How Mineral Fertilization and Soil-Climate Conditions Affect Spring Barley Grain Yield and Soil Chemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Trial Description
2.2. Soil Analyses
2.3. Data Analysis
3. Results
3.1. Weather Conditions
3.2. The Effect of the Year and Fertilization on Grain Yield
3.2.1. Caslav
3.2.2. Ivanovice
3.2.3. Lukavec
3.3. The Effect of the Fertilizer Treatments on Soil Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czech Statistical Office Sowing Areas of Agricultural Crops. Available online: https://www.czso.cz/csu/czso/zem_cr (accessed on 21 May 2021).
- Zargar, M.; Bodner, G.; Tumanyan, A.; Tyutyuma, N.; Plushikov, V.; Pakina, E.; Shcherbakova, N.; Bayat, M. Productivity of various barley (Hordeum vulgare L.) cultivars under semi-arid conditions in Southern Russia. Agron. Res. 2018, 16, 2242–2253. [Google Scholar] [CrossRef]
- Noworolnik, K. Morphological characters, plant phenology and yield of spring barley (Hordeum sativum L.) depending on cultivar properties and sowing date. Acta Agrobot. 2012, 65, 171–176. [Google Scholar] [CrossRef] [Green Version]
- O’Donovan, J.T.; Turkington, T.K.; Edney, M.J.; Clayton, G.W.; McKenzie, R.H.; Juskiw, P.E.; Lafond, G.P.; Grant, C.A.; Brandt, S.; Harker, K.N.; et al. Seeding rate, nitrogen rate, and cultivar effects on malting barley production. Agron. J. 2011, 103, 709–716. [Google Scholar] [CrossRef] [Green Version]
- Sieling, K.; Christen, O. Crop rotation effects on yield of oilseed rape, wheat and barley and residual effects on the subsequent wheat. Arch. Agron. Soil Sci. 2015, 61, 1531–1549. [Google Scholar] [CrossRef]
- O’Donovan, J.T.; Izydorczyk, M.S.; Tidemann, B.; Edney, M.J.; Turkington, T.K.; Grant, C.A.; Harker, K.N.; Gan, Y. Effect of preceding crop and nitrogen application on malting barley quality. Can. J. Plant Sci. 2017, 97, 1014–1023. [Google Scholar] [CrossRef] [Green Version]
- Klikocka, H.; Narolski, B.; Michalkiewicz, G. The effects of tillage and soil mineral fertilization on the yield and yield components of spring barley. Plant Soil Environ. 2014, 60, 255–261. [Google Scholar] [CrossRef]
- Malecka, I.; Blecharczyk, A. Effect of tillage systems, mulches and nitrogen fertilization on spring barley (Hordeum vulgare). Agron. Res. 2008, 6, 517–529. [Google Scholar]
- Shejbalová, Š.; Černý, J.; Vašák, F.; Kulhánek, M.; Balík, J. Nitrogen efficiency of spring barley in long-term experiment. Plant Soil Environ. 2014, 60, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Siller, A.; Hashemi, M.; Wise, C.; Smychkovich, A.; Darby, H. Date of planting and nitrogen management for winter malt barley production in the Northeast, USA. Agronomy 2021, 11, 797. [Google Scholar] [CrossRef]
- Thai, T.H.; Bellingrath-Kimura, S.D.; Hoffmann, C.; Barkusky, D. Effect of long-term fertiliser regimes and weather on spring barley yields in sandy soil in North-East Germany. Arch. Agron. Soil Sci. 2020, 66, 1812–1826. [Google Scholar] [CrossRef]
- Černý, J.; Balík, J.; Kulhánek, M.; Časová, K.; Nedvěd, V. Mineral and organic fertilization efficiency in long-term stationary experiments. Plant Soil Environ. 2010, 56, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Křen, J.; Klem, K.; Svobodová, I.; Míša, P.; Neudert, L. Yield and grain quality of spring barley as affected by biomass formation at early growth stages. Plant Soil Environ. 2014, 60, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Trnka, M.; Hlavinka, P.; Semerádová, D.; Dubrovský, M.; Žalud, Z.; Možný, M. Agricultural drought and spring barley yields in the Czech Republic. Plant Soil Environ. 2007, 53, 306–316. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, R.K.; Lindsey, L.E. Agronomic management of malting barley and research needs to meet demand by the craft brew industry. Agron. J. 2019, 111, 1570–1580. [Google Scholar] [CrossRef] [Green Version]
- Sainju, U.M.; Lenssen, A.W.; Barsotti, J.L. Dryland malt barley yield and quality affected by tillage, cropping sequence, and nitrogen fertilization. Agron. J. 2013, 105, 329–340. [Google Scholar] [CrossRef] [Green Version]
- Zebarth, B.J.; Drury, C.F.; Tremblay, N.; Cambouris, A.N. Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada: A review. Can. J. Soil Sci. 2009, 89, 113–132. [Google Scholar] [CrossRef]
- Kanter, D.R.; Zhang, X.; Mauzerall, D.L. Reducing nitrogen pollution while decreasing farmers’ costs and increasing fertilizer industry profits. J. Environ. Qual. 2015, 44, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Lassaletta, L.; Billen, G.; Garnier, J.; Bouwman, L.; Velazquez, E.; Mueller, N.D.; Gerber, J.S. Nitrogen use in the global food system: Past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ. Res. Lett. 2016, 11, 095007. [Google Scholar] [CrossRef]
- Dostálová, Y.; Hřivna, L.; Kotková, B.; Burešová, I.; Janečková, M.; Šottníková, V. Effect of nitrogen and sulphur fertilization on the quality of barley protein. Plant Soil Environ. 2015, 61, 399–404. [Google Scholar] [CrossRef] [Green Version]
- Neugschwandtner, R.W.; Liebhard, P.; Kaul, H.P.; Wagentristl, H. Soil chemical properties as affected by tillage and crop rotation in a long-term field experiment. Plant Soil Environ. 2014, 60, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Macák, M.; Đalović, I.; Turan, J.; Šeremešić, S.; Tyr, S.; Milošev, D.; Kulina, M. Soil organic carbon in long-term experiments: Comparative analysis in Slovakia and Serbia. Agron. Res. 2017, 15, 1971–1982. [Google Scholar] [CrossRef]
- Kopeć, M.; Gondek, K.; Mierzwa-Hersztek, M.; Jarosz, R. Changes in the soil content of organic carbon nitrogen and sulphur in a long-term fertilisation experiment in czarny potok (Poland). J. Elem. 2021, 26, 33–46. [Google Scholar] [CrossRef]
- Chen, Y.; Camps-Arbestain, M.; Shen, Q.; Singh, B.; Cayuela, M.L. The long-term role of organic amendments in building soil nutrient fertility: A meta-analysis and review. Nutr. Cycl. Agroecosyst. 2018, 111, 103–125. [Google Scholar] [CrossRef]
- Šimon, T.; Czakó, A. Influence of long-term application of organic and inorganic fertilizers on soil properties. Plant Soil Environ. 2014, 60, 314–319. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Lu, K.; Strong, P.J.; Xu, Q.; Wu, Q.; Xu, Z.; Xu, J.; Wang, H. Long-term fertilizer application effects on the soil, root arbuscular mycorrhizal fungi and community composition in rotation agriculture. Appl. Soil Ecol. 2015, 89, 35–43. [Google Scholar] [CrossRef]
- Soman, C.; Li, D.; Wander, M.M.; Kent, A.D. Long-term fertilizer and crop-rotation treatments differentially affect soil bacterial community structure. Plant Soil 2017, 413, 145–159. [Google Scholar] [CrossRef]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Rutkowska, B.; Szulc, W.; Sosulski, T.; Stępień, W. Soil micronutrient availability to crops affected by long-term inorganic and organic fertilizer applications. Plant Soil Environ. 2014, 60, 198–203. [Google Scholar] [CrossRef]
- Vašák, F.; Černý, J.; Buráňová, Š.; Kulhánek, M.; Balík, J. Soil pH changes in long-term field experiments with different fertilizing systems. Soil Water Res. 2015, 10, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Maltas, A.; Kebli, H.; Oberholzer, H.R.; Weisskopf, P.; Sinaj, S. The effects of organic and mineral fertilizers on carbon sequestration, soil properties, and crop yields from a long-term field experiment under a Swiss conventional farming system. Land Degrad. Dev. 2018, 29, 926–938. [Google Scholar] [CrossRef]
- Czarnecki, S.; Düring, R.A. Influence of long-term mineral fertilization on metal contents and properties of soil samples taken from different locations in hesse, Germany. Soil 2015, 1, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Shang, Q.; Ling, N.; Feng, X.; Yang, X.; Wu, P.; Zou, J.; Shen, Q.; Guo, S. Soil fertility and its significance to crop productivity and sustainability in typical agroecosystem: A summary of long-term fertilizer experiments in China. Plant Soil 2014, 381, 13–23. [Google Scholar] [CrossRef]
- Wei, W.; Yan, Y.; Cao, J.; Christie, P.; Zhang, F.; Fan, M. Effects of combined application of organic amendments and fertilizers on crop yield and soil organic matter: An integrated analysis of long-term experiments. Agric. Ecosyst. Environ. 2016, 225, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Menšík, L.; Hlisnikovský, L.; Pospíšilová, L.; Kunzová, E. The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment. J. Soils Sediments 2018, 18, 2813–2822. [Google Scholar] [CrossRef]
- Vanden Nest, T.; Vandecasteele, B.; Ruysschaert, G.; Cougnon, M.; Merckx, R.; Reheul, D. Effect of organic and mineral fertilizers on soil P and C levels, crop yield and P leaching in a long term trial on a silt loam soil. Agric. Ecosyst. Environ. 2014, 197, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Liu, E.; Yan, C.; Mei, X.; He, W.; Bing, S.H.; Ding, L.; Liu, Q.; Liu, S.; Fan, T. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma 2010, 158, 173–180. [Google Scholar] [CrossRef]
- Kožnarová, V.; Klabzuba, J. Recommendation of World Meteorological Organization to describing meteorological or climatological conditions—Information. Plant Soil Environ. 2011, 48, 190–192. [Google Scholar] [CrossRef] [Green Version]
- Sims, J.R.; Haby, V.A. Simplified colorimetric determination of soil organic matter. Soil Sci. 1971, 112, 137–141. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Total Carbon, Organic Carbon, and Organic Matter: Methods of Soil Analysis Part 3—Chemical Methods; Soil Science Society of America, Inc.: Madison, WI, USA, 2018; pp. 961–1010. [Google Scholar]
- Kirk, P.L. Kjeldahl method for total nitrogen. Anal. Chem. 1950, 22, 354–358. [Google Scholar] [CrossRef]
- Mehlich, A. Communications in soil science and plant analysis Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 37–41. [Google Scholar] [CrossRef]
- Arnhold, E. Easy Nonlinear Model; The R Foundation: Vienna, Austria, 2017; Available online: https://cran.r-project.org/web/packages/easynls/easynls.pdf (accessed on 13 June 2021).
- Mangiafico, S. Rcompanion: Functions to Support Extension Education Program Evaluation in R; Rutgers Cooperative Extension: New Brunswick, NJ, USA, 2019; Available online: http://rcompanion.org/handbook/ (accessed on 13 June 2021).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Meloun, M.; Militský, J. Statistical Data Analysis, a Practical Guide; Woodhead Publishing Limited: Cambridge, UK, 2011. [Google Scholar]
- Kunzová, E.; Hejcman, M. Yield development of winter wheat over 50 years of FYM, N, P and K fertilizer application on black earth soil in the Czech Republic. Field Crops Res. 2009, 111, 226–234. [Google Scholar] [CrossRef]
- Hladký, J.; Brtnický, M.; Elbl, J.; Kintl, A.; Kynický, J. Chernozem degradation in the Czech Republic over the last 50 years. In Proceedings of the SGEM2018, Albena, Bulgaria, 30 June–9 July 2018. [Google Scholar]
- Eitzinger, J.; Trnka, M.; Semerádová, D.; Thaler, S.; Svobodová, E.; Hlavinka, P.; Šiška, B.; Takáč, J.; Malatinská, L.; Nováková, M.; et al. Regional climate change impacts on agricultural crop production in Central and Eastern Europe—Hotspots, regional differences and common trends. J. Agric. Sci. 2013, 151, 787–812. [Google Scholar] [CrossRef]
- Kunzová, E.; Hejcman, M. Yield development of winter wheat over 50 years of nitrogen, phosphorus and potassium application on greyic Phaeozem in the Czech Republic. Eur. J. Agron. 2010, 33, 166–174. [Google Scholar] [CrossRef]
- Kabała, C. Chernozem (czarnoziem)—Soil of the year 2019 in Poland. Origin, classification and use of chernozems in Poland. Soil Sci. Annu. 2019, 70, 184–192. [Google Scholar] [CrossRef]
- Dubis, B.; Hlasko-Nasalska, A.; Hulanicki, P. Yield and malting quality of spring barley cultivar Prestige depending on nitrogen fertilization. Acta Sci. Pol. Agric. 2012, 11, 45–56. [Google Scholar]
- Hochmuth, G.; Hanlon, E.; Overman, A. Fertilizer Experimentation, Data Analyses, and Interpretation for Developing Fertilization Recommendations: Examples with Vegetable Crop Research; University of Florida: Gainesville, FL, USA, 2017. [Google Scholar]
- Zhao, B.; Chen, J.; Zhang, J.; Xin, X.; Hao, X. How different long-term fertilization strategies influence crop yield and soil properties in a maize field in the North China Plain. J. Plant Nutr. Soil Sci. 2013, 176, 99–109. [Google Scholar] [CrossRef]
- Zeng, M.; De Vries, W.; Bonten, L.T.C.; Zhu, Q.; Hao, T.; Liu, X.; Xu, M.; Shi, X.; Zhang, F.; Shen, J. Model-based analysis of the long-term effects of fertilization management on cropland soil acidification. Environ. Sci. Technol. 2017, 51, 3843–3851. [Google Scholar] [CrossRef] [PubMed]
- Šarapatka, B.; Bednář, M.; Novák, P. Analysis of soil degradation in the Czech Republic: GIS approach. Soil Water Res. 2010, 5, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Zhengchao, Z.; Zhuoting, G.; Zhouping, S.; Fuping, Z. Effects of long-term repeated mineral and organic fertilizer applications on soil organic carbon and total nitrogen in a semi-arid cropland. Eur. J. Agron. 2013, 45, 20–26. [Google Scholar] [CrossRef]
Caslav | Ivanovice | Lukavec | |
---|---|---|---|
GPS | 49°85′ N, 15°40′ E | 49°19′ N, 17°05′ E | 49°57′ N, 14°99′ E |
Altitude (m a.s.l.) | 263 | 225 | 620 |
Soil type | Chernozems calcic (luvic)-degraded | Chernozems leptic | Cambisols skeletic |
Arable layer (cm) | 40–45 | 30–35 | 25–30 |
Initial pH (KCl) in 1956 | 6.5 | 7.1 | 6.4 |
Initial P (mg kg−1) in 1956 | 30 | 25 | 21 |
Initial K (mg kg−1) in 1956 | 108 | 138 | 276 |
Initial Mg (mg kg−1) in 1956 | 114 | 111 | 152 |
Precipitation (mm)-CN (1981–2010) | 593 | 562 | 698 |
Precipitation 2013 | 582 (N) | 554 (N) | 876 (AN) |
Precipitation 2014 | 541 (N) | 520 (N) | 717 (N) |
Precipitation 2015 | 388 (VBN) | 392 (VBN) | 576 (BN) |
Precipitation 2016 | 393 (VBN) | 474 (BN) | 601 (BN) |
Temperature (°C)-CN (1981–2010) | 9.4 | 9.1 | 7.8 |
Temperature 2013 | 8.9 (N) | 9.2 (N) | 7.3 (BN) |
Temperature 2014 | 10.3 (AN) | 10.5 (VAN) | 8.6 (AN) |
Temperature 2015 | 10.5 (AN) | 10.4 (VAN) | 8.7 (AN) |
Temperature 2016 | 9.7 (N) | 9.9 (AN) | 7.9 (N) |
Field I. | Field II. | Field III. | Field IV. | |
---|---|---|---|---|
2012 | Silage maize | |||
2013 | Spring barley | Silage maize | ||
2014 | Spring barley | Silage maize | ||
2015 | Spring barley | Silage maize | ||
2016 | Spring barley |
2013 | 2014 | 2015 | 2016 | Mean | |
---|---|---|---|---|---|
Caslav | |||||
Control | 3.4 ± 0.1 Aa | 4.7 ± 0.1 Ab | 4.9 ± 0.1 Ab | 3.8 ± 0.1 Aa | 4.2 ± 0.2 A |
N1 | 5.1 ± 0.1 Ba | 6.5 ± 0.1 Bb | 7.6 ± 0.1 Bc | 6.2 ± 0.1 Bb | 6.4 ± 0.2 B |
N2 | 5.6 ± 0.1 Ba | 6.7 ± 0.1 BCb | 7.6 ± 0.1 Bc | 6.2 ± 0.1 Bb | 6.5 ± 0.2 BC |
NPK1 | 5.6 ± 0.2 Ba | 6.9 ± 0.1 BCb | 7.5 ± 0.2 Bc | 6.8 ± 0.1 Cb | 6.7 ± 0.2 CD |
NPK2 | 6.3 ± 0.2 Ca | 7.0 ± 0.1 BCb | 7.6 ± 0.2 Bc | 6.7 ± 0.1 Cab | 6.9 ± 0.1 D |
NPK3 | 5.4 ± 0.2 Ba | 7.2 ± 0.1 Cc | 7.7 ± 0.1 Bc | 6.2 ± 0.1 Bb | 6.6 ± 0.2 C |
Mean | 5.2 ± 0.2 a | 6.5 ± 0.2 c | 7.2 ± 0.2 d | 6.0 ± 0.2 b | |
Ivanovice | |||||
Control | 4.9 ± 0.2 Ab | 4.8 ± 0.2 Ab | 3.4 ± 0.1 Aa | 5.2 ± 0.2 Ab | 4.6 ± 0.2 A |
N1 | 7.6 ± 0.2 Ba | 7.8 ± 0.1 Ba | 7.6 ± 0.2 Ba | 7.5 ± 0.2 Ba | 7.6 ± 0.1 B |
N2 | 7.8 ± 0.1 Ba | 7.6 ± 0.3 Ba | 8.0 ± 0.2 BCa | 7.3 ± 0.1 Ba | 7.6 ± 0.1 BC |
NPK1 | 8.2 ± 0.1 Ba | 7.7 ± 0.2 Ba | 8.0 ± 0.3 BCa | 7.9 ± 0.1 Ba | 7.9 ± 0.1 CD |
NPK2 | 8.0 ± 0.1 Ba | 7.7 ± 0.2 Ba | 8.6 ± 0.1 CDb | 7.5 ± 0.1 Ba | 8.0 ± 0.1 CD |
NPK3 | 7.9 ± 0.2 Ba | 7.6 ± 0.1 Ba | 9.0 ± 0.2 Db | 7.5 ± 0.2 Ba | 8.0 ± 0.2 D |
Mean | 7.4 ± 0.2 ab | 7.2 ± 0.2 ab | 7.4 ± 0.4 b | 7.1 ± 0.2 a | |
Lukavec | |||||
Control | 1.5 ± 0.1 Aa | 2.7 ± 0.2 Abc | 3.2 ± 0.1 Ac | 2.5 ± 0.1 Ab | 2.5 ± 0.2 A |
N1 | 3.9 ± 0.2 Ba | 5.3 ± 0.1 Bb | 5.1 ± 0.3 Bb | 4.6 ± 0.1 Bab | 4.7 ± 0.2 B |
N2 | 5.0 ± 0.2 BCa | 5.6 ± 0.2 Ba | 5.4 ± 0.2 Ba | 5.3 ± 0.2 BCa | 5.3 ± 0.1 C |
NPK1 | 3.7 ± 0.3 Ba | 5.3 ± 0.2 Bb | 5.3 ± 0.1 Bb | 4.7 ± 0.3 Bab | 4.7 ± 0.2 B |
NPK2 | 5.4 ± 0.4 Ca | 6.4 ± 0.1 Ca | 5.9 ± 0.1 Ba | 6.1 ± 0.2 CDa | 6.0 ± 0.1 D |
NPK3 | 6.2 ± 0.4 Cab | 7.1 ± 0.2 Cb | 5.8 ± 0.1 Ba | 6.4 ± 0.1 Dab | 6.4 ± 0.2 D |
Mean | 4.3 ± 0.3 a | 5.4 ± 0.3 c | 5.1 ± 0.2 bc | 4.9 ± 0.3 b |
N1 | N2 | NPK1 | NPK2 | NPK3 | |
---|---|---|---|---|---|
Caslav | 72 ± 8 b | 39 ± 3 a | 83 ± 6 b | 45 ± 2 a | 27 ± 2 a |
Ivanovice | 102 ± 14 bc | 52 ± 9 a | 113 ± 14 c | 56 ± 11 ab | 38 ± 8 a |
Lukavec | 75 ± 5 b | 48 ± 4 a | 76 ± 4 b | 58 ± 4 ab | 43 ± 5 a |
P | P Assess. | K | K Assess. | Mg | Mg Assess. | Ca | |
---|---|---|---|---|---|---|---|
Caslav | |||||||
Control | 42 ± 4 A | Low | 108 ± 20 A | Suitable | 114 ± 7 A | Suitable | 3015 ± 143 A |
N | 53 ± 17 A | Low | 130 ± 15 AB | Suitable | 145 ± 7 B | Suitable | 2946 ± 126 A |
NPK | 146 ± 2 B | High | 163 ± 18 B | Suitable | 150 ± 8 B | Suitable | 2910 ± 192 A |
Ivanovice | |||||||
Control | 65 ± 7 A | Suitable | 174 ± 7 A | Good | 184 ± 16 A | Good | 4257 ± 205 A |
N | 117 ± 14 A | Good | 279 ± 22 AB | Good | 235 ± 12 A | Good | 4192 ± 243 A |
NPK | 232 ± 25 B | Very high | 429 ± 67 B | Very high | 133 ± 17 A | Suitable | 4239 ± 221 A |
Lukavec | |||||||
Control | 46 ± 8 A | Low | 110 ± 16 A | Suitable | 110 ± 9 A | Suitable | 2054 ± 69 A |
N | 50 ± 5 A | Low | 129 ± 11 AB | Suitable | 109 ± 6 A | Suitable | 2209 ± 80 A |
NPK | 158 ± 10 B | High | 162 ± 12 B | Suitable | 103 ± 7 A | Low | 2181 ± 93 A |
Variable | Factor Weights | Contribution of Factors | |||
---|---|---|---|---|---|
Factor 1 | Factor 2 | Factor 1 | Factor 2 | Communality | |
pH (KCl) | 0.9734 | −0.2113 | 0.9475 | 0.9922 | 0.9999 |
P | 0.4635 | 0.6353 | 0.2148 | 0.6184 | 0.9901 |
K | 0.6374 | 0.7158 | 0.4063 | 0.9187 | 0.9964 |
Ca | 0.9157 | 0.2041 | 0.8385 | 0.8802 | 0.9999 |
Mg | 0.8403 | 0.4649 | 0.7060 | 0.9221 | 0.9567 |
SOC | 0.1270 | 0.9428 | 0.0161 | 0.9050 | 0.9999 |
Ntot | −0.0604 | 0.9723 | 0.0037 | 0.9490 | 0.9992 |
Grain yield | 0.6106 | 0.5355 | 0.3728 | 0.6595 | 0.9972 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hlisnikovský, L.; Křížová, K.; Menšík, L.; Kunzová, E. How Mineral Fertilization and Soil-Climate Conditions Affect Spring Barley Grain Yield and Soil Chemical Properties. Agronomy 2021, 11, 1843. https://doi.org/10.3390/agronomy11091843
Hlisnikovský L, Křížová K, Menšík L, Kunzová E. How Mineral Fertilization and Soil-Climate Conditions Affect Spring Barley Grain Yield and Soil Chemical Properties. Agronomy. 2021; 11(9):1843. https://doi.org/10.3390/agronomy11091843
Chicago/Turabian StyleHlisnikovský, Lukáš, Kateřina Křížová, Ladislav Menšík, and Eva Kunzová. 2021. "How Mineral Fertilization and Soil-Climate Conditions Affect Spring Barley Grain Yield and Soil Chemical Properties" Agronomy 11, no. 9: 1843. https://doi.org/10.3390/agronomy11091843
APA StyleHlisnikovský, L., Křížová, K., Menšík, L., & Kunzová, E. (2021). How Mineral Fertilization and Soil-Climate Conditions Affect Spring Barley Grain Yield and Soil Chemical Properties. Agronomy, 11(9), 1843. https://doi.org/10.3390/agronomy11091843