Using DNDC and WHCNS_Veg to Optimize Management Strategies for Improving Potato Yield and Nitrogen Use Efficiency in Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment and Measurements
2.2. DNDC and WHCNS_Veg Model Description
2.2.1. DNDC Model
2.2.2. WHCNS_Veg Model
2.3. Model Parameterization, Calibration, and Validation
2.4. Model Performance Statistics
2.5. Sensitivity Analysis
2.6. Nitrogen Use Efficiency
3. Results and Discussion
3.1. Model Calibration and Validation
3.1.1. Crop Growth
3.1.2. Soil Temperature
3.1.3. Soil Moisture
3.1.4. Soil Inorganic N
3.2. Sensitivity Analysis for Tuber Yield and Agronomic Efficiency
3.2.1. Fertilizer N Application Rate and Timing
3.2.2. Fertilization Depth
3.2.3. Planting Density
3.2.4. Planting Date
3.3. Combination of Optimized Management Practices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agricultural Organization of the United Nation. FAOSTAT Statistical; FAO: Rome, Italy, 2021. [Google Scholar]
- Li, S.; Jin, J. 4R Nutrient Management Practices for Potato Production in China. Better Crops 2012, 96, 20–23. [Google Scholar]
- Qin, Y.; Yu, J.; Chen, Y.; Jia, L.; Qiqige, S.; Fan, M. Situation of Fertilization and Fertilizer Use Efficiency on Irrigated Potato in Inner Mongolia. China Veg. 2019, 11, 75–79. [Google Scholar]
- Xu, Y.; He, P.; Qiu, S.; Xu, X.; Ma, J.; Ding, W.; Zhao, S.; Gao, Q.; Zhou, W. Regional variation of yield and fertilizer use efficiency of potato in China. J. Plant Nutr. Fertitizer 2019, 25, 22–35. [Google Scholar]
- Gao, X.; Li, C.; Zhang, M.; Wang, R.; Chen, B. Controlled release urea improved the nitrogen use efficiency, yield and quality of potato (Solanum tuberosum L.) on silt loamy soil. Field Crop. Res. 2015, 181, 60–68. [Google Scholar] [CrossRef]
- Jiao, F.; Wu, J.; Yu, L.; Zhai, R. 15N tracer technique analysis of the absorption and utilisation of nitrogen fertiliser by potatoes. Nutr. Cycl. Agroecosyst. 2013, 95, 345–351. [Google Scholar] [CrossRef]
- Xu, Y. Methodology of Fertilizer Recommendation Based on Yield Response and Agronomic Efficiency for Potato. Master’s Thesis, Jilin Agricultural University, Jilin, China, 2018. [Google Scholar]
- Vos, J. Nitrogen Responses and Nitrogen Management in Potato. Potato Res. 2010, 52, 305–317. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Taheri, S.; Shamabadi, Z. Effect of planting date and plant density on potato yield, approach energy efficiency. Int. J. Agric. Crop. Sci. IJACS 2013, 5, 747–754. [Google Scholar]
- Tang, J.; Wang, J.; Wang, E.; Yu, Q.; Yin, H.; He, D.; Pan, X. Identifying key meteorological factors to yield variation of potato and the optimal planting date in the agro-pastoral ecotone in North China. Agric. For. Meteorol. 2018, 256, 283–291. [Google Scholar] [CrossRef]
- Fayera, W.N. Yield and yield components of potato (Solanum tuberosum L.) as influenced by planting density and rate of nitrogen application at Holeta, West Oromia region of Ethiopia. Afr. J. Agric. Res. 2017, 12, 2242–2254. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zang, H.; Liu, J.; Shi, X.; Li, S.; Chen, F.; Chu, Q. Optimum nitrogen rate to maintain sustainable potato production and improve nitrogen use efficiency at a regional scale in China. A meta-analysis. Agron. Sustain. Dev. 2020, 40, 1–14. [Google Scholar] [CrossRef]
- Kim, Y.U.; Lee, B.W.; Heu, S.; Shim, K.B.; Kim, S. Potato Yield Gaps in North Korea and Strategies to Close the Gaps. Agronomy 2020, 10, 1605. [Google Scholar] [CrossRef]
- Jiang, R.; He, W.; Zhou, W.; Hou, Y.; Yang, J.Y.; He, P. Exploring management strategies to improve maize yield and nitrogen use efficiency in northeast China using the DNDC and DSSAT models. Comput. Electron. Agric. 2019, 166, 104988. [Google Scholar] [CrossRef]
- Divya, K.L.; Mhatre, P.H.; Venkatasalam, E.P.; Sudha, R. Crop Simulation Models as Decision-Supporting Tools for Sustainable Potato Production: A Review. Potato Res. 2021, 64, 387–419. [Google Scholar] [CrossRef]
- Raymundo, R.; Asseng, S.; Cammarano, D.; Quiroz, R. Potato, sweet potato, and yam models for climate change: A review. Field Crop. Res. 2014, 166, 173–185. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, J.; Zhao, H.; Wang, Z. Optimum Management of Water and Fertilizer for Potato in Soft Rock and Sand Compound Soil Based on WHCNS Model: Model Calibration and Validation. IOP Conf. Ser. Earth Environ. Sci. 2018, 170, 022170. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Guo, K.; Li, M.; Xu, Q.; Tian, J.; Zhang, K.; Guo, Y.; Gao, X. Research on the Effect of Multifactor of DNDC Model on N2O Emission and Yield of Potato Field. Ecol. Environ. Sci. 2019, 28, 1141–1151. [Google Scholar]
- He, W.; Dutta, B.; Grant, B.B.; Chantigny, M.H.; Hunt, D.; Bittman, S.; Tenuta, M.; Worth, D.; VanderZaag, A.; Desjardins, R.L.; et al. Assessing the effects of manure application rate and timing on nitrous oxide emissions from managed grasslands under contrasting climate in Canada. Sci. Total Environ. 2020, 716, 135374. [Google Scholar] [CrossRef]
- Guo, K.; Hou, Y.; Wang, L.; Gao, X.; Li, M.; Guo, S. Study on the Optimal Nitrogen Application Rate with N2O Emission Reducing and Yield Increasing under Mulching in Potato Field Based on DNDC Model. Ecol. Environ. Sci. 2018, 27, 1658–1664. [Google Scholar]
- Gilhespy, S.L.; Anthony, S.; Cardenas, L.; Chadwick, D.; del Prado, A.; Li, C.; Misselbrook, T.; Rees, R.M.; Salas, W.; Sanz-Cobena, A.; et al. First 20 years of DNDC (DeNitrification DeComposition): Model evolution. Ecol. Model. 2014, 292, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Nendel, C.; Schmutz, U.; Venezia, A.; Piro, F.; Rahn, C.R. Converting simulated total dry matter to fresh marketable yield for field vegetables at a range of nitrogen supply levels. Plant Soil 2009, 325, 319–334. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Hu, K.; Batchelor, W.D.; Qin, W.; Li, B. Developing a water and nitrogen management model for greenhouse vegetable production in China: Sensitivity analysis and evaluation. Ecol. Model. 2018, 367, 24–33. [Google Scholar] [CrossRef]
- Liang, H.; Hu, K.L.; Batchelor, W.D.; Chen, Q.; Liang, B.; Li, B.G. Modeling dissolved organic nitrogen dynamics under different N management practices for intensive greenhouse production using an improved WHCNS_veg model. Geoderma 2019, 337, 1039–1050. [Google Scholar] [CrossRef]
- IUSS Working Group, WRB World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Report No. 106; Food and Agriculture Organization of The United Nations: Rome, Italy, 2015. [Google Scholar]
- United States Department of Agriculture. Soil Texture Calculator. 2021. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/?cid=nrcs142p2_054167 (accessed on 29 July 2021).
- He, P.; Jin, J.; Pampolino, M.F.; Johnston, A.M. Approach and decision support system based on crop yield response and agronomic efficiency. Plant Nutr. Fertitizer Sci. 2012, 18, 499–505. [Google Scholar]
- Bao, S. Soil Agrochemical Analysis, 3rd ed.; Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Li, C.; Frolking, S.; Frolking, T.A. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. J. Geophys. Res. Atmos. 1992, 97, 9759–9776. [Google Scholar] [CrossRef]
- Li, C.; Farahbakhshazad, N.; Jaynes, D.B.; Dinnes, D.L.; Salas, W.; McLaughlin, D. Modeling nitrate leaching with a biogeochemical model modified based on observations in a row-crop field in Iowa. Ecol. Model. 2006, 196, 116–130. [Google Scholar] [CrossRef]
- Li, C.; Frolking, S.; Harriss, R. User’s Guide for the DNDC Model; Institute for the Study of Earth, Oceans and Space, University of New Hampshire: Durham, NH, USA, 2012. [Google Scholar]
- Liang, H.; Hu, K.; Sun, Y.; Lu, H.; Lin, S. Integrated water and nitrogen management model of WHCNS_Veg for greenhouse vegetable production system. Trans. Chin. Soc. Agric. Eng. 2020, 36, 96–105. [Google Scholar]
- Liang, H.; Hu, K.; Li, B.; Liu, H. Coupled simulation of soil water heat carbon nitrogen process and crop growth at soil-plant-atmosphere continuum system. Trans. Chin. Soc. Agric. Eng. 2014, 30, 54–66. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell, J.; Rowe, C.M. Statistics for the evaluation and comparison of models. J. Geophys. Res. 1985, 90, 8995–9005. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. Asabe 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Ahuja, L.R.; Rojas, K.W.; Hanson, J.D.; Shaffer, M.J.; Ma, L. Root Zone Water Quality Model: Modelling Management Effects on Water Quality and Crop Production; Water Resources Publications: Highlands Ranch, CO, USA, 2000. [Google Scholar]
- Yang, J.M.; Yang, J.Y.; Liu, S.; Hoogenboom, G. An evaluation of the statistical methods for testing the performance of crop models with observed data. Agric. Syst. 2014, 127, 81–89. [Google Scholar] [CrossRef]
- Liang, H.; Lv, H.; Batchelor, W.D.; Lian, X.; Wang, Z.; Lin, S.; Hu, K. Simulating nitrate and DON leaching to optimize water and N management practices for greenhouse vegetable production systems. Agric. Water Manag. 2020, 241, 106377. [Google Scholar] [CrossRef]
- Tang, J.; Wang, J.; Fang, Q.; Wang, E.; Yin, H.; Pan, X. Optimizing planting date and supplemental irrigation for potato across the agro-pastoral ecotone in North China. Eur. J. Agron. 2018, 98, 82–94. [Google Scholar] [CrossRef]
- Xu, X.; He, P.; Pampolino, M.F.; Li, Y.; Liu, S.; Xie, J.; Hou, Y.; Zhou, W. Narrowing yield gaps and increasing nutrient use efficiencies using the Nutrient Expert system for maize in Northeast China. Field Crop. Res. 2016, 194, 75–82. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Lu, Z.; Liu, L.; Yang, C. Effect of low nitrogen stress on the seedling growth and root physiological traits of Fagopyrum tataricum cultivars with different low-N treatments. Acta Bot. Boreali-Occident. Sinica 2017, 37, 1331–1339. [Google Scholar]
- He, W.; Smith, W.N.; Grant, B.B.; VanderZaag, A.C.; Schwager, E.A.; Qi, Z.; Reynolds, D.; Wagner-Riddle, C. Understanding the Fertilizer Management Impacts on Water and Nitrogen Dynamics for a Corn Silage Tile-Drained System in Canada. J. Environ. Qual. 2019, 48, 1016–1028. [Google Scholar] [CrossRef] [Green Version]
- Ruža, A.; Skrabule, I.; Vaivode, A. Influence of Nitrogen on Potato Productivity and Nutrient Use Efficiency. Proc. Latv. Acad. Sci. Sect. B. Nat. Exact Appl. Sci. 2013, 67, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Zebarth, B.J.; Rosen, C.J. Research perspective on nitrogen bmp development for potato. Am. J. Potato Res. 2007, 84, 3–18. [Google Scholar] [CrossRef]
- Rens, L.R.; Zotarelli, L.; Rowland, D.L.; Morgan, K.T. Optimizing nitrogen fertilizer rates and time of application for potatoes under seepage irrigation. Field Crop. Res. 2018, 215, 49–58. [Google Scholar] [CrossRef]
- Liang, H. Establishing Soil Water-Carbon-Nitrogen Process and Crop Growth Joint Model and Its Application of Water and Nitrogen Management. Ph.D. Thesis, China Agricultural University, Beijing, China, 2017. [Google Scholar]
- Haque, S.A. Efficiency of Urea Super Granule Point Placement on Potato. Bull. Inst. Trop. Agric. Kyushu Univ. 2005, 28, 21–24. [Google Scholar]
- Nkebiwe, P.M.; Weinmann, M.; Bar-Tal, A.; Müller, T. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crop. Res. 2016, 196, 389–401. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, M.; Tian, Y.; Zhao, M.; Zhang, B.; Zhao, M.; Zeng, K.; Yin, B. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system. Field Crop. Res. 2018, 218, 254–266. [Google Scholar] [CrossRef]
- Getie, A.T.; Dechassa, N.; Tana, T. Response of potato (Solanum tuberosum L.) yield and yield components to nitrogen fertilizer and planting density at Haramaya, Eastern Ethiopia. J. Plant Sci. 2015, 3, 320. [Google Scholar]
- Duan, H.; Lu, X.; Zhou, X.; Li, G.; Wen, G.; Wang, Y.; Cheng, L.; Zhang, F. Effects of Potato Leaf Type and Planting Density on Yield Components. Crops 2021, 1, 160–167. [Google Scholar]
- Hu, Q.; Yang, N.; Pan, F.; Pan, X.; Wang, X.; Yang, P. Adjusting Sowing Dates Improved Potato Adaptation to Climate Change in Semiarid Region, China. Sustainability 2017, 9, 615. [Google Scholar] [CrossRef] [Green Version]
- Hospers-Brands, A.J.T.M.; Ghorbani, R.; Bremer, E.; Bain, R.; Litterick, A.; Halder, F.; Leifert, C.; Wilcockson, S.J. Effects of Presprouting, Planting Date, Plant Population and Configuration on Late Blight and Yield of Organic Potato Crops Grown with Different Cultivars. Potato Res. 2008, 51, 131–150. [Google Scholar] [CrossRef]
- Monteith, J.L.; Moss, C.J. Climate and the efficiency of crop production in Britain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1997, 281, 277–294. [Google Scholar]
Year | Treatment | Cultivar | Planting | Harvest | Density (seed m−2) | Seeds (kg ha−1) | N application Rate (kg ha−1) | ||
---|---|---|---|---|---|---|---|---|---|
(Day of Year) | Basal | Emergence | Tuber Bulking | ||||||
2017 | N0 | Connebeck | 132 | 258 | 5 | 2250 | 0 | 0 | 0 |
N1 | Connebeck | 132 | 258 | 5 | 2250 | 27 | 36 | 27 | |
N2 | Connebeck | 132 | 258 | 5 | 2250 | 41 | 54 | 41 | |
N3 | Connebeck | 132 | 258 | 5 | 2250 | 54 | 72 | 54 | |
N4 | Connebeck | 132 | 258 | 5 | 2250 | 81 | 108 | 81 | |
2018 | N0 | Jizhang 12 | 130 | 259 | 5 | 2250 | 0 | 0 | 0 |
N1 | Jizhang 12 | 130 | 259 | 5 | 2250 | 36 | 48 | 36 | |
N2 | Jizhang 12 | 130 | 259 | 5 | 2250 | 54 | 72 | 54 | |
N3 | Jizhang 12 | 130 | 259 | 5 | 2250 | 72 | 96 | 72 | |
N4 | Jizhang 12 | 130 | 259 | 5 | 2250 | 108 | 144 | 108 | |
2019 | N0 | Jizhang 12 | 130 | 259 | 4 | 1800 | 0 | 0 | 0 |
N1 | Jizhang 12 | 130 | 259 | 4 | 1800 | 26 | 26 | 52 | |
N2 | Jizhang 12 | 130 | 259 | 4 | 1800 | 39 | 39 | 78 | |
N3 | Jizhang 12 | 130 | 259 | 4 | 1800 | 52 | 52 | 105 | |
N4 | Jizhang 12 | 130 | 259 | 4 | 1800 | 78 | 78 | 157 | |
2020 | N0 | Huasong 7 | 131 | 260 | 4 | 1800 | 0 | 0 | 0 |
N1 | Huasong 7 | 131 | 260 | 4 | 1800 | 22 | 22 | 45 | |
N2 | Huasong 7 | 131 | 260 | 4 | 1800 | 33 | 33 | 67 | |
N3 | Huasong 7 | 131 | 260 | 4 | 1800 | 45 | 45 | 89 | |
N4 | Huasong 7 | 131 | 260 | 4 | 1800 | 67 | 67 | 134 |
Levels | Fertilizer Rate | N application Ratio | Planting Day | Fertilizer Depth | Density | ||
---|---|---|---|---|---|---|---|
(kg N ha−1) | Basal | Emergence | Tuber Bulking | (Day of Year) | (cm) | (seed m−2) | |
1 | 0 | 1 | - | - | 110 | 0 | 3.5 |
2 | 30 | 1/2 | 1/2 | - | 115 | 5 | 4.0 |
3 | 60 | 1/2 | - | 1/2 | 120 | 10 | 4.5 |
4 | 90 | 1/3 | 2/3 | - | 125 | 15 | 5.0 |
5 | 120 | 1/3 | - | 2/3 | 130 | 20 | 5.5 |
6 | 150 | 2/3 | 1/3 | - | 135 | 25 | 6.0 |
7 | 180 | 2/3 | - | 1/3 | 140 | 30 | 6.5 |
8 | 210 | 1/3 | 1/3 | 1/3 | 145 | 7.0 | |
9 | 240 | 1/4 | 1/4 | 1/2 | 150 | ||
10 | 270 | 1/4 | 1/2 | 1/4 | 156 | ||
11 | 300 | 1/2 | 1/4 | 1/4 |
Index | Model | Measured | Simulated | Sample No. 1 | NRMSE (%) | NARE (%) |
---|---|---|---|---|---|---|
Yield (t ha−1) | DNDC | 38.25 | 37.18 | 12 | 5.61 | −2.61 |
WHCNS_Veg | 38.25 | 37.32 | 12 | 5.43 | −2.44 | |
Above-ground biomass (kg ha−1) | DNDC | 9075 | 8519 | 12 | 11.63 | −6.13 |
WHCNS_Veg | 9075 | 8717 | 12 | 5.99 | −3.95 | |
N uptake (kg ha−1) | DNDC | 192.6 | 183.9 | 12 | 20.76 | −4.51 |
WHCNS_Veg | 192.6 | 183.0 | 12 | 22.33 | −4.99 |
Index | Treatment | Model | Measured | Simulated | Sample No. 1 | NRMSE (%) | NARE (%) |
---|---|---|---|---|---|---|---|
Yield (t ha−1) | N0 | DNDC | 28.70 | 22.31 | 12 | 31.57 | −21.94 |
N1 | DNDC | 33.58 | 35.07 | 12 | 14.90 | 4.98 | |
N2 | DNDC | 36.33 | 40.13 | 12 | 13.44 | 10.38 | |
N4 | DNDC | 36.28 | 39.41 | 12 | 13.71 | 8.46 | |
N0 | WHCNS_Veg | 28.70 | 21.52 | 12 | 26.71 | −25.03 | |
N1 | WHCNS_Veg | 33.58 | 34.67 | 12 | 10.14 | 3.23 | |
N2 | WHCNS_Veg | 36.33 | 35.27 | 12 | 12.77 | −2.90 | |
N4 | WHCNS_Veg | 36.28 | 37.54 | 12 | 8.74 | 3.45 | |
Above-ground biomass (kg ha−1) | N0 | DNDC | 6554 | 5663 | 12 | 24.87 | −13.60 |
N1 | DNDC | 7672 | 7958 | 12 | 14.70 | 3.73 | |
N2 | DNDC | 8261 | 8556 | 12 | 8.69 | 3.57 | |
N4 | DNDC | 7999 | 8471 | 12 | 12.11 | 5.90 | |
N0 | WHCNS_Veg | 6554 | 4858 | 12 | 27.93 | −25.88 | |
N1 | WHCNS_Veg | 7672 | 7858 | 12 | 10.95 | 2.42 | |
N2 | WHCNS_Veg | 8261 | 8044 | 12 | 13.95 | −2.64 | |
N4 | WHCNS_Veg | 7999 | 8246 | 12 | 11.93 | 3.09 | |
N uptake (kg ha−1) | N0 | DNDC | 116.8 | 134.6 | 12 | 32.63 | 15.25 |
N1 | DNDC | 150.4 | 173.9 | 12 | 25.63 | 15.63 | |
N2 | DNDC | 174.6 | 184.6 | 12 | 18.10 | 5.70 | |
N4 | DNDC | 183.0 | 183.0 | 12 | 23.53 | 0.02 | |
N0 | WHCNS_Veg | 116.8 | 134.2 | 12 | 20.24 | 14.91 | |
N1 | WHCNS_Veg | 150.4 | 150.2 | 12 | 24.75 | −0.14 | |
N2 | WHCNS_Veg | 174.6 | 172.6 | 12 | 19.50 | −1.17 | |
N4 | WHCNS_Veg | 183.0 | 183.7 | 12 | 25.10 | 0.37 |
Index | Depth (m) | Model | Measured | Simulated | Sample No. 1 | NRMSE (%) | NARE (%) | EF | d |
---|---|---|---|---|---|---|---|---|---|
Soil temperature (°C) | 0.1 | DNDC | 7.19 | 7.23 | 365 | 59.24 | 8.13 | 0.86 | 0.96 |
0.1 | WHCNS_Veg | 7.19 | 6.55 | 365 | 30.34 | −8.86 | 0.96 | 0.99 | |
Soil moisture (cm3 cm−3) | 0–0.2, 0.2–0.4 | DNDC | 0.23 | 0.23 | 24 | 29.01 | 1.88 | −0.26 | 0.69 |
0–0.2, 0.2–0.4 | WHCNS_Veg | 0.23 | 0.22 | 24 | 16.70 | −5.16 | 0.58 | 0.91 | |
Soil inorganic N (kg ha−1) | 0–0.2, 0.2–0.4 | DNDC | 59.22 | 63.43 | 24 | 69.06 | 7.12 | −0.04 | 0.68 |
0–0.2, 0.2–0.4 | WHCNS_Veg | 59.22 | 64.16 | 24 | 73.71 | 8.35 | −0.19 | 0.67 |
Index | Depth (m) | Treatment | Model | Measured | Simulated | Sample No. 1 | NRMSE (%) | NARE (%) | EF | d |
---|---|---|---|---|---|---|---|---|---|---|
Soil temperature (°C) | 0.3 | N3 | DNDC | 7.13 | 6.90 | 365 | 51.57 | −3.24 | 0.87 | 0.96 |
0.3 | N3 | WHCNS_Veg | 7.13 | 6.04 | 365 | 38.78 | −15.26 | 0.93 | 0.98 | |
Soil moisture (cm3 cm−3) | 0–0.2, 0.2–0.4 | N0 | DNDC | 0.24 | 0.21 | 24 | 22.98 | −10.41 | −0.18 | 0.72 |
0–0.2, 0.2–0.4 | N1 | DNDC | 0.24 | 0.22 | 24 | 18.92 | −6.12 | −0.10 | 0.79 | |
0–0.2, 0.2–0.4 | N2 | DNDC | 0.24 | 0.22 | 24 | 23.28 | −8.80 | −0.84 | 0.71 | |
0–0.2, 0.2–0.4 | N4 | DNDC | 0.25 | 0.23 | 24 | 21.65 | −4.90 | −0.6 | 0.67 | |
0–0.2, 0.2–0.4 | N0 | WHCNS_Veg | 0.24 | 0.22 | 24 | 22.12 | −9.17 | −0.09 | 0.80 | |
0–0.2, 0.2–0.4 | N1 | WHCNS_Veg | 0.24 | 0.21 | 24 | 23.48 | −12.22 | −0.70 | 0.64 | |
0–0.2, 0.2–0.4 | N2 | WHCNS_Veg | 0.24 | 0.22 | 24 | 21.58 | −9.55 | −0.58 | 0.78 | |
0–0.2, 0.2–0.4 | N4 | WHCNS_Veg | 0.25 | 0.22 | 24 | 23.63 | −11.57 | −0.91 | 0.73 | |
Soil inorganic N (kg ha−1) | 0–0.2, 0.2–0.4 | N0 | DNDC | 43.76 | 10.22 | 24 | 103.2 | −76.65 | −0.74 | 0.51 |
0–0.2, 0.2–0.4 | N1 | DNDC | 50.50 | 31.95 | 24 | 64.37 | −36.74 | 0.10 | 0.69 | |
0–0.2, 0.2–0.4 | N2 | DNDC | 53.83 | 46.02 | 24 | 67.49 | −14.52 | 0.37 | 0.75 | |
0–0.2, 0.2–0.4 | N4 | DNDC | 70.61 | 97.80 | 24 | 98.46 | 38.51 | −0.54 | 0.53 | |
0–0.2, 0.2–0.4 | N0 | WHCNS_Veg | 43.76 | 13.57 | 24 | 105.9 | −68.99 | −0.83 | 0.44 | |
0–0.2, 0.2–0.4 | N1 | WHCNS_Veg | 50.50 | 20.03 | 24 | 84.08 | −60.33 | −0.54 | 0.65 | |
0–0.2, 0.2–0.4 | N2 | WHCNS_Veg | 53.83 | 33.85 | 24 | 70.28 | −37.12 | 0.31 | 0.79 | |
0–0.2, 0.2–0.4 | N4 | WHCNS_Veg | 70.61 | 145.8 | 24 | 155.2 | 106.44 | −2.82 | 0.35 |
Model | Index 1 | Default | Nitrogen Fertilizer Ratio and Depth | Combined Optimization | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1/2:0:1/2 2 | 1/4:1/4:1/2 | 25 (cm) | ||||||||
DNDC | N application rate (kg N ha−1) | 210 | 150 | 180 | 150 | 180 | 150 | 180 | 150 | 180 |
Tuber yield (t ha−1) | 39.23 | 34.63 | 38.42 | 35.90 | 39.22 | 39.29 | 39.31 | 40.39 | 40.42 | |
PFP (kg N kg−1) | 186.8 | 230.9 | 213.5 | 239.4 | 217.9 | 261.9 | 218.4 | 269.3 | 224.6 | |
AEN (kg N kg−1) | 48.7 | 37.5 | 52.3 | 46.0 | 56.8 | 68.6 | 57.3 | 76.0 | 63.5 | |
REN (%) | 36.7 | 41.7 | 41.4 | 44.3 | 42.8 | 51.5 | 42.9 | 52.7 | 43.9 | |
2/3:1/3:0 | 1/2:1/4:1/4 | 25 (cm) | ||||||||
WHCNS_Veg | N application rate (kg N ha−1) | 210 | 150 | 180 | 150 | 180 | 150 | 180 | 150 | 180 |
Tuber yield (t ha−1) | 40.28 | 40.47 | 40.51 | 40.39 | 40.50 | 40.51 | 40.52 | 40.74 | 40.64 | |
PFP (kg N kg−1) | 224.1 | 269.8 | 225.1 | 269.3 | 225.0 | 270.0 | 225.1 | 271.6 | 225.8 | |
AEN (kg N kg−1) | 53.7 | 76.4 | 64.0 | 75.9 | 63.9 | 76.7 | 64.0 | 78.3 | 64.6 | |
REN (%) | 34.3 | 47.9 | 40.2 | 47.8 | 40.1 | 48.2 | 40.3 | 44.3 | 38.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; He, W.; Jiang, R.; Zhang, J.; Duan, Y.; He, P. Using DNDC and WHCNS_Veg to Optimize Management Strategies for Improving Potato Yield and Nitrogen Use Efficiency in Northwest China. Agronomy 2021, 11, 1858. https://doi.org/10.3390/agronomy11091858
Jiang L, He W, Jiang R, Zhang J, Duan Y, He P. Using DNDC and WHCNS_Veg to Optimize Management Strategies for Improving Potato Yield and Nitrogen Use Efficiency in Northwest China. Agronomy. 2021; 11(9):1858. https://doi.org/10.3390/agronomy11091858
Chicago/Turabian StyleJiang, Lingling, Wentian He, Rong Jiang, Jun Zhang, Yu Duan, and Ping He. 2021. "Using DNDC and WHCNS_Veg to Optimize Management Strategies for Improving Potato Yield and Nitrogen Use Efficiency in Northwest China" Agronomy 11, no. 9: 1858. https://doi.org/10.3390/agronomy11091858
APA StyleJiang, L., He, W., Jiang, R., Zhang, J., Duan, Y., & He, P. (2021). Using DNDC and WHCNS_Veg to Optimize Management Strategies for Improving Potato Yield and Nitrogen Use Efficiency in Northwest China. Agronomy, 11(9), 1858. https://doi.org/10.3390/agronomy11091858