, Baton Rouge, LA, USA, 2017. [Google Scholar]
- Heinrichs, E.A.; Nwilene, F.E.; Stout, M.; Hadi, B.A.R.; Freitas, T. Rice Insect Pests and Their Management, 1st ed.; Burleigh Dodds Science Publishing Limited: London, UK, 2017; p. 292. [Google Scholar]
- Watanabe, H. Emergence of major weeds and their population change in wet-seeded rice fields of the MUDA area, Peninsular Malaysia. In Proceedings of the 16th Asian-Pacific Weed Science Society Conference, Kuala Lumpur, Malaysia, 8–12 September 1997; MAAPS: Kuala Lumpur, Malaysia, 1997. [Google Scholar]
- Begum, M.; Juraimi, A.S.; Syed, O.S.; Rajan, A.; Azmi, M. The effect of nitrogen fertilization and emergence cohorts on the survival, growth and reproduction of Fimbristylis miliacea L. Vahl. Int. J. Agric. Res. 2008, 3, 423–432. [Google Scholar] [CrossRef]
- Juliano, L.M.; Casimero, M.C.; Llewellyn, R. Multiple herbicide resistance in barnyardgrass (Echinochloa crus-galli) in direct-seeded rice in the Philippines. Int. J. Pest Manag. 2010, 56, 299–307. [Google Scholar] [CrossRef]
- Riar, D.S.; Norsworthy, J.K.; Srivastava, V.; Nandula, V.; Bond, J.A.; Scott, R.C. Physiological and molecular basis of acetolactate synthase-inhibiting herbicide resistance in barnyardgrass (Echinochloa crus-galli). J. Agric. Food Chem. 2013, 61, 278–289. [Google Scholar] [CrossRef]
- Matzenbacher, F.O.; Bortoly, E.D.; Kalsing, A.; Merotto, A. Distribution and analysis of the mechanisms of resistance of barnyardgrass (Echinochloa crus-galli) to imidazolinone and quinclorac herbicides. J. Agric. Sci. 2015, 153, 1044. [Google Scholar] [CrossRef]
- Rahman, M.M.; Sahid, I.B.; Juraimi, A.S. Study on Resistant Biotypes of Echinochloa crus-galli in Malaysia. Aust. J. Crop Sci. 2010, 4, 107–115. [Google Scholar]
- Schaedler, C.E.; Burgos, N.R.; Noldin, J.A.; Alcober, E.A.; Salas, R.A.; Agostinetto, D. Competitive ability of ALS-inhibitor herbicide-resistant Fimbristylis miliacea. Weed Res. 2015, 55, 482–492. [Google Scholar] [CrossRef]
- Rice, E.L.; Rice, A. Allelopathy, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 1984; p. 422. [Google Scholar]
- Khanh, T.D.; Xuan, T.D.; Chung, I.M. Rice allelopathy and the possibility for weed management. Ann. Appl. Biol. 2007, 151, 325–339. [Google Scholar] [CrossRef]
- Farooq, M.; Bajwa, A.; Alam, S.; Cheema, Z. Application of allelopathy in crop production. Int. J. Agric. Biol. 2013, 15, 1367–1378. [Google Scholar]
- Scavo, A.; Abbate, C.; Mauromicale, G. Plant allelochemicals: Agronomic, nutritional and ecological relevance in the soil system. Plant Soil 2019, 442, 23–48. [Google Scholar] [CrossRef]
- Abouziena, H.F.; Haggag, W.M. Weed control in clean agriculture: A review1. Planta Daninha 2016, 34, 377–392. [Google Scholar] [CrossRef]
- Rahman, M.A.; Chikushi, J.; Saifizzaman, M.; Lauren, J.G. Rice straw mulching and nitrogen response of no-till wheat following rice in Bangladesh. Field Crop. Res. 2005, 91, 71–81. [Google Scholar] [CrossRef]
- Romasanta, R.R.; Sander, B.O.; Gaihre, Y.K.; Alberto, M.C.; Gummert, M.; Quilty, J.; Nguyen, V.H.; Castalone, A.G.; Balingbing, C.; Sandro, J.; et al. How does burning of rice straw affect CH4 and N2O emissions? A comparative experiment of different on-field straw management practices. Agric. Ecosyst. Environ. 2017, 239, 143–153. [Google Scholar] [CrossRef]
- Kanokkanjana, K.; Garivait, S. Alternative rice straw management practices to reduce field open burning in Thailand. Int. J. Environ. Sci. Dev. 2013, 4, 119. [Google Scholar] [CrossRef]
- Khanh, T.D.; Cong, L.C.; Chung, L.M.; Xuan, T.D.; Tawata, S. Variation of weed-suppressing potential of Vietnamese rice cultivars against barnyardgrass (Echinochloa crus-galli) in laboratory, greenhouse and field screenings. J. Plant Interact. 2009, 4, 209–218. [Google Scholar] [CrossRef]
- Chau, D.P.; Kieu, T.T.; Chin, V.D. Allelopathic effects of Vietnamese rice varieties. Allelopath. J. 2008, 22, 409–412. [Google Scholar]
- Thi, H.T.; Lin, C.; Smeda, R.J.; Leigh, N.D.; Wycoff, W.G.; Fritschi, F.B. Isolation and identification of an allelopathic phenylethylamine in rice. Phytochemistry 2014, 108, 109–121. [Google Scholar] [CrossRef]
- Thi, H.L.; Nguyen, T.T.C.; Vu, D.C.; Nguyen, N.Y.; Nguyen, T.T.T.; Phong, T.N.H.; Nguyen, C.T.; Lin, C.; Lei, Z.; Sumner, L.W. Allelopathic potential of rice and identification of published allelochemicals by cloud-based metabolomics platform. Metabolites 2020, 10, 244. [Google Scholar]
- Thi, H.L.; Lan, P.T.P.; Chin, V.D.; Kato-Noguchi, H. Allelopathic potential of cucumber (Cucumis sativus) on barnyardgrass (Echinochloa crus-galli). Weed Biol. Manag. 2008, 8, 129–132. [Google Scholar] [CrossRef]
- Castro, M.J.L.; Ojeda, C.; Cirelli, A.F. Surfactants in Agriculture, 1st ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 287–334. [Google Scholar]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Putnam, A.R.; Defrank, J. Use of phytotoxic plant residues for selective weed control. Crop Prot. 1983, 2, 173–181. [Google Scholar] [CrossRef]
- Nielsen, K.F.; Woods, W.B.; Cuddy, T.F. The influence of the extract of some crops and soil residues on germination and growth. Can. J. Plant Sci. 1960, 40, 188–197. [Google Scholar] [CrossRef]
- Xuan, T.D.; Tsuzuki, E. Varietal differences in allelopathic potential of alfalfa. J. Agron. Crop. Sci. 2002, 188, 2–7. [Google Scholar] [CrossRef]
- Steinsiek, J.W.; Oliver, L.R.; Collins, F.C. Allelopathic potential of wheat (Triticum aestivum) straw on selected weed species. Weed Sci. 1982, 30, 495–497. [Google Scholar] [CrossRef]
- Lim, C.A.A.; Awan, T.H.; Cruz, P.C.S.; Chauhan, B.S. Influence of environmental factors, cultural practices, and herbicide application on seed germination and emergence ecology of Ischaemum rugosum Salisb. PLoS ONE 2015, 10, e0137256. [Google Scholar] [CrossRef]
- Chung, I.M.; Kim, K.H.; Ahn, J.K.; Lee, S.B.; Kim, S.H.; Hahn, S.J. Comparison of allelopathic potential of rice leaves, straw, and hull extracts on barnyardgrass. Agron. J. 2003, 95, 1063–1070. [Google Scholar] [CrossRef]
- Jung, W.S.; Kim, K.H.; Ahn, J.K.; Hahn, S.J.; Chung, I.M. Allelopathic potential of rice (Oryza sativa L.) residues against Echinochloa crus-galli. Crop Prot. 2004, 23, 211–218. [Google Scholar] [CrossRef]
- Berendji, S.; Asghari, J.B.; Matin, A.A. Allelopathic potential of rice (Oryza sativa) varieties on seedling growth of barnyardgrass (Echinochloa crus-galli). J. Plant Interact. 2008, 3, 175–180. [Google Scholar] [CrossRef]
- Chung, I.M.; Ahn, J.K.; Yun, S.J. Identification of allelopathic compounds from rice (Oryza sativa L.) straw and their biological activity. Can. J. Plant Sci. 2001, 81, 815–819. [Google Scholar] [CrossRef]
- Chung, L.M.; Kim, J.T.; Kim, S.H. Evaluation of allelopathic potential and quantification of momilactone A, B from rice hull extracts and assessment of inhibitory bioactivity on paddy field weeds. J. Agric. Food Chem. 2006, 54, 2527–2536. [Google Scholar] [CrossRef]
- Salam, M.A.; Morokuma, M.; Teruya, T.; Suenaga, K.; Kato-Noguchi, H. Isolation and identification of a potent allelopathic substance in Bangladesh rice. Plant Growth Regul. 2009, 58, 137–140. [Google Scholar] [CrossRef]
- Kong, C.; Hu, F.; Liang, W.; Peng, W.; Jiang, Y. Allelopathic potential of Ageratum conyzoides at various growth stages in different habitats. Allelopath. J. 2004, 13, 233–240. [Google Scholar]
- Seal, A.N.; Pratley, J.E.; Haig, T.; Lewin, L.G. Screening rice varieties for allelopathic potential against arrowhead (Sagittaria montevidensis), an aquatic weed infesting Australian Riverina rice crops. Aust. J. Agric. Res. 2004, 55, 673–680. [Google Scholar] [CrossRef]
- Macías, F.A.; Chinchilla, N.; Varela, R.M.; Molinillo, J.M.G. Bioactive steroids from Oryza sativa L. Steroids 2006, 71, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.X.; Xiong, J.; Qiu, L.; Wang, H.B.; Song, B.Q.; He, H.B.; Lin, R.Y.; Lin, W.X. Analysis of gene expressions associated with increased allelopathy in rice (Oryza sativa L.) induced by exogenous salicylic acid. Plant Growth Regul. 2009, 57, 163–172. [Google Scholar] [CrossRef]
- Shindo, H.; Ohta, S.; Kuwatsuka, S. Behavior of phenolic substances in the decaying process of plants: IX. Distribution of phenolic acids in soils of paddy fields and forests. J. Soil Sci. Plant Nutr. 1978, 24, 233–243. [Google Scholar] [CrossRef]
- Olofsdotter, M.; Rebulanan, M.; Madrid, A.; Dali, W.; Navarez, D.; Olk, D.C. Why phenolic acids are unlikely primary allelochemicals in rice. J. Chem. Ecol. 2002, 28, 229–242. [Google Scholar] [CrossRef]
- Jabran, K.; Mahajan, G.; Sardana, V.; Chauhan, B.S. Allelopathy for weed control in agricultural systems. Crop Prot. 2015, 72, 57–65. [Google Scholar] [CrossRef]
- Seal, A.N.; Pratley, J.E. The specificity of allelopathy in rice (Oryza sativa). Weed Res. 2010, 50, 303–311. [Google Scholar] [CrossRef]
Treatment | Crystallized by-Product (g pot−1) | Rice Extract (g L−1) | Rice Biomass (Tons ha−1) |
---|---|---|---|
1 | 9.40 | 2.67 | 1 |
2 | 14.13 | 4.00 | 2 |
3 | 18.84 | 5.33 | 3 |
4 | 23.55 | 6.67 | 4 |
5 | 28.26 | 8.00 | 5 |
NC | 0.0 | 0.0 | - |
PC | Solito 320 EC * | - |
Inhibition Level (% of the Control) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Barnyardgrass | Red Sprangletop | Grass-Like Fimbry | ||||||||||
Crystallized Rice (g pot−1) | Days after Treatment (DAT) | |||||||||||
3 | 7 | 14 | 42 | 3 | 7 | 14 | 42 | 3 | 7 | 14 | 42 | |
9.4 | 6.7d * | 11.7 d | 12.3 d | 32.1 d | 30.3 c | 42.8 e | 46.1 d | 46.8 b | 40.5 d | 50.9 c | 60.2 d | 100.0 |
14.13 | 13.3 c | 20.0 c | 26.3 c | 43.4 c | 41.5 b | 60.5 d | 67.7 c | 91.7 a | 69.5 c | 75.4 b | 80.6 c | 100.0 |
18.84 | 23.3 b | 30.0 b | 35.1 b | 56.5 b | 44.9 b | 72.6 c | 81.9 b | 100.0 a | 83.8 b | 90.7 a | 94.5 b | 100.0 |
23.55 | 33.3 a | 41.7 a | 45.6 a | 62.2 ab | 59.6 a | 83.2 b | 85.7 b | 100.0 a | 89.8 a | 94.9 a | 97.2 ab | 100.0 |
28.26 | 40.0 a | 46.7 a | 52.6 a | 67.9 a | 63.0 a | 91.7 a | 94.9 a | 100.0 a | 94.0 a | 96.6 a | 98.1 a | 100.0 |
F | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ns |
CV (%) | 8.3 | 6.2 | 7.1 | 4.7 | 2.6 | 2.5 | 2.1 | 5.9 | 1.6 | 2.3 | 1.1 | 0.1 |
Inhibition Level (% of the Control) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Barnyardgrass | Red Sprangletop | Grass-Like Fimbry | ||||||||||
Rice Extract (g L−1) | Days after Treatment (DAT) | |||||||||||
3 | 7 | 14 | 42 | 3 | 7 | 14 | 42 | 3 | 7 | 14 | 42 | |
2.67 | 3.3 e * | 6.7 f | 14.5 d | 25.8 e | 13.7 e | 25.1 e | 47.0 e | 49.7 d | 15.0 f | 18.3 f | 26.9 e | 54.3 b |
4.0 | 6.7 d | 11.7 e | 20.0 d | 37.9 d | 31.0 d | 42.3 d | 55.8 de | 56.7 c | 30.0 e | 35.0 e | 42.3 d | 94.2 a |
5.33 | 10.0 cd | 16.7 d | 29.0 c | 49.8 c | 41.3 c | 46.2 d | 62.4 cd | 79.9 b | 45.0 d | 53.3 d | 57.6 c | 100.0 a |
6.67 | 15.0 bc | 25.0 c | 34.5 bc | 64.2 b | 46.5 c | 59.7 c | 71.8 bc | 93.6 a | 55.0 c | 65.0 c | 69.2 b | 100.0 a |
8.0 | 21.7 ab | 33.3 b | 40.0 b | 78.3 b | 58.5 b | 67.2 b | 81.2 b | 100.0 a | 61.7 b | 70.0 b | 75.1 b | 100.0 a |
Solito 320 EC | 23.3 a | 45.0 a | 90.8 a | 100.0 a | 72.5 a | 98.0 a | 100.0 a | 100.0 a | 81.7 a | 93.3 a | 100.0 a | 100.0 a |
F | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
CV (%) | 13.4 | 7.6 | 6.2 | 6.6 | 6.3 | 3.3 | 4.7 | 2.3 | 3.2 | 1.4 | 2.7 | 1.7 |
No. | Allelochemicals | Retention Time (min.) | Purity (%) | Allelochemical Content * | |
---|---|---|---|---|---|
In Rice Extract (mg mL−1) | In 100 g of Fresh Rice (mg 100 g−1) | ||||
1. | Salicylic acid ** | 11.469 | 98.9 | 0.7715 | 5.01 |
2. | 2,4-dimethoxybenzoic acid ** | 30.058 | 99.7 | 0.0161 | 0.10 |
3. | 2,4-dihydroxybenzoic acid | 29.902 | 98.9 | 0.0088 | 0.060 |
4. | Benzoic acid | 34.226 | 99.0 | 0.0094 | 0.061 |
5. | p-Coumaric acid ** | 20.269 | 99.7 | 0.0245 | 1.60 |
6. | Coumarin | 27.588 | 99.5 | 0.0026 | 0.017 |
7. | Vanillic acid ** | 11.126 | 99.7 | 0.0192 | 0.13 |
8. | Ergosterol peroxide | 32.125 | 99.8 | 0.1695 | 1.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, T.L.; Nguyen, C.T.; Vu, D.C.; Nguyen, T.T.C.; Nguyen, V.Q.; Smeda, R.J. Rice By-Products Reduce Seed and Seedlings Survival of Echinochloa crus-galli, Leptochloa chinensis and Fymbristylis miliacea. Agronomy 2021, 11, 776. https://doi.org/10.3390/agronomy11040776
Ho TL, Nguyen CT, Vu DC, Nguyen TTC, Nguyen VQ, Smeda RJ. Rice By-Products Reduce Seed and Seedlings Survival of Echinochloa crus-galli, Leptochloa chinensis and Fymbristylis miliacea. Agronomy. 2021; 11(4):776. https://doi.org/10.3390/agronomy11040776
Chicago/Turabian StyleHo, Thi L., Cuong T. Nguyen, Danh C. Vu, Tu T. C. Nguyen, Vinh Q. Nguyen, and Reid J. Smeda. 2021. "Rice By-Products Reduce Seed and Seedlings Survival of Echinochloa crus-galli, Leptochloa chinensis and Fymbristylis miliacea" Agronomy 11, no. 4: 776. https://doi.org/10.3390/agronomy11040776
APA StyleHo, T. L., Nguyen, C. T., Vu, D. C., Nguyen, T. T. C., Nguyen, V. Q., & Smeda, R. J. (2021). Rice By-Products Reduce Seed and Seedlings Survival of Echinochloa crus-galli, Leptochloa chinensis and Fymbristylis miliacea. Agronomy, 11(4), 776. https://doi.org/10.3390/agronomy11040776