Crop Establishment Methods and Integrated Nutrient Management Improve: Part I. Crop Performance, Water Productivity and Profitability of Rice (Oryza sativa L.) in the Lower Indo-Gangetic Plain, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Treatments and Field Layout
2.3. Crop Culture
2.4. Plant Sampling
2.5. Computation of Water Productivity, Partial Factor Productivity of Nutrients (PFP), Value Cost Ratio (VCR) and Economic Profitability
2.6. Statistical Analysis
3. Results
3.1. Growth Parameters of Rice Are Influenced by Crop Establishment Methods and Integrated Nutrient Management
3.2. Yield Attributes of Rice Are Influenced by Crop Establishment Methods and Integrated Nutrient Management
3.3. Crop and Water Productivity Are Influenced by Crop Establishment Methods and Integrated Nutrient Management
3.3.1. Effect of Crop Establishment Methodologies
3.3.2. Effect of Integrated Nutrient Management
3.4. Crop Establishment Methods and Integrated Nutrient Management Influenced the Profitability of Rice
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CTR: | Conventional flooded transplanted rice |
DAT: | Days after transplanting |
DSR: | Direct seeded rice |
FYM: | Farmyard manure |
INM: | Integrated nutrient management |
PFP: | Partial factor productivity of nutrients |
RDF: | Recommended dose of fertilizer |
RDN: | Recommended dose of nitrogen |
SRI: | System of rice intensification |
TDM: | Total dry matter |
VCR: | Value Cost Ratio |
References
- Ram, M.S.; Shankar, T.; Maitra, S.; Adhikary, R.; Swamy, G.V.V.S.N. Productivity, nutrient uptake and nutrient use efficiency of summer rice (Oryza sativa) as influenced by integrated nutrient management practices. Crop Res. 2020, 55, 65–72. [Google Scholar] [CrossRef]
- Yu, S.; Ali, J.; Zhang, C.; Li, Z.; Zhang, Q. Genomic breeding of green super rice varieties and their deployment in Asia and Africa. Theor. Appl. Genet. 2020, 133, 1427–1442. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.K.; Singh, S.; Dar, M.H.; Sing, U.S. Stress-Tolerant Rice Varieties and Conforming Management Practices for intensification of rain-fed eco-system in India. SATSA Mukhapatra-Annu. Tech. Issue 2016, 20, 1–14. [Google Scholar]
- FAO. The Future of Food and Agriculture: Alternative Pathways to 2050; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016; p. 228. [Google Scholar]
- Mbow, C.; Rosenzweig, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Food Security. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019; pp. 437–550, in press. [Google Scholar]
- Patel, D.P.; Das, A.; Munda, G.C.; Ghosh, P.K.; Bordoloi, J.S.; Kumar, M. Evaluation of yield and physiological attributes of high yielding varieties under aerobic and flood- irrigated management practices in mid-hills ecosystem. Agric. Water Manag. 2010, 97, 1269–1276. [Google Scholar] [CrossRef]
- Lal, B.; Gautam, P.; Joshi, E. Different rice establishment methods for producing more rice per drop of water: A review. Int. J. Res. Biosci. 2013, 2, 1–12. [Google Scholar]
- Midya, A.; Saren, B.K.; Pramanik, K. Aerobic rice culture, System of Rice Intensification (SRI) and System of Assured Rice Production (SARP): Emerging water savings production technologies for rice yield stability in tropics under shrinking water resource base. In Proceedings of the Souvenir Paper of 1st International Conference on Bio-Resource, Environment and Agricultural Sciences, Visva-Bharati, West Bengal, India, 4–6 February 2017; pp. 61–66. [Google Scholar]
- Katsura, K.; Okami, M.; Mizunuma, H.; Kato, Y. Radiation use efficiency, N accumulation and biomass production of high-yielding rice in aerobic culture. Field Crops Res. 2010, 117, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Rajkumar, D.; Subramanian, E.; Ramesh, T.; Maragatham, N.; Martin, G.J.; Thiyagarajan, G. Striding towards aerobic rice cultivation- A review. Agric. Rev. 2009, 30, 213–218. [Google Scholar]
- Lampayan, R.M.; Bouman, B.A.M.; De Dios, J.L.; Espiritu, A.J.; Soriano, J.B.; Lactaoen, A.T.; Faronilo, J.E.; Thant, K.M. Yield of aerobic rice in rainfed lowlands of the Philippines as affected by nitrogen management and row spacing. Field Crops Res. 2010, 116, 165–174. [Google Scholar] [CrossRef]
- Vial, L.K. Aerobic and Alternate-Wet-and-Dry (AWD) Rice Systems. A Report for Nuffield Australis Farming Scholars. Nuffield Australia, Project No: RABO 090, Rabobank, Tooranie, Tooranie Road via Swan Hill, Vic, 3585 Nuffield Australia, 45. 2007. Available online: https://www.nuffieldscholar.org/sites/default/files/reports/2006_AU_Leigh-Vial_Aerobic-And-Alternate-Wet-And-Dry-Awd-Rice-Systems.pdf (accessed on 15 August 2021).
- Chan, C.S.; Zainudin, H.; Saad, A.; Azmi, M. Productive water use in aerobic rice cultivation. J. Trop. Agric. Food Sci. 2012, 49, 117–126. [Google Scholar]
- Uphoff, N. Possible explanations for the productivity gains achieved with the System of Rice Intensification (SRI). Transitions in Agriculture for Enhancing Water Productivity. In Proceedings of the International Symposium, Killikulam, Tamil Nadu, India, 23–25 September 2003. [Google Scholar]
- Kassam, A.; Stoop, W.; Uphoff, N. Review of SRI modifications in rice crop and water management and research issues for making further improvements in agricultural and water productivity. Paddy Water Environ. 2011, 9, 163–180. [Google Scholar] [CrossRef]
- Ceesay, M. An opportunity for increasing factor productivity for rice cultivation in the Gambia through SRI. Paddy Water Environ. 2011, 9, 129–135. [Google Scholar] [CrossRef]
- Zhao, I.M.; Wu, L.H.; Li, Y.S.; Animesh, S.; Zhu, D.F.; Uphoff, N. Comparison of yield, water use efficiency, and soil microbial biomass as affected by system of rice intensification. Commun. Soil Sci. Plant Anal. 2010, 41, 1–12. [Google Scholar] [CrossRef]
- Kumar, R.M.; Tuti, M.D.; Sreedevi, B.; Surekha, K.; Babu, V.R. Rice Agronomy: Towards improving productivity and sustaining soil health. SATSA Mukhapatra-Annu. Tech. Issue 2016, 20, 15–25. [Google Scholar]
- Alam, M.K.; Bell, R.W.; Hasanuzzaman, M.; Salahin, N.; Rashid, M.H.; Akter, N.; Akhter, S.; Islam, M.S.; Islam, S.; Naznin, S.; et al. Rice (Oryza sativa L.) Establishment Techniques and Their Implications for Soil Properties, Global Warming Potential Mitigation and Crop Yields. Agronomy 2020, 10, 888. [Google Scholar]
- Mohanta, S.; Banerjee, M.; Malik, G.C.; Shankar, T.; Maitra, S.; Ismail, I.A.; Dessoky, E.S.; Attia, A.O.; Hossain, A. Productivity and Profitability of Kharif Rice Are Influenced by Crop Establishment Methods and Nitrogen Management in the Lateritic Belt of the Subtropical Region. Agronomy 2021, 11, 1280. [Google Scholar] [CrossRef]
- Bagayoko, M. 2012. Effects of plant density, organic matter and nitrogen rates on rice yields in the System of Rice Intensification (SRI) in the “OFFICE DU NIGER” in Mali. ARPN J. Agric. Biolo. Sci. 2012, 7, 620–632. [Google Scholar]
- Man, Y.; Wang, B.; Wang, J.; Slaný, M.; Yan, H.; Li, P.; El-Naggar, A.; Shaheen, S.M.; Rinklebe, J.; Feng, X. Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands. Environ. Int. 2021, 153, 106527. [Google Scholar]
- Sahrawat, K.L. Soil fertility in flooded and non-flooded irrigated rice system. Arch. Agron. Soil Sci. 2012, 58, 423–436. [Google Scholar] [CrossRef] [Green Version]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 1995. [Google Scholar]
- Wang, Q.; Shaheen, S.M.; Jiang, Y.; Li, R.; Slaný, M.; Abdelrahman, H.; Kwong, E.; Bolanh, N.; Rinklebebg, J.; Zhang, Z. Fe/Mn-and P-modified drinking water treatment residuals reduced Cu and Pb phytoavailability and uptake in a mining soil. J. Hazard. Mater. 2021, 403, 123628. [Google Scholar]
- Maitra, S.; Zaman, A.; Mandal, T.K.; Palai, J.B. Green manures in agriculture: A review. J. Pharm. Phytochem. 2018, 7, 1319–1327. [Google Scholar]
- Das, T.K.; Bhattacharyya, R.; Sharma, A.R.; Das, S.; Saad, A.A.; Pathak, H. Impacts of conservation agriculture on total soil organic carbon retention potential under an irrigated agro-ecosystem of the western Indo-Gangetic Plains. Eur. J. Agron. 2013, 51, 34–42. [Google Scholar] [CrossRef]
- Midya, A.; Saren, B.K. Effect of brown manuring in Integrated Crop Management (ICM) for sustainable rice production. In Proceedings of the National Symposium on Recent Trends in Agriculture and Allied Sciences for Better Tomorrow (NSRTAS), Visva-Bharati, West Bengal, India, 4 December 2016. [Google Scholar]
- Maitra, S.; Zaman, A. Brown manuring, an effective technique for yield sustainability and weed management of cereal crops: A review. Int. J. Bioresour. Sci. 2017, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for the determination of available nitrogen in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973; p. 498. [Google Scholar]
- Hanway, J.J.; Heidel, H. Soil analyses methods as used in Iowa State College Soil Testing Laboratory. Iowa Agric. 1952, 57, 1–31. [Google Scholar]
- Walkley, A.J.; Black, I.A. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis Part 2; Series ASA-SSSA Publishers; AGRONOMY; American Society of Agronomy, Inc. Soil Science Society of America, Inc. Publisher: Madison, WI, USA, 1982. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a Dtpa soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Amer. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Chesnin, L.; Yien, C.H. Turbid metric determination of available sulphates. Soil Sci. Soc. Am. J. 1950, 15, 149–151. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analysis of soils. J. Agron. 1951, 54, 464. [Google Scholar]
- Statistix 10 for Windows. Analytical Software. Tallahassee, FL, USA. 1998. Available online: https://www.statistix.com/free-trial/ (accessed on 1 July 2021).
- Bouman, B.A.M.; Peng, S.; Castaneda, A.R.; Visperas, R.M. Yield and water use of irrigated tropical aerobic rice systems. Agric. Water Manag. 2005, 74, 87–105. [Google Scholar] [CrossRef]
- Peng, S.; Bouman, B.; Visperas, R.M.; Casteneda, A.; Nie, L.; Park, H.K. Comparison between aerobic and flooded rice in the tropics: Agronomic performance in an eight seasons experiment. Field Crops Res. 2006, 96, 252–259. [Google Scholar] [CrossRef]
- Chapagain, T.; Riseman, A.; Yamaji, E. Assessment of System of Rice Intensification (SRI) and conventional practices under organic and inorganic management in Japan. Rice Sci. 2011, 18, 311–320. [Google Scholar] [CrossRef]
- Belder, P.; Bouman, B.A.M.; Spiertz, J.H.J.; Peng, S.; Castaneda, A.R.; Visperas, R.M. Crop performance, nitrogen and water use in flooded and aerobic rice. Plant Soil 2005, 273, 167–182. [Google Scholar] [CrossRef]
- Chapagain, T.; Yamaji, E. The effect of irrigation method, age of seedlings and spacing on crop performance, productivity and water–wise rice production in Japan. Paddy Water Environ. 2010, 8, 81–90. [Google Scholar] [CrossRef]
- Kato, Y.; Okami, M. Root growth dynamics and stomatal behaviour of rice (Oryza sativa L.) grown under aerobic and flooded conditions. Field Crops Res. 2010, 117, 9–17. [Google Scholar] [CrossRef]
- Kato, Y.; Okami, M.; Tajima, R.; Fujita, D.; Kobayashi, N. Root response to aerobic conditions in rice, estimated by Comair root length scanner and scanner-based image analysis. Field Crops Res. 2010, 118, 194–198. [Google Scholar] [CrossRef]
- Morita, S.; Yamazaki, K. Root System. In Science of the Rice Plant; Matsuo, T., Hoshikawa, K., Eds.; Morphology Food and Agriculture Policy Research Centre: Tokyo, Japan, 1993; Volume 1, pp. 161–186. [Google Scholar]
- Iida, S.; Shinmura, Y.; Uemori, A.; Kuzuna, K. Influence of irrigation management at the middle growing stage on rice plant growth and yield. Jpn. J. Crop Sci. 1990, 59, 413–418. [Google Scholar] [CrossRef] [Green Version]
- Mahender Kumar, R.; Subba Rao, L.V.; Babu, V.R.; Gopalkrishnan, S.; Surekha, K.; Padmavathi, C.; Somasekhar, N.; Raghuveer Rao, P.; Sreenivas Prasad, M.; Latha, P.C.; et al. System of Rice Intensification: Its present status, future prospects and role in seed production in India. SATSA Mukhapatra- Annu. Tech. Issue 2013, 17, 22–43. [Google Scholar]
- Kannan, T.; Ponmurugan, P. Response of paddy (Oryza sativa L.) varieties to Azospirillum brasilense inoculation. J. Phytol. 2010, 2, 8–13. [Google Scholar]
- Veeramani, P. Enhancement of mat nursery management and planting pattern (using rolling markers) in System of Rice Intensification (SRI) technique. Res. J. Agric. Sci. 2011, 2, 371–375. [Google Scholar]
- Ranjitha, P.S.; Mahender Kumar, R.; Jayasree, G. Evaluation of rice (Oryza sativa L.) varieties and hybrids in relation to different nutrient management practices for yield, nutrient uptake and economics in SRI. Ann. Biol. Res. 2013, 4, 25–28. [Google Scholar]
- Amanullah, K.; Almas, L.K. Partial Factor Productivity, Agronomic Efficiency, and Economic Analyzes of maize in wheat-maize cropping system in Pakistan. In Proceedings of the Selected Paper Prepared for Presentation at the Southern Agricultural Economics Association Annual Meetings, Atlanta, GA, USA, 31 January–3 February 2009; Available online: https://core.ac.uk/download/pdf/6995666.pdf (accessed on 15 August 2021).
Parameters | Analytical Values | References |
---|---|---|
Available Nitrogen | 281.5 kg ha−1 | [30] |
Available Phosphorus | 62.5 kg ha−1 | [31] |
Available Potassium | 253.1 kg ha−1 | [32] |
Organic Carbon | 0.5% | [33] |
pH | 7.01 | [34] |
Available Zinc | 1.17 ppm | [35] |
Available Iron | 12.59 ppm | [35] |
Sulphur | 10.93 ppm | [36] |
Electrical Conductivity | 0.31 ds m−1 | [31] |
Boron | 1.44 ppm | [35] |
Manganese | 3.16 ppm | [35] |
Copper | 0.24 ppm | [35] |
Soil Texture | Sandy loam | [37] |
Treatments | Plant Height at Harvest (cm) | Tillers m−2 at Harvest | The Total Dry Matter at Harvest (g m−2) | Root Biomass at Harvest (g m−2) | Days to Maturity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y1 | Y2 | Mean | Y1 | Y2 | Mean | Y1 | Y2 | Mean | Y1 | Y2 | Mean | Y1 | Y2 | Mean | |
Crop Establishment Methods | |||||||||||||||
T1 | 121.31 | 117.87 | 119.59 | 461.9 | 469.2 | 465.5 | 902.3 | 920.5 | 911.4 | 430.4 | 444.8 | 437.6 | 120.8 | 122.6 | 121.7 |
T2 | 130.42 | 135.82 | 133.12 | 550.6 | 560.4 | 555.5 | 1205.2 | 1239.7 | 1222.4 | 604.3 | 625.9 | 615.1 | 125.2 | 124.8 | 125.0 |
T3 | 133.57 | 137.89 | 135.73 | 649.3 | 658.9 | 654.1 | 1196.4 | 1220.8 | 1208.6 | 577.2 | 548.8 | 563.0 | 129.3 | 130.0 | 129.6 |
SE± | 2.94 | 1.97 | 2.45 | 11.5 | 17.8 | 14.6 | 17.8 | 17.2 | 17.5 | 10.81 | 11.24 | 11.02 | 0.21 | 0.27 | 0.24 |
LSD0.05 | 9.10 | 7.84 | 8.47 | 45.2 | 70.1 | 57.6 | 69.7 | 67.5 | 68.6 | 42.46 | 44.15 | 43.30 | 0.87 | 1.06 | 0.96 |
CV (%) | 11.2 | 7.5 | 9.3 | 10.2 | 15.7 | 12.9 | 9.8 | 8.4 | 9.1 | 9.8 | 10.3 | 10.0 | 5.8 | 6.2 | 6.0 |
Integrated Nutrient Management | |||||||||||||||
F1 | 106.44 | 108.13 | 107.28 | 245.9 | 240.3 | 243.1 | 600.7 | 626.0 | 613.3 | 214.8 | 203.7 | 209.2 | 123.9 | 124.2 | 124.0 |
F2 | 132.29 | 133.58 | 132.93 | 612.3 | 609.1 | 610.7 | 1245.5 | 1224.7 | 1235.1 | 565.7 | 540.4 | 553.0 | 125.2 | 123.8 | 124.5 |
F3 | 129.91 | 132.75 | 131.33 | 614.4 | 625.5 | 619.9 | 1200.3 | 1217.4 | 1208.8 | 593.9 | 550.5 | 572.2 | 125.0 | 124.0 | 124.5 |
F4 | 132.96 | 134.54 | 133.75 | 623.7 | 630.6 | 627.1 | 1222.8 | 1205.4 | 1214.1 | 607.5 | 554.5 | 581.0 | 126.0 | 124.8 | 125.4 |
F5 | 127.52 | 129.62 | 128.57 | 535.4 | 550.8 | 543.1 | 1148.6 | 1178.0 | 1163.3 | 563.8 | 546.3 | 555.0 | 126.8 | 125.0 | 125.9 |
F6 | 126.51 | 131.59 | 129.05 | 562.7 | 557.4 | 560.0 | 1164.4 | 1189.9 | 1177.1 | 574.2 | 558.8 | 566.5 | 124.9 | 123.0 | 123.9 |
F7 | 129.08 | 137.12 | 133.1 | 583.2 | 612.3 | 597.7 | 1180.8 | 1217.7 | 1199.2 | 577.8 | 552.3 | 565.0 | 126.2 | 125.6 | 125.9 |
F8 | 133.81 | 135.36 | 134.58 | 615.7 | 621.6 | 618.6 | 1204.1 | 1241.3 | 1222.7 | 591.3 | 574.3 | 582.8 | 124.8 | 126.0 | 125.4 |
SE± | 1.95 | 2.39 | 1.08 | 21.3 | 18.2 | 19.7 | 12.8 | 14.9 | 13.85 | 11.61 | 11.07 | 11.34 | 0.32 | 0.41 | 0.36 |
LSD0.05 | 5.56 | 6.83 | 6.19 | 60.8 | 51.9 | 56.3 | 35.3 | 42.8 | 39.05 | 33.14 | 31.59 | 32.36 | NS | NS | NS |
CV (%) | 4.5 | 5.6 | 5.0 | 11.6 | 9.8 | 10.7 | 7.9 | 6.8 | 7.3 | 7.5 | 6.9 | 7.2 | 5.5 | 6.8 | 6.1 |
Interaction | |||||||||||||||
Crop establishment methods X Integrated nutrient management | |||||||||||||||
SE± | 0.88 | 0.90 | 0.89 | 7.4 | 7.0 | 7.2 | 5.8 | 6.1 | 5.95 | 4.43 | 4.32 | 4.37 | 0.11 | 0.14 | 0.12 |
LSD0.05 | NS | NS | NS | 21.2 | 20.1 | 20.6 | 15.9 | 17.3 | 16.6 | 12.64 | 12.33 | 12.48 | NS | NS | NS |
Integrated nutrient management X Crop establishment methods | |||||||||||||||
SE± | 3.37 | 4.14 | 3.75 | 36.9 | 31.5 | 34.2 | 22.8 | 25.9 | 24.35 | 20.11 | 19.17 | 19.64 | 0.56 | 0.71 | 0.63 |
LSD0.05 | NS | NS | NS | 105.3 | 89.9 | 97.6 | 65.1 | 74.1 | 69.6 | 57.40 | 54.73 | 56.06 | NS | NS | NS |
Treatments | Productive Tillers (no. m−2) | Total Spikelets Panicle−1 (no.) | Effective Spikelets Panicle−1 (no.) | Ripening Ratio (%) | 1000-Grain Weight (g) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y1 | Y2 | Mean | Y1 | Y2 | Mean | Y1 | Y2 | Mean | Y1 | Y2 | Mean | Y1 | Y2 | Mean | |
Crop Establishment Methods | |||||||||||||||
T1 | 400.5 | 394.9 | 397.7 | 208.5 | 213.4 | 210.9 | 164.1 | 170.2 | 167.1 | 78.7 | 79.6 | 79.1 | 26.9 | 25.8 | 26.3 |
T2 | 519.4 | 535.4 | 527.4 | 262.4 | 264.0 | 263.2 | 243.7 | 239.4 | 241.5 | 92.8 | 90.6 | 91.7 | 27.1 | 27.7 | 27.4 |
T3 | 515.6 | 529.3 | 522.4 | 259.9 | 260.9 | 260.3 | 240.6 | 235.9 | 238.2 | 92.9 | 90.3 | 91.6 | 27.3 | 27.9 | 27.6 |
SE± | 5.60 | 6.10 | 5.8 | 2.88 | 2.28 | 2.58 | 1.87 | 1.20 | 1.53 | 0.72 | 1.09 | 0.90 | 0.07 | 0.09 | 0.08 |
LSD0.05 | 22.8 | 23.6 | 23.2 | 11.33 | 8.95 | 10.14 | 7.34 | 4.73 | 6.03 | 2.85 | 4.30 | 3.57 | 0.28 | 0.37 | 0.32 |
CV (%) | 8.4 | 9.8 | 9.1 | 10.8 | 9.2 | 10.0 | 9.6 | 8.4 | 9.0 | 7.1 | 6.2 | 6.6 | 7.8 | 8.9 | 8.3 |
Integrated Nutrient Management | |||||||||||||||
F1 | 313.3 | 306.0 | 309.6 | 130.0 | 128.2 | 129.1 | 93.5 | 91.6 | 92.5 | 71.9 | 71.4 | 71.6 | 26.3 | 25.7 | 26.0 |
F2 | 555.1 | 548.7 | 551.9 | 274.8 | 269.2 | 272.0 | 240.7 | 232.5 | 236.6 | 87.5 | 86.3 | 86.9 | 27.1 | 27.3 | 27.2 |
F3 | 550.9 | 565.6 | 558.2 | 261.2 | 268.5 | 264.8 | 239.2 | 238.0 | 238.6 | 91.5 | 88.6 | 90.0 | 27.4 | 26.3 | 26.8 |
F4 | 540.4 | 560.5 | 550.4 | 274.0 | 276.8 | 275.4 | 249.0 | 245.3 | 247.1 | 90.8 | 88.5 | 89.6 | 26.8 | 27.0 | 26.9 |
F5 | 482.7 | 475.8 | 479.2 | 247.7 | 245.6 | 246.6 | 223.4 | 217.5 | 220.4 | 90.1 | 88.4 | 89.2 | 27.3 | 27.6 | 27.4 |
F6 | 497.8 | 489.6 | 493.7 | 258.3 | 255.4 | 256.8 | 229.0 | 224.4 | 226.7 | 88.6 | 87.8 | 88.2 | 27.0 | 26.7 | 26.8 |
F7 | 527.4 | 520.5 | 523.9 | 268.6 | 259.6 | 264.1 | 244.2 | 234.2 | 239.2 | 90.9 | 90.2 | 90.5 | 27.8 | 27.2 | 27.5 |
F8 | 547.3 | 536.9 | 542.3 | 269.0 | 264.7 | 266.8 | 246.1 | 237.9 | 242.0 | 91.1 | 89.9 | 90.5 | 27.5 | 26.8 | 27.1 |
SE± | 3.80 | 2.76 | 3.28 | 3.26 | 1.89 | 2.57 | 3.31 | 3.66 | 3.48 | 1.48 | 1.54 | 1.51 | 0.16 | 0.13 | 0.14 |
LSD0.05 | 12.8 | 10.6 | 11.7 | 9.31 | 5.40 | 7.35 | 9.44 | 10.5 | 9.97 | 4.24 | 4.41 | 4.32 | 0.45 | 0.37 | 0.41 |
CV (%) | 6.2 | 7.9 | 7.0 | 8.6 | 7.4 | 8.0 | 6.9 | 5.2 | 6.0 | 5.1 | 5.4 | 5.2 | 5.7 | 7.5 | 6.6 |
Interaction | |||||||||||||||
Crop establishment methods × Integrated nutrient management | |||||||||||||||
SE± | 1.78 | 1.59 | 1.68 | 1.23 | 0.78 | 1.00 | 1.16 | 1.24 | 1.20 | 0.51 | 0.57 | 0.54 | 0.05 | 0.03 | 0.04 |
LSD0.05 | 5.08 | 4.60 | 4.84 | 3.51 | 2.23 | 2.87 | 3.44 | 3.73 | 3.58 | NS | NS | NS | NS | NS | NS |
Integrated nutrient management × Crop establishment methods | |||||||||||||||
SE± | 6.59 | 5.86 | 6.22 | 5.65 | 3.28 | 4.46 | 5.73 | 6.35 | 6.04 | 2.58 | 2.66 | 2.62 | 0.27 | 0.23 | 0.25 |
LSD0.05 | 19.09 | 18.80 | 8.94 | 16.12 | 9.36 | 12.74 | 16.34 | 18.12 | 17.23 | NS | NS | NS | NS | NS | NS |
Treatments | Grain Yield (t ha−1) | Straw Yield (t ha−1) | Total Biomass Yield (t ha−1) | Harvest Index (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Y1 | Y2 | Mean | Y1 | Y2 | Mean | Y1 | Y2 | Mean | Y1 | Y2 | Mean | |
Crop Establishment Methods | ||||||||||||
T1 | 4.56 | 4.80 | 4.68 | 6.04 | 6.57 | 6.30 | 10.63 | 11.41 | 11.02 | 42.89 | 42.06 | 42.47 |
T2 | 6.26 | 6.17 | 6.21 | 7.50 | 7.78 | 7.64 | 13.79 | 13.97 | 13.88 | 45.39 | 44.16 | 44.77 |
T3 | 5.96 | 5.88 | 5.92 | 7.28 | 7.46 | 7.37 | 13.28 | 13.36 | 13.32 | 44.88 | 44.01 | 44.44 |
SE± | 0.12 | 0.09 | 0.10 | 0.23 | 0.18 | 0.20 | 0.24 | 0.26 | 0.25 | 0.19 | 0.30 | 0.24 |
LSD0.05 | 0.47 | 0.37 | 0.42 | 0.90 | 0.70 | 0.80 | 0.94 | 0.98 | 0.96 | 0.74 | 1.18 | 0.96 |
CV (%) | 10.4 | 9.1 | 9.7 | 12.3 | 8.0 | 10.1 | 9.7 | 10.0 | 9.8 | 8.6 | 9.8 | 9.2 |
Integrated Nutrient Management | ||||||||||||
F1 | 3.63 | 3.49 | 3.56 | 5.66 | 5.93 | 5.79 | 9.33 | 9.46 | 9.39 | 38.91 | 36.89 | 37.90 |
F2 | 5.91 | 6.01 | 5.96 | 7.46 | 7.77 | 7.61 | 13.41 | 13.83 | 13.62 | 44.07 | 43.45 | 43.76 |
F3 | 5.96 | 6.05 | 6.00 | 7.18 | 7.44 | 7.31 | 13.17 | 13.52 | 13.34 | 45.25 | 44.75 | 45.00 |
F4 | 6.30 | 6.10 | 6.20 | 7.46 | 7.58 | 7.52 | 13.77 | 13.70 | 13.73 | 45.75 | 44.52 | 45.13 |
F5 | 5.57 | 5.47 | 5.52 | 6.88 | 7.07 | 6.97 | 12.46 | 12.57 | 12.51 | 44.70 | 43.52 | 44.11 |
F6 | 5.65 | 5.58 | 5.61 | 6.95 | 7.22 | 7.08 | 12.62 | 12.82 | 12.72 | 44.77 | 43.52 | 44.14 |
F7 | 5.89 | 5.80 | 5.84 | 7.03 | 7.27 | 7.15 | 12.95 | 13.09 | 13.02 | 45.48 | 44.31 | 44.89 |
F8 | 6.15 | 6.09 | 6.12 | 7.24 | 7.45 | 7.34 | 13.41 | 13.56 | 13.48 | 45.86 | 44.91 | 45.38 |
SE± | 0.13 | 0.10 | 0.11 | 0.06 | 0.04 | 0.05 | 0.15 | 0.13 | 0.14 | 0.20 | 0.21 | 0.20 |
LSD0.05 | 0.39 | 0.27 | 0.33 | 0.16 | 0.14 | 0.20 | 0.44 | 0.38 | 0.41 | 0.57 | 0.61 | 0.59 |
CV (%) | 7.4 | 5.9 | 6.6 | 9.0 | 8.2 | 8.6 | 5.7 | 6.0 | 5.8 | 7.0 | 8.5 | 7.70 |
Interaction | ||||||||||||
Crop establishment methods × Integrated nutrient management | ||||||||||||
SE± | 0.05 | 0.03 | 0.04 | 0.08 | 0.06 | 0.07 | 0.07 | 0.06 | 0.06 | 0.11 | 0.13 | 0.12 |
LSD0.05 | 0.15 | 0.10 | 0.12 | 0.23 | 0.20 | 0.21 | 0.20 | 0.18 | 0.19 | NS | NS | NS |
Integrated nutrient management × Crop establishment methods | ||||||||||||
SE± | 0.24 | 0.16 | 0.20 | 0.09 | 0.10 | 0.09 | 0.26 | 0.23 | 0.24 | 0.34 | 0.37 | 0.35 |
LSD0.05 | 0.69 | 0.45 | 0.57 | 0.30 | 0.34 | 0.32 | 0.76 | 0.66 | 0.71 | NS | NS | NS |
Treatments | Irrigation Water Input (m3 of Water) | Total Water Input (m3 of Water) | Irrigation Water Productivity (kg Grain m−3 of Water) | Total Water Productivity (kg Grain m−3 Water) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Y1 | Y2 | Mean | Y1 | Y2 | Mean | Y1 | Y2 | Mean | Y1 | Y2 | Mean | |
Crop Establishment Methods | ||||||||||||
T1 | 2400 | 1800 | 2100 | 6409 | 6774 | 6592 | 1.9 | 2.66 | 2.28 | 0.71 | 0.73 | 0.72 |
T2 | 3200 | 2400 | 2800 | 7920 | 8252 | 4521 | 1.95 | 2.57 | 2.26 | 0.79 | 0.74 | 0.76 |
T3 | 4000 | 3000 | 3500 | 10,602 | 11,193 | 10,898 | 1.49 | 1.96 | 1.72 | 0.56 | 0.52 | 0.54 |
SE± | 0.11 | 0.06 | 0.08 | 0.01 | 0.007 | 0.008 | ||||||
LSD0.05 | 0.35 | 0.24 | 0.29 | 0.06 | 0.03 | 0.04 | ||||||
CV (%) | 16 | 10.4 | 13.2 | 13.0 | 8.2 | 10.6 | ||||||
Integrated Nutrient Management | ||||||||||||
F1 | 3200 | 2400 | 2800 | 8310 | 8740 | 8525 | 1.13 | 1.45 | 1.29 | 0.43 | 0.40 | 0.41 |
F2 | 3200 | 2400 | 2800 | 8310 | 8740 | 8525 | 1.85 | 2.50 | 2.17 | 0.71 | 0.69 | 0.70 |
F3 | 3200 | 2400 | 2800 | 8310 | 8740 | 8525 | 1.86 | 2.52 | 2.19 | 0.72 | 0.70 | o.71 |
F4 | 3200 | 2400 | 2800 | 8310 | 8740 | 8525 | 1.96 | 2.54 | 2.25 | 0.76 | 0.70 | 0.73 |
F5 | 3200 | 2400 | 2800 | 8310 | 8740 | 8525 | 1.74 | 2.28 | 2.01 | 0.67 | 0.62 | 0.64 |
F6 | 3200 | 2400 | 2800 | 8310 | 8740 | 8525 | 1.76 | 2.32 | 2.04 | 0.68 | 0.64 | 0.66 |
F7 | 3200 | 2400 | 2800 | 8310 | 8740 | 8525 | 1.84 | 2.42 | 2.13 | 0.71 | 0.66 | 0.68 |
F8 | 3200 | 2400 | 2800 | 8310 | 8740 | 8525 | 1.92 | 2.54 | 2.23 | 0.74 | 0.70 | 0.72 |
SE± | 0.15 | 0.06 | 0.10 | 0.02 | 0.009 | 0.014 | ||||||
LSD0.05 | 0.43 | 0.17 | 0.30 | 0.8 | 0.02 | 0.05 | ||||||
CV (%) | 13.1 | 7.0 | 10.0 | 9.5 | 6.4 | 7.9 | ||||||
Interaction | ||||||||||||
Crop establishment methods × Integrated nutrient management | ||||||||||||
SE± | 0.05 | 0.02 | 0.03 | 0.007 | 0.003 | 0.005 | ||||||
LSD0.05 | NS | NS | NS | NS | NS | NS | ||||||
Integrated nutrient management × Crop establishment methods | ||||||||||||
SE± | 0.26 | 0.10 | 0.18 | 0.031 | 0.014 | 0.022 | ||||||
LSD0.05 | NS | NS | NS | NS | NS | NS |
Treatments | Gross Returns (Rs ha−1) | Net Returns (Rs ha−1) | Benefit-Cost Ratio | Value Cost Ratio | Partial Factor Productivity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y1 | Y2 | Mean | Y1 | Y2 | Mean | Y1 | Y2 | Mean | Y1 | Y2 | Mean | Y1 | Y2 | Mean | |
Crop Establishment Method | |||||||||||||||
T1 | 72,526 | 81,346 | 76,936 | 42,266 | 48,181 | 45,224 | 1.40 | 1.45 | 1.42 | 6.28 | 6.68 | 6.48 | 10.19 | 10.73 | 10.46 |
T2 | 98,186 | 103,179 | 100,683 | 66,023 | 68,074 | 67,049 | 2.05 | 1.94 | 1.99 | 9.25 | 8.84 | 9.04 | 14.00 | 13.80 | 13.90 |
T3 | 93,749 | 98,524 | 96,136 | 57376 | 59,209 | 58,293 | 1.58 | 1.50 | 1.54 | 8.83 | 8.13 | 8.48 | 13.33 | 13.15 | 13.24 |
SE± | 556.3 | 316.3 | 436.3 | 556.3 | 316.3 | 436.3 | 0.017 | 0.011 | 0.014 | 0.33 | 0.20 | 0.26 | 0.09 | 0.04 | 0.06 |
LSD0.05 | 2184.3 | 1241.9 | 1713.1 | 2184.3 | 1241.9 | 1713 | 0.07 | 0.042 | 0.056 | 1.29 | 0.78 | 1.03 | 0.36 | 0.16 | 0.26 |
CV (%) | 13.1 | 11.7 | 12.4 | 14.9 | 12.7 | 13.8 | 6.9 | 7.3 | 7.2 | 19.8 | 12.4 | 16.1 | 6.7 | 9.7 | 8.2 |
Integrated Nutrient Management | |||||||||||||||
F1 | 59,216 | 61,543 | 60,380 | 31,152 | 31,413 | 31,283 | 1.11 | 1.04 | 1.07 | ||||||
F2 | 93,356 | 100,903 | 97130 | 61,306 | 66,686 | 63,996 | 1.91 | 1.95 | 1.93 | 7.58 | 8.46 | 8.02 | 12.05 | 12.25 | 12.15 |
F3 | 93,549 | 100,380 | 96,965 | 60,154 | 64,418 | 62,286 | 1.80 | 1.79 | 1.79 | 8.52 | 9.20 | 8.86 | 13.33 | 13.53 | 13.43 |
F4 | 98,660 | 101,776 | 100,218 | 65,865 | 66,614 | 66,240 | 2.01 | 1.89 | 1.95 | 9.22 | 9.91 | 9.56 | 14.09 | 13.64 | 13.86 |
F5 | 87,723 | 91,833 | 89,778 | 52,940 | 53,376 | 53,158 | 1.52 | 1.39 | 1.45 | 8.89 | 7.95 | 8.42 | 13.80 | 13.55 | 13.67 |
F6 | 88,933 | 93,696 | 91,314 | 55,350 | 56,839 | 56,095 | 1.65 | 1.54 | 1.59 | 9.46 | 8.32 | 8.89 | 13.99 | 13.82 | 13.90 |
F7 | 92,336 | 96,902 | 94,619 | 57,493 | 58,045 | 57,769 | 1.65 | 1.49 | 1.57 | 10.29 | 9.23 | 9.76 | 14.59 | 14.37 | 14.48 |
F8 | 96,238 | 101,365 | 98,802 | 62,295 | 64,108 | 63,202 | 1.83 | 1.72 | 1.77 | 11.01 | 10.04 | 10.52 | 15.23 | 15.09 | 15.16 |
SE± | 670.4 | 473.4 | 571.9 | 670.4 | 473.4 | 571.9 | 0.021 | 0.014 | 0.017 | 0.21 | 0.12 | 0.16 | 0.11 | 0.08 | 0.09 |
LSD0.05 | 1913.4 | 1351.1 | 1632.2 | 1913.4 | 1351.1 | 1632.2 | 0.059 | 0.039 | 0.049 | 0.60 | 0.35 | 0.47 | 0.31 | 0.22 | 0.26 |
CV (%) | 10.3 | 10.5 | 10.4 | 13.6 | 11.5 | 12.5 | 5.8 | 6.6 | 6.2 | 7.8 | 4.7 | 6.2 | 5.6 | 6.9 | 6.2 |
Interaction | |||||||||||||||
Crop establishment methods × Integrated nutrient management | |||||||||||||||
SE± | 249.1 | 169.3 | 209.2 | 249.1 | 169.3 | 209.2 | 0.008 | 0.005 | 0.006 | 0.09 | 0.06 | 0.07 | 0.04 | 0.07 | 0.05 |
LSD0.05 | 710.9 | 483.3 | 597.1 | 710.9 | 483.3 | 597.1 | 0.022 | 0.014 | 0.018 | 0.28 | 0.16 | 0.22 | 0.14 | 0.12 | 0.13 |
Integrated nutrient management × Crop establishment methods | |||||||||||||||
SE± | 1161.2 | 819.9 | 990.5 | 1161.2 | 819.9 | 990.5 | 0.036 | 0.024 | 0.030 | 0.36 | 0.21 | 0.28 | 0.20 | 0.13 | 0.16 |
LSD0.05 | 3314.2 | 2340.2 | 2827.2 | 3314.2 | 2340.2 | 2827 | 0.103 | 0.069 | 0.086 | 1.04 | 0.61 | 0.82 | 0.54 | 0.38 | 0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Midya, A.; Saren, B.K.; Dey, J.K.; Maitra, S.; Praharaj, S.; Gaikwad, D.J.; Gaber, A.; Alsanie, W.F.; Hossain, A. Crop Establishment Methods and Integrated Nutrient Management Improve: Part I. Crop Performance, Water Productivity and Profitability of Rice (Oryza sativa L.) in the Lower Indo-Gangetic Plain, India. Agronomy 2021, 11, 1860. https://doi.org/10.3390/agronomy11091860
Midya A, Saren BK, Dey JK, Maitra S, Praharaj S, Gaikwad DJ, Gaber A, Alsanie WF, Hossain A. Crop Establishment Methods and Integrated Nutrient Management Improve: Part I. Crop Performance, Water Productivity and Profitability of Rice (Oryza sativa L.) in the Lower Indo-Gangetic Plain, India. Agronomy. 2021; 11(9):1860. https://doi.org/10.3390/agronomy11091860
Chicago/Turabian StyleMidya, Ashim, Binoy Kumar Saren, Joy Kumar Dey, Sagar Maitra, Subhashisa Praharaj, Dinkar Jagannath Gaikwad, Ahmed Gaber, Walaa F. Alsanie, and Akbar Hossain. 2021. "Crop Establishment Methods and Integrated Nutrient Management Improve: Part I. Crop Performance, Water Productivity and Profitability of Rice (Oryza sativa L.) in the Lower Indo-Gangetic Plain, India" Agronomy 11, no. 9: 1860. https://doi.org/10.3390/agronomy11091860
APA StyleMidya, A., Saren, B. K., Dey, J. K., Maitra, S., Praharaj, S., Gaikwad, D. J., Gaber, A., Alsanie, W. F., & Hossain, A. (2021). Crop Establishment Methods and Integrated Nutrient Management Improve: Part I. Crop Performance, Water Productivity and Profitability of Rice (Oryza sativa L.) in the Lower Indo-Gangetic Plain, India. Agronomy, 11(9), 1860. https://doi.org/10.3390/agronomy11091860