Growth, Mineral Nutrients, Photosynthesis and Related Physiological Parameters of Citrus in Response to Nitrogen Deficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seedling Culture and N Treatments
2.2. Biomass, Total Root Length, Root Surface Area, Root Average Diameter, Root Volume, and Leaf Photosynthetic Pigments
2.3. Elements in Leaves, Stems and Roots
2.4. Gas Exchange, OJIP Transients and Related Fluorescence Parameters in Leaves
2.5. Statistical Analysis
3. Results
3.1. Effects of N Supply on Seedling Growth
3.2. Effects of N Supply on Element Concentrations in Roots, Stems and Leaves
3.3. Effects of N Supply on Nutrient Uptake
3.4. Effects of N Supply on Element Distributions in Roots, Stems and Leaves
3.5. Effects of N Supply on Gas Exchange and Photosynthetic Pigments in Leaves
3.6. Effects of N Supply on OJIP Transients and Related Parameters in Dark-Adapted Leaves
3.7. Correlation Coefficient Matrices of Gas Exchange, Photosynthetic Pigments, Element Concentrations and Fluorescence Parameters in Leaves
4. Discussion
4.1. The Tolerance of C. grandis Seedlings to N Deficiency Was Slightly Higher than That of C. sinensis Seedlings
4.2. N Deficiency Disturbed Nutrient Balance and Homeostasis, and Altered Nutrient Distributions in Roots, Stems and Leaves
4.3. Citrus Displayed Adaptive Responses to N Deficiency
4.4. Possible Causes for N-Deficiency-Induced Decrease in ACO2 in Leaves
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Botelho, R.V.; Müller, M.M. Nutrient redistribution in fruit crops: Physiological implications. In Fruit Crops: Diagnosis and Management of Nutrient Constraints; Srivastava, A.K., Hu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 33–46. [Google Scholar]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Functions of macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic: Amsterdam, The Netherlands, 2012; pp. 135–189. [Google Scholar]
- Chen, G.; Wang, L.; Fabrice, M.R.; Tian, Y.; Qi, K.; Chen, Q.; Cao, P.; Wang, P.; Zhang, S.; Wu, J.; et al. Physiological and nutritional responses of pear seedlings to nitrate concentrations. Front. Plant Sci. 2018, 9, 1679. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.K. Nutrient deficiency symptomology in Citrus: An effective diagnostic tool or just an aid for post-mortem analysis. Agric. Adv. 2013, 2, 177–194. [Google Scholar]
- Chapman, H.D. The mineral nutrition of Citrus. In The Citrus Industry; Reuther, W., Webber, H.J., Batchelor, L.D., Eds.; Division of Agricultural Sciences, University of California: Berkeley, CA, USA, 1968; Volume 2, pp. 127–189. [Google Scholar]
- Gao, K.; Chen, F.; Yuan, L.; Zhang, F.; Mi, G. A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress. Plant Cell Environ. 2015, 38, 740–750. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Available online: http://www.fao.org/faostat/zh/#data/RFN (accessed on 2 September 2021).
- Qin, L.; Walk, T.C.; Han, P.; Chen, L.; Zhang, S.; Li, Y.; Hu, X.; Xie, L.; Yang, Y.; Liu, J.; et al. Adaption of roots to nitrogen deficiency revealed by 3D quantification and proteomic analysis. Plant Physiol. 2019, 179, 329–347. [Google Scholar] [CrossRef] [Green Version]
- Mu, X.; Chen, Y. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol. Biochem. 2021, 158, 76–82. [Google Scholar] [CrossRef]
- Bondada, B.R.; Syvertsen, J.P. Leaf chlorophyll, net gas exchange and chloroplast ultrastructure in Citrus leaves of different nitrogen status. Tree Physiol. 2003, 23, 539–553. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-S.; Cheng, L. Carbon assimilation and carbohydrate metabolism of ‘Concord’ grape leaves in responses to nitrogen supply. J. Am. Soc. Hortic. Sci. 2003, 128, 754–760. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-S.; Cheng, L. Photosynthetic enzymes and carbohydrate metabolism of apple leaves in response to nitrogen limitation. J. Hortic. Sci. Biotechnol. 2004, 79, 923–930. [Google Scholar] [CrossRef]
- Peng, J.; Feng, Y.; Wang, X.; Li, J.; Xu, G.; Phonenasay, S.; Luo, Q.; Han, Z.; Lu, W. Effects of nitrogen application rate on the photosynthetic pigment, leaf fluorescence characteristics, and yield of indica hybrid rice and their interrelations. Sci. Rep. 2021, 11, 7485. [Google Scholar] [CrossRef]
- Lin, Z.-H.; Zhong, Q.-S.; Chen, C.-S.; Ruan, Q.-C.; Chen, Z.-H.; You, X.-M. Carbon dioxide assimilation and photosynthetic electron transport of tea leaves under nitrogen deficiency. Bot. Stud. 2016, 57, 37. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Reddy, K.R.; Kakani, V.G.; Reddy, V.R. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. Eur. J. Agron. 2005, 22, 391–403. [Google Scholar] [CrossRef]
- Huang, Z.-A.; Jiang, D.-A.; Yang, Y.; Sun, J.-W.; Jin, S.-H. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthetica 2004, 42, 357–364. [Google Scholar] [CrossRef]
- Cruz, J.L.; Mosquim, P.R.; Pelacani, C.R.; Araújo, W.L.; DaMatta, F.M. Photosynthesis impairment in cassava leaves in response to nitrogen deficiency. Plant Soil 2003, 257, 417–423. [Google Scholar] [CrossRef]
- Cechin, I. Photosynthesis and chlorophyll fluorescence in two hybrids of sorghum under different nitrogen and water regimes. Photosynthetica 1998, 35, 233–240. [Google Scholar] [CrossRef]
- Heitholt, J.J.; Johnson, R.C.; Ferris, D.M. Stomatal limitation to carbon dioxide assimilation in nitrogen and drought-stressed wheat. Crop Sci. 1991, 31, 135–139. [Google Scholar] [CrossRef]
- Cetner, M.D.; Kalaji, H.M.; Goltsev, V.; Aleksandrov, V.; Kowalczyk, K.; Borucki, W.; Jajoo, A. Effects of nitrogen-deficiency on efficiency of light-harvesting apparatus in radish. Plant Physiol. Biochem. 2017, 119, 81–92. [Google Scholar] [CrossRef]
- Jin, X.; Yang, G.; Tan, C.; Zhao, C. Effects of nitrogen stress on the photosynthetic CO2 assimilation, chlorophyll fluorescence, and sugar-nitrogen ratio in corn. Sci. Rep. 2015, 5, 9311. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.-D.; Sang, D.; Zheng, J.-S.; Lai, H.-B.; Chen, W.-T. Effects of nitrogen deficiency on the gas exchange, chlorophyll fluorescence and chloroplast ultrastructure in fingered citron. J. Zhejiang Univ. Agric. Life Sci. 2009, 35, 307–314. [Google Scholar]
- Lu, C.; Zhang, J. Photosynthetic CO2 assimilation, chlorophyll fluorescence and photoinhibition as affected by nitrogen deficiency in maize plants. Plant Sci. 2000, 151, 135–143. [Google Scholar] [CrossRef]
- Verhoeven, A.S.; Demmig-Adams, B.; Adams, W.W., III. Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress. Plant Physiol. 1997, 113, 817–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Zhang, J.; Zhang, Q.; Li, L.; Kuang, T. Modification of photosystem II photochemistry in nitrogen deficient maize and wheat plants. J. Plant Physiol. 2001, 158, 1423–1430. [Google Scholar] [CrossRef]
- Ye, X.; Chen, X.-F.; Deng, C.-L.; Yang, L.-T.; Lai, N.-W.; Guo, J.-X.; Chen, L.-S. Magnesium-deficiency effects on pigments, photosynthesis and photosynthetic electron transport of leaves, and nutrients of leaf blades and veins in Citrus sinensis seedlings. Plants 2019, 8, 389. [Google Scholar] [CrossRef] [Green Version]
- Carstensen, A.; Herdean, A.; Schmidt, S.B.; Sharma, A.; Spetea, C.; Pribil, M.; Husted, S. The mmpacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiol. 2018, 177, 271–284. [Google Scholar] [CrossRef] [Green Version]
- Kalaji, H.M.; Oukarroum, A.; Alexandrov, V.; Kouzmanova, M.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Allakhverdiev, S.I.; Goltsev, V. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol. Biochem. 2014, 281, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, H.M.; Bąba, W.; Gediga, K.; Goltsev, V.; Samborska, I.A.; Cetner, M.D.; Dimitrovam, S.; Piszcz, U.; Bielecki, K.; Karmowska, K.; et al. Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynth. Res. 2018, 136, 329–343. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrov, V.; Krasteva, V.; Paunov, M.; Chepisheva, M.; Kousmanova, M.; Kalaji, H.M.; Goltsev, V. Deficiency of some nutrient elements in bean and maize plants analyzed by luminescent method. Bulg. J. Agric. Sci. 2014, 20, 24–30. [Google Scholar]
- Schmidt, S.B.; Pedas, P.; Laursen, K.H.; Schjoerring, J.K.; Husted, S. Latent manganese deficiency in barley can be diagnosed and remediated on the basis of chlorophyll a fluorescence measurements. Plant Soil 2013, 372, 417–429. [Google Scholar] [CrossRef]
- Yang, G.-H.; Yang, L.-T.; Jiang, H.-X.; Wang, P.; Chen, L.-S. Physiological impacts of magnesium-deficiency in Citrus seedlings: Photosynthesis, antioxidant system and carbohydrates. Trees Struct. Funct. 2012, 26, 1237–1250. [Google Scholar] [CrossRef]
- Han, S.; Tang, N.; Jiang, H.-X.; Yang, L.-T.; Li, Y.; Chen, L.-S. CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of Citrus leaves in response to boron stress. Plant Sci. 2009, 176, 143–153. [Google Scholar] [CrossRef]
- Lin, Z.-H.; Chen, L.-S.; Chen, R.-B.; Zhang, F.-Z.; Jiang, H.-X.; Tang, N. CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply. BMC Plant Biol. 2009, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- De Souza Osório, C.R.W.; Marques Teixeira, G.C.; Barreto, R.F.; Silva Campos, C.N.; Freitas Leal, A.J.; Teodoro, P.E.; de Mello Prado, R. Macronutrient deficiency in snap bean considering physiological, nutritional, and growth aspects. PLoS ONE 2020, 15, e0234512. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Li, D.; Wang, P.; Li, J.; Lu, X. Transcriptome and ionome analysis of nitrogen, phosphorus and potassium interactions in sorghum seedlings. Theor. Exp. Plant Physiol. 2020, 32, 271–285. [Google Scholar] [CrossRef]
- Deng, B.; Li, Y.; Lei, G.; Liu, G. Effects of nitrogen availability on mineral nutrient balance and flavonoid accumulation in Cyclocarya paliurus. Plant Physiol. Biochem. 2019, 135, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.-M.; Bukhari, S.-A.; Zeng, J.-B.; Quan, X.-Y.; Ali, E.; Muhammad, N.; Zhang, G.P. Nitrogen (N) metabolism related enzyme activities, cell ultrastructure and nutrient contents as affected by N level and barley genotype. J. Integr. Agric. 2017, 16, 190–198. [Google Scholar] [CrossRef]
- Wang, Z.-Q.; Wu, L.-H.; Liu, T.-T.; Chu, Y.-W.; Shao, X.-L. Effect of different nitrogen rates on Parthenocissus tricuspidata Planch seedling growth and nutrient distribution. Acta Ecol. Sin. 2007, 27, 3435–3441. [Google Scholar]
- Yeh, D.M.; Lin, L.; Wright, C.J. Effects of mineral nutrient deficiencies on leaf development, visual symptoms and shoot-root ratio of Spathiphyllum. Sci. Hortic. 2000, 86, 223–233. [Google Scholar] [CrossRef]
- Lal, K.N.; De, R. Elemental composition of sugar-cane leaf and stem in relation to nitrogen deficiency. Nature 1951, 167, 731–732. [Google Scholar] [CrossRef]
- Nasr Esfahani, M.; Inoue, K.; Nguyen, K.H.; Chu, H.D.; Watanabe, Y.; Kanatani, A.; Burritt, D.J.; Mochida, K.; Tran, L.P. Phosphate or nitrate imbalance induces stronger molecular responses than combined nutrient deprivation in roots and leaves of chickpea plants. Plant Cell Environ. 2021, 44, 574–597. [Google Scholar] [CrossRef]
- Xin, W.; Zhang, L.; Gao, J.; Zhang, W.; Yi, J.; Zhen, X.; Bi, C.; He, D.; Liu, S.; Zhao, X. Adaptation mechanism of roots to low and high nitrogen revealed by proteomic analysis. Rice 2021, 14, 5. [Google Scholar] [CrossRef]
- Sorgonà, A.; Abenavoli, M.R. Nitrogen in Citrus: Signal, nutrient, and use efficiency. In Advances in Citrus Nutrition; Srivastava, A.K., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 231–244. [Google Scholar]
- Sorgonà, A.; Abenavoli, M.R.; Gringeri, P.G.; Cacco, G. Comparing morphological plasticity of root orders in slow- and fast-growing Citrus rootstocks supplied with different nitrate levels. Ann. Bot. 2007, 100, 1287–1296. [Google Scholar] [CrossRef] [Green Version]
- Hermans, C.; Hammond, J.P.; White, P.J.; Verbruggen, N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 2006, 11, 610–617. [Google Scholar] [CrossRef]
- Shao, C.-H.; Qiu, C.-F.; Qian, Y.-F.; Liu, G.-R. Nitrate deficiency decreased photosynthesis and oxidation-reduction processes, but increased cellular transport, lignin biosynthesis and flavonoid metabolism revealed by RNA-Seq in Oryza sativa leaves. PLoS ONE 2020, 15, e0235975. [Google Scholar] [CrossRef]
- Yang, C.; Yang, Z.; Zhao, L.; Sun, F.; Liu, B. A newly formed hexaploid wheat exhibits immediate higher tolerance to nitrogen-deficiency than its parental lines. BMC Plant Biol. 2018, 18, 113. [Google Scholar] [CrossRef] [Green Version]
- Quan, X.; Zeng, J.; Han, Z.; Zhang, G. Ionomic and physiological responses to low nitrogen stress in Tibetan wild and cultivated barley. Plant Physiol. Biochem. 2017, 111, 257–265. [Google Scholar] [CrossRef]
- Mardanov, A.; Samedovam, A.; Shirvany, T. Root-shoot relationships in plant adaptation to nitrogen deficiency. In Root Demographics and Their Efficiencies in Sustainable Agriculture, Grasslands and Forest Ecosystems; Box, J.E., Jr., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; pp. 147–154. [Google Scholar]
- Ericsson, T. Growth and shoot: Root ratio of seedlings in relation to nutrient availability. Plant Soil 1995, 168–169, 205–214. [Google Scholar] [CrossRef]
- Findenegg, G.R. Effect of varied shoot}root ratio on growth of maize (Zea mays) under nitrogen-limited conditions: Growth experiment and model calculations. In Plant Nutrition-Physiology and Applications; van Beusichem, L., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990; pp. 21–27. [Google Scholar]
- Tolley-Henry, L.; Raper, C.D., Jr. Nitrogen and dry-matter partitioning in soybean plants during onset of and recovery from nitrogen stress. Bot. Gaz. 1986, 147, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zeng, R.; Liao, H. Improving crop nutrient efficiency through root architecture modifications. J. Integr. Plant Biol. 2016, 58, 193–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.-M.; Liu, X.-D.; Liu, W.-D.; Tan, Q.-L.; Hu, X.-X.; Li, J.-X. Nutritional status of different citrus trees and the recommended dosages of N, P and K for Citrus production in China. J. Plant Nutr. Fertil. 2021, 27, 565–574. [Google Scholar]
- Chen, H.; Jia, Y.; Xu, H.; Wang, Y.; Zhou, Y.; Huang, Z.; Yang, L.; Li, Y.; Chen, L.-S.; Guo, J. Ammonium nutrition inhibits plant growth and nitrogen uptake in Citrus seedlings. Sci. Hortic. 2020, 272, 109526. [Google Scholar] [CrossRef]
- Li, Y.-F.; Zhang, C.-B.; Yi, X.-T.; Ling, L.-L.; Huang, Z.-Y.; Shi, Y.-T.; Hu, T.-H.; Zhang, R.; Li, Y.-Q.; Zi, L.-L.; et al. Characteristics of soil nutrients and frequency distribution of Yuxi Citrus orchards in Yunnan. Soils 2020, 52, 487–493. [Google Scholar]
- Zhu, L.-Q.; Shen, X.-J.; Zhou, S.-L.; Zeng, Y.; Peng, L.-Z.; Fu, X.-Z.; Ling, L.-L.; Chen, C.-P. Effects of nitrogen stresses on the nitrogen metabolism and expression of related genes in Poncirus trifoliata and ‘Ziyang Xiangcheng’ (Citrus junos) rootstocks. J. Fruit Sci. 2020, 37, 449–458. [Google Scholar]
- Yang, J.-B.; Zhang, J.; Li, J.-J.; Zheng, Y.-Q.; Lü, Q.; Xie, R.-J.; Ma, Y.-Y.; Deng, L.; He, S.-L.; Yi, S.-L. Effects of nitrogen application levels on nutrient, yieId and quality of Tarocco blood orange and soil physicochemical properties in the Three Gorges Area of Chongqing. Sci. Agric. Sin. 2019, 52, 893–908. [Google Scholar]
- Li, Y.; Han, M.-Q.; Lin, F.; Ten, Y.; Lin, J.; Zhu, D.-H.; Guo, P.; Weng, Y.-B.; Chen, L.-S. Soil chemical properties, ‘Guanximiyou’ pummelo leaf mineral nutrient status and fruit quality in the southern region of Fujian province, China. J. Soil Sci. Plant Nutr. 2015, 15, 615–628. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.-W.; Chen, F.; Wang, Y.-H.; Liu, D.-B.; Wan, Y.-F.; Yu, C.-B. Effect of N, P, K fertilization on young Citrus tree growth, fruit yield and quality in area of red soil. Plant Nutr. Fertil. Sci. 2004, 10, 413–418. [Google Scholar]
- Yang, T.-Y.; Cai, L.-Y.; Qi, Y.-P.; Yang, L.-T.; Lai, N.-W.; Chen, L.-S. Increasing nutrient solution pH alleviated aluminum-induced inhibition of growth and impairment of photosynthetic electron transport chain in Citrus sinensis seedlings. BioMed Res. Int. 2019, 2019, 9058715. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Cai, L.-Y.; Zhang, J.; Ren, Q.-Q.; Lai, Y.-H.; Peng, M.-Y.; Deng, C.-L.; Ye, X.; Yang, L.-T.; Huang, Z.-R.; Chen, L.-S. Increased pH-mediated alleviation of copper-toxicity and growth response function in Citrus sinensis seedlings. Sci. Hortic. 2021, 288, 110310. [Google Scholar] [CrossRef]
- Long, A.; Zhang, J.; Yang, L.-T.; Ye, X.; Lai, N.-W.; Tan, L.-L.; Lin, D.; Chen, L.-S. Effects of low pH on photosynthesis, related physiological parameters and nutrient profile of Citrus. Front. Plant Sci. 2017, 8, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boussadia, O.; Steppe, K.; Zgallai, H.; Ben El Hadj, S.; Braham, M.; Lemeur, R.; Van Labeke, M.C. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’. Sci. Hortic. 2010, 123, 336–342. [Google Scholar] [CrossRef]
- Jiang, H.-X.; Chen, L.-S.; Zheng, J.-G.; Han, S.; Tang, N.; Smith, B.R. Aluminum-induced effects on photosystem II photochemistry in Citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiol. 2008, 28, 1863–1871. [Google Scholar] [CrossRef] [PubMed]
- Sang, W.; Huang, Z.-R.; Qi, Y.-P.; Yang, L.-T.; Guo, P.; Chen, L.-S. An investigation of boron-toxicity in leaves of two Citrus species differing in boron-tolerance using comparative proteomics. J. Proteom. 2015, 123, 128–146. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Chen, Q.; Chen, F.; Yuan, L.; Mi, G. Within-leaf nitrogen allocation in adaptation to low nitrogen supply in maize during grain-filling stage. Front. Plant Sci. 2016, 7, 699. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, C.; Chen, X.; Li, Q.; Zhang, J.; Chen, F.; Yuan, L.; Mi, G. Characterization of the plant traits contributed to high grain yield and high grain nitrogen concentration in maize. Field Crops Res. 2014, 159, 1–9. [Google Scholar] [CrossRef]
- Schlüter, U.; Mascher, M.; Colmsee, C.; Scholz, U.; Bräutigam, A.; Fahnenstich, H.; Sonnewald, U. Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis. Plant Physiol. 2012, 60, 1384–1406. [Google Scholar] [CrossRef] [Green Version]
- Schreiner, R.P.; Lee, J.; Skinkis, P.A. N, P, and K supply to pinot noir grapevines: Impact on vine nutrient status, growth, physiology, and yield. Am. J. Enol. Vitic. 2013, 64, 26–38. [Google Scholar] [CrossRef]
- Broadley, M.R.; Escobar-Gutiérrez, A.J.; Burns, A.; Burns, I.G. What are the effects of nitrogen deficiency on growth components of lettuce? New Phytol. 2000, 147, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yin, C.; Xiang, L.; Jiang, W.; Xu, S.; Mao, Z. Transcription strategies related to photosynthesis and nitrogen metabolism of wheat in response to nitrogen deficiency. BMC Plant Biol. 2020, 220, 448. [Google Scholar]
- Shangguan, Z.P.; Shao, M.A.; Ren, S.J.; Zhang, L.M.; Xue, Q. Effect of nitrogen on root and shoot relations and gas exchange in winter wheat. Bot. Bull. Acad. Sin. 2004, 45, 49–54. [Google Scholar]
- Zhu, Y.; Fan, X.; Hou, X.; Wu, J.; Wang, T. Effect of different levels of nitrogen deficiency on switchgrass seedling growth. Crop J. 2014, 2, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.; Zhang, A.; Li, H.; Tang, Z.; Chen, X. Growth and physiological response to nitrogen deficiency and re-supply in leaf-vegetable sweetpotato (Ipomoea batatas Lam). Hortscience 2015, 50, 754–758. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-S.; Cheng, L. Both xanthophyll cycle-dependent thermal dissipation and the antioxidant system are up-regulated in grape (Vitis labrusca L. cv. Concord) leaves in responses to N limitation. J. Exp. Bot. 2003, 54, 2165–2175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Xu, J.; Wang, X.; Fu, H.; Zhao, M.; Wang, H.; Shi, L. Photosynthetic characteristics and metabolic analyses of two soybean genotypes revealed adaptive strategies to low-nitrogen stress. J. Plant Physiol. 2018, 229, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M.; Chow, W.S. Structural and functional dynamics of plant photosystem II. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2002, 357, 1421–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khamis, S.; Lamaze, T.; Lemoine, Y.; Foyer, C. Adaptation of the photosynthetic apparatus in maize leaves as a result of nitrogen limitation: Relationships between electron transport and carbon assimilation. Plant Physiol. 1990, 94, 1436–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalashnikova, I.V.; Migalina, S.V.; Ronzhina, D.A.; Ivanov, L.A.; Ivanova, L.A. Functional response of Betula species to edaphic and nutrient stress during restoration of fly ash deposits in the Middle Urals (Russia). Environ. Sci. Pollut. Res. Int. 2021, 28, 12714–12724. [Google Scholar] [CrossRef]
- Force, L.; Critchley, C.; van Rensen, J.J.S. New fluorescence parameters for monitoring photosynthesis in plants. 1. The effect of illumination on the fluorescence parameters of the JIP-test. Photosynth. Res. 2003, 78, 17–33. [Google Scholar] [CrossRef]
- Pereira, W.E.; de Siqueira, D.L.; Martínez, C.A.; Puiatti, M. Gas exchange and chlorophyll fluorescence in four Citrus rootstocks under aluminium stress. J. Plant Physiol. 2000, 157, 513–520. [Google Scholar] [CrossRef]
- Chen, L.-S.; Cheng, L. The acceptor side of photosystem II is damaged more severely than the donor side of photosystem II in ’Honeycrisp’ apple leaves with zonal chlorosis. Acta Physiol. Plant. 2010, 32, 253–261. [Google Scholar] [CrossRef]
- Srivastava, A.; Guisse, B.; Greppin, H.; Strasser, R.J. Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim. Biophys. Acta 1997, 1320, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In Advances in Photosynthesis and Respiration. Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 321–362. [Google Scholar]
- Setlik, I.; Allakhverdiev, S.I.; Nedbal, L.; Setlikova, E.; Klimov, V.V. 1Three types of photosystem II photoinactivation. 1. Damaging processes on the acceptor side. Photosynth. Res. 1990, 23, 39–48. [Google Scholar] [CrossRef]
N Levels (mM) | Macronutrients (mM) | pH | EC (mS cm−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
K2SO4 | CaCl2 | MgSO4 | KH2PO4 | KNO3 | Ca(NO3)2 | (NH4)2SO4 | NH4Cl | |||
0 | 2.5 | 5 | 2 | 1 | 0 | 0 | 0 | 0 | 6.1 | 3.6 |
5 | 1.25 | 5 | 2 | 1 | 2.5 | 0 | 1.25 | 0 | 6.1 | 3.9 |
10 | 2.5 | 2.5 | 2 | 1 | 0 | 2.5 | 0 | 5 | 6.1 | 4.3 |
15 | 1.25 | 2.5 | 2 | 1 | 2.5 | 2.5 | 1.25 | 5 | 6.1 | 4.7 |
20 | 2.5 | 0 | 2 | 1 | 0 | 5 | 0 | 10 | 6.1 | 5.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.-T.; Xie, Y.-Z.; Chen, X.-F.; Zhang, J.; Chen, H.-H.; Ye, X.; Guo, J.; Yang, L.-T.; Chen, L.-S. Growth, Mineral Nutrients, Photosynthesis and Related Physiological Parameters of Citrus in Response to Nitrogen Deficiency. Agronomy 2021, 11, 1859. https://doi.org/10.3390/agronomy11091859
Huang W-T, Xie Y-Z, Chen X-F, Zhang J, Chen H-H, Ye X, Guo J, Yang L-T, Chen L-S. Growth, Mineral Nutrients, Photosynthesis and Related Physiological Parameters of Citrus in Response to Nitrogen Deficiency. Agronomy. 2021; 11(9):1859. https://doi.org/10.3390/agronomy11091859
Chicago/Turabian StyleHuang, Wei-Tao, Yi-Zhi Xie, Xu-Feng Chen, Jiang Zhang, Huan-Huan Chen, Xin Ye, Jiuxin Guo, Lin-Tong Yang, and Li-Song Chen. 2021. "Growth, Mineral Nutrients, Photosynthesis and Related Physiological Parameters of Citrus in Response to Nitrogen Deficiency" Agronomy 11, no. 9: 1859. https://doi.org/10.3390/agronomy11091859
APA StyleHuang, W. -T., Xie, Y. -Z., Chen, X. -F., Zhang, J., Chen, H. -H., Ye, X., Guo, J., Yang, L. -T., & Chen, L. -S. (2021). Growth, Mineral Nutrients, Photosynthesis and Related Physiological Parameters of Citrus in Response to Nitrogen Deficiency. Agronomy, 11(9), 1859. https://doi.org/10.3390/agronomy11091859