Productivity of Rainfed Winter Wheat with Direct Sowing and Economic Efficiency of Diversified Fertilization in Arid Region of South Kazakhstan
Abstract
:1. Introduction
- (1)
- Growth and development of rainfed winter wheat, depending on the dose and time of fertilization in a “zero” till system in dry climate of South Kazakhstan;
- (2)
- Formation of the yield structure indicators depending on the soil moisture and fertilization of rainfed winter wheat in a “zero” till system;
- (3)
- Economic efficiency of fertilizers used in the agro-technological system of direct sowing of winter wheat in dry climate of South Kazakhstan.
2. Materials and Methods
2.1. Description of the Experimental Site
2.2. Experimental Design
2.3. Laboratory and Field Methods
3. Results and Discussion
3.1. Influence of Climatic Factors and Fertilizers on Germination and Wintering of Winter Wheat in 2019 and 2020
3.1.1. Germination and Wintering of Winter Wheat in 2019
3.1.2. Germination and Wintering of Winter Wheat in 2020
3.2. Influence of Climatic Factors and Fertilizers on the Growth and Development of Winter Wheat in 2019 and 2020
3.3. Influence of Climatic Factors and Fertilizers on the Productive Parameters of Winter Wheat in 2019 and 2020
3.4. Impact of Fertilizer on Grain Yield of Rainfed Winter Wheat for 2019–2020
3.5. Economic Assessment of the Direct Sowing of Winter Wheat in Southern Kazakhstan
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Koković, N.; Saljnikov, E.; Eulenstein, F.; Čakmak, D.; Buntić, A.; Sikirić, B.; Ugrenović, V. Changes in Soil Labile Organic Matter as Affected by 50 Years of Fertilization with Increasing Amounts of Nitrogen. Agronomy 2021, 11, 2026. [Google Scholar] [CrossRef]
- Perović, V.; Kadović, R.; Đurđević, V.; Pavlović, D.; Pavlović, M.; Čakmak, D.; Mitrović, M.; Pavlović, P. Major drivers of land degradation risk in Western Serbia: Current trends and future scenarios. Ecol. Indic. 2021, 123, 107377. [Google Scholar] [CrossRef]
- Duttmann, R.; Augustin, K.; Brunotte, J.; Kuhwald, M. Modeling of field traffic intensity and soil compaction risks in agricultural landscapes. In Advances in Understanding Soil Degradation; Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F., Eds.; Springer: Cham, Switzerland, 2021; Chapter 14; ISSN 978-3-030-85681-6. [Google Scholar]
- Mamontov, V.G. Classification and causes of soil degradation by irrigation in Russian steppe agrolandscapes. In Advances in Understanding Soil Degradation; Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F., Eds.; Springer: Cham, Switzerland, 2021; Chapter 14; ISSN 978-3-030-85681-6. [Google Scholar]
- Saljnikov, E.; Eulenstein, F.; Lavrishchev, A.; Mirschel, W.; Blum, W.E.H.; McKenzie, B.M.; Lilburne, L.; Römbke, J.; Wilke, B.-M.; Schindler, U.; et al. Understanding Soils: Their Functions, Use and Degradation. In Advances in Understanding Soil Degradation; Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F., Eds.; Springer: Cham, Switzerland, 2021; Chapter 1; ISSN 978-3-030-85681-6. [Google Scholar]
- Saljnikov, E.; Mirschel, W.; Prasuhn, V.; Keller, T.; Blum, W.E.H.; Chumbaev, A.S.; Zhang, J.; Abuduwaili, J.; Eulenstein, F.; Lavrishchev, A.; et al. Types of Physical Soil Degradation and Implications for their Prevention and Monitoring. In Advances in Understanding Soil Degradation; Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F., Eds.; Springer: Cham, Switzerland, 2021; Chapter 3; ISSN 978-3-030-85681-6. [Google Scholar]
- Saljnikov, E.; Lavrishchev, A.; Römbke, J.; Rinklebe, J.; Scherber, C.; Wilke, B.-M.; Tóth, T.; Blum, W.E.H.; Behrendt, U.; Eulenstein, F.; et al. Understanding and Monitoring Chemical and Biological Soil Degradation. In Advances in Understanding Soil Degradation; Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F., Eds.; Springer: Cham, Switzerland, 2021; Chapter 3; ISSN 978-3-030-85681-6. [Google Scholar]
- Larney, F.J.; Janzen, H.H.; Smith, E.G.; Anderson, D.W. Dryland Agriculture on the Canadian Prairies: Current Issues and Future Challenges. Chall. Strateg. Dryland Agric. 2004, 32, 113–138. [Google Scholar]
- Malobane, M.E.; Nciizah, A.D.; Mudau, F.N.; Wakindiki, I.I. Tillage, crop rotation and crop residue management effects on nutrient availability in a sweet sorghum-based cropping system in marginal soils of South Africa. Agronomy 2020, 10, 776. [Google Scholar] [CrossRef]
- Komissarov, M.A.; Klik, A. The Impact of No-Till, Conservation, and Conventional Tillage Systems on Erosion and Soil Properties in Lower Austria. Eur. Soil Sci. 2020, 53, 503–511. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Choudhary, M.; Yadav, A.K.; Choudhary, V.; Sharma, P.C.; Gathala, M.K.; Jat, M.L.; McDonald, A. Effects of tillage, crop establishment and diversification on soil organic carbon, aggregation, aggregate associated carbon and productivity in cereal systems of semi-arid Northwest India. Soil Tillage Res. 2019, 190, 128–138. [Google Scholar] [CrossRef]
- Keller, T.; Lamandé, M.; Naderi-Boldaji, M.; de Lima, R.P. Soil compaction due to agricultural field traffic: An overview of current knowledge and techniques for compaction quantification and mapping. In Advances in Understanding Soil Degradation; Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F., Eds.; Springer: Cham, Switzerland, 2021; ISSN 978-3-030-85681-6. [Google Scholar]
- Zhang, J.; Wamg, Y.; Zhang, Z.; Xu, H.; Dai, J. Tillage erosion accelerates water erosion in a hilly landscape. In Advances in Understanding Soil Degradation; Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F., Eds.; Springer: Cham, Switzerland, 2021; ISSN 978-3-030-85681-6. [Google Scholar]
- Larney, F.; Janzen, H.; Smith, E. Dryland Agriculture on the Canadian Prairies: Current Issues and Strategies for Dryland Agriculture. In Challenges and Strategies for Dryland Agriculture; Crop Science Society of America and American Society of Agronomy: Madison, WI, USA, 2004; pp. 113–138. [Google Scholar]
- Suleimenov, M.K. Fundamentals of a Resource-Saving Farming System in Northern Kazakhstan–Crop Rotation and Zero or Minimal Tillage; Agrarian sector of Kazakhstan: Astana-Shortandy, Kazakhstan, 2011; pp. 16–27. [Google Scholar]
- Cook, R.L.; Trlica, A. Tillage and fertilizer effects on crop yield and soil properties over 45 years in Southern Illinois. Agron. J. 2016, 108, 415–426. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Researchable priorities in terrestrial carbon sequestration in Central Asia. In Climate Change and Terrestrial Carbon Sequestration in Central Asia; Lal, R., Suleimenov, M., Stewart, B.A., Hansen, D.O., Doraiswamy, P., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 127–136. [Google Scholar]
- Saljnikov, E.; Saljnikov, A.; Rahimgalieva, S.; Cakmak, D.; Kresovic, M.; Mrvic, V.; Dzhalankuzov, T. Impact of Energy Saving Cultivations on Soil Parameters in Northern Kazakhstan. Energy 2014, 77, 35–41. [Google Scholar] [CrossRef]
- Ogle, S.M.; Alsaker, C.; Baldock, J.; Bernoux, M.; Breidt, F.J.; McConkey, B.; Regina, K.; Vazquez-Amabile, G.G. Climate and Soil Characteristics Determine Where No-Till Management Can Store Carbon in Soils and Mitigate Greenhouse Gas Emissions. Sci. Rep. 2019, 9, 11665. [Google Scholar] [CrossRef]
- Kiryushin, V.I. Minimization of tillage: Perspectives and contradictions. Agriculture 2006, 5, 2–14. [Google Scholar]
- Suleimenov, M.K.; Kaskarbaev, Z.A. Diversification of crop production and conservation agriculture–the basis for ensuring food security. In Proceedings of the Diversification of Crop Production and No-till as the Basis of Conservation Agriculture and Food Security, Shortandy-Astana, Kazakhstan, 23–24 July 2011; pp. 27–33. [Google Scholar]
- Suleimenov, M.K. The use of plant residues in resource-saving technologies. In Proceedings of the Diversification of Crop Production and No-till as the Basis of Conservation Agriculture and Food Security, Shortandy-Astana, Kazakhstan, 23–24 July 2011; pp. 39–43. [Google Scholar]
- Powlson, D.; Stirling, C.; Jat, M.; Gerard, B.G.; Palm, C.A.; Sanchez, P.A.; Cassman, K.G. Limited potential of no-till agriculture for climate change mitigation. Nature Clim. Change 2014, 4, 678–683. [Google Scholar] [CrossRef]
- Kenenbaev, S.B.; Bastaubaeva, S.O. Priority areas in crop production and agriculture in connection with climate changes. In Proceedings of the Conference Dedicated to the 60th Anniversary of the Grain Farming Centre Named after A. I. Baraev: Agriculture and Selection of Agricultural Plants at the Present Stage, Astana-Shortandy, Kazakhstan, 9–10 July 2016; Volume I, pp. 41–45. [Google Scholar]
- Malić, N.; Stamenković, U.M. Effect of nitrogen fertilizer on growth of seeded grassland dry biomass in process of deposol: Biological reclamation. Zemlj. Bilj. 2019, 68, 12–23. [Google Scholar] [CrossRef]
- Essel, B.; Abaidoo, R.C.; Opoku, A.; Ewusi-Mensah, N. Economically Optimal Rate for Nutrient Application to Maize in the Semi-deciduous Forest Zone of Ghana. J. Soil Sci. Plant Nutr. 2021, 20, 1703–1713. [Google Scholar] [CrossRef] [PubMed]
- Rurinda, J.; Zingore, S.; Jirbin, J.M.; Balemi, T.; Masuki, K.; Andersson, J.A.; Mutegi, J.; Kamara, Y.A.; Vanlauwe, B.; Craufurd, P.; et al. Science-based decision support for formulating crop fertilizer recommendations in Sub-Saharan Africa. Agric. Syst. 2020, 180, 102790. [Google Scholar] [CrossRef]
- Pandey, M.; Shrestha, J.; Subedi, S.; Shah, K.K. Role of nutrients in wheat: A review. Trop. Agrobiodiversity 2020, 1, 18–23. [Google Scholar] [CrossRef]
- Salim, N.; Raza, A. Nutrient use efficiency (NUE) for sustainable wheat production: A review. J. Plant Nutr. 2019, 43, 297–315. [Google Scholar] [CrossRef]
- Abelentsev, V.I. Without Seed Treatment, There Will Be No High-Quality Harvest. Field of August, 2007, no. 3. Available online: http://www.avgust.com (accessed on 4 November 2021).
- Tropova, E.Y.; Kazakova, O.A.; Vorobieva, I.G.; Selyuk, M.P. Fusarium root rot of grain crops in Western Siberia and the Trans-Urals. Plant Prot. Quar. 2013, 3, 23–26. [Google Scholar]
- Porsev, I.N. Adaptive phytosanitary technologies for the cultivation of agricultural crops in the conditions of the Trans-Urals. In Monograph/Under the Editorship of VA Chulkina; Shadrinsky Publishing House: Shadrinsky, Russia, 2009; 320p. [Google Scholar]
- Krupinsky, J.M.; Bailey, K.L.; Mcmullen, M.P.; Gossen, B.D.; Turkington, T.K. Managing plant disease risk in diversified cropping systems. Agron. J. 2002, 94, 198–209. [Google Scholar] [CrossRef]
- Khoziev, A.Z.; Zaitseva, T.V.; Khakimullina, F.M. The role of seed treatment in the fight against root rot. Plant Prot. Quar. 2015, 3, 20–23. [Google Scholar]
- Sydykov, M.A.; Sydyk, D.A. Direct sowing of winter wheat on rainfed lands of southern Kazakhstan. In Proceedings of the International Congress, “Global Climate Change and Biodiversity”, Almaty, Kazakhstan, 5–6 November 2015; pp. 177–182. [Google Scholar]
- Meinel, T.; Christian, L.; Akshalov, K. Modern technologies for soil management and conservation in Northern Kazakhstan. In Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia, Springer, Environmental Science; Mueller, L., Saparov, A., Lisheid, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 455–464. [Google Scholar]
- Nunes, M.R.; van Es, H.M.; Schindelbeck, R.; Ristow, A.J.; Ryan, M. No-till and cropping system diversification improve fi soil health and crop yield. Geoderma 2018, 328, 30–43. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and soil physical environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Guo, Z.; Li, J.; Tian, C.; Hua, D.; Shi, C.; Wang, H.; Han, J.; Xu, Y. Effects of conservation tillage on soil physicochemical properties and crop yield in an arid Loess Plateau, China. Sci. Rep. 2020, 10, 4716. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.-A. No-till is challenged: Complementary management is crucial to improve its environmental benefits under a changing climate. Geogr. Sustain. 2020, 1, 229–232. [Google Scholar] [CrossRef]
- Redkov, V.V. Soils of the Republic of Kazakhstan, 1960–1962; Academy of Sciences of the Republic of Kazakhstan, Soil Science Institute: Alma-Ata, Kazakhstan, 1964; Volumes 1–4. [Google Scholar]
- WRB. World Reference Base for Soil Resources. World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014; 189p. [Google Scholar]
- Dospekhov, B.A. Workshop on Agriculture; Dospekhov, B.A., Vasiliev, I.P., Tulikov, A.M., Eds.; Agropromizdat: Moscow, Russia, 1987; 383p. [Google Scholar]
- Grigoriev, A.I. Methodology for Variety Testing of Agricultural Crops. Issue 1. General Part; Kolos: Moscow, Russia, 1971; 248p. [Google Scholar]
- Dospekhov, B.A. Field Experiment Technique; Agropromizdat: Moscow, Russia, 2011; 315p. [Google Scholar]
- Bobryshev, F.I.; Voiskovoy, A.I.; Dubina, V.V.; Dorozhko, G.R.; Popolus, G.P. Winter Wheat in the Stavropol Territory; Publishing House of SSAU “AGRUS”: Stavropol, Russia, 2003; 307p. [Google Scholar]
- Zelenskiy, N.A.; Zelenskaya, G.M.; Mokrikov, G.V. The effect of different tillage practices on yield of winter wheat. Available online: https://web.snauka.ru/issues/2014/12/40834 (accessed on 23 October 2021).
- Nurbekov, A.; Kassam, A.; Sydyk, D.; Ziadullaev, Z.; Dzhumshudov, I.; Mumindzhanov, K.; Feindel, D.; Turok, J. Practice of Soil Protecting and Resource-Saving Agriculture in Azerbaijan, Kazakhstan and Uzbekistan; FAO: Ankara, Turkey, 2016; 74p, ISBN 978-92-5-409247-4. [Google Scholar]
- Stukalov, R.S. Efficiency of winter wheat cultivation depending on technology in the zone of unstable moistening of Stavropol region. Available online: https://elibrary.ru/item.asp?id=27698331 (accessed on 4 November 2021).
- Penn, C.J.; Camberato, J.J. A Critical Review on Soil Chemical Processes that Control How Soil pH Affects Phosphorus Availability to Plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Rietra, R.P.J.J.; Heinen, M.; Dimkpa, C.O.; Bindraban, P.S. Effects of Nutrient Antagonism and Synergism on Yield and Fertilizer Use Efficiency. Commun. Soil Sci. Plant Anal. 2017, 48, 1895–1920. [Google Scholar] [CrossRef] [Green Version]
- Rykov, V.B.; Kambulov, S.I.; Kambulov, I.A.; Kolesnik, V.V.; Demina, E.B.; Ridny, S.D.; Yankovsky, N.G. Productivity of winter wheat and methods of tillage. Grain Econ. Russ. 2015, 5, 63–65. (In Russian) [Google Scholar]
- Sydykov, M.A. Economic Evaluation of the Efficiency of Winter Wheat Cultivation. In Proceedings of the XII International Scientific-Practical Conference on Agricultural Science for Agricultural Production in Kazakhstan, Siberia and Mongolia, Almaty, Kazakhstan, 16–17 April 2009; Bastau: Almaty, Kazakhstan, 2009; Volume I, pp. 232–234, (In Kazakh and Russian). [Google Scholar]
- Kenenbaev, B.B.; Sydykov, M.A.; Sydyk, D.A. Productivity of winter wheat grown by direct sowing without tillage in the South Kazakhstan. Almaty Bastau Zharshy 2009, 9, 7–11. [Google Scholar]
No | Treatments | Fertilizer Application Term | |
---|---|---|---|
1 | control | No fertilization | |
2 | P30 | Phosphorous fertilizer 30 kg ha−1 | at direct sowing |
3 | P45 | Phosphorous 45 kg ha−1 | at direct sowing |
4 | P30 + N50 | Phosphorous 30 kg ha−1, Nitrogen 50 kg ha−1 | P30-at direct sowing N50at the tillering phase in early spring |
5 | P30 + N70 | Phosphorous 30 kg ha−1 Nitrogen 70 kg ha−1 | P30-at direct sowing N70-at the tillering phase in early spring |
6 | P45 + N50 | Phosphorous 45 kg ha−1 Nitrogen 50 kg ha−1 | P45-at direct sowing N50-at the tillering phase in early spring |
7 | P45 + N75 | Phosphorous 45 kg ha−1 Nitrogen 75 kg ha−1 | P45-at direct sowing N75-at the tillering phase in early spring |
8 | GS + MNF † | Growth stimulant 0.5 L/t + micronutrient fertilizer 1L/t Growth stimulant 0.5 L/t + microfertilizer 2 L/t | One autumn treatment in the tillering phase Two treatments: in early spring tillering and at flag leaf phase. |
Soil Layer, cm | Total Content, % | pH in H2O | Mobile Nutrients, mg/100 g | |||||
---|---|---|---|---|---|---|---|---|
Humus | Nitrogen | CO2 | CaCO3 | Hydrolysable N | P2O5 | K2O | ||
0–10 | 1.36 | 0.08 | 4.8 | 10.8 | 7.35 | 13.3 | 2.7 | 406 |
10–20 | 1.18 | 0.07 | 4.9 | 11.0 | 7.41 | 10.8 | 2.7 | 439 |
20–35 | 0.5 | 0.05 | 6.9 | 15.8 | 7.47 | 6.5 | 1.6 | 308 |
35–50 | 0.3 | 0.05 | 8.7 | 19.7 | 8.50 | nd | 1.4 | 320 |
50–100 | nd | nd | 9.0 | 20.5 | 8.50 | nd | nd | nd |
No. | Treatments | Year | Sowing-Germination | Germination-Tillering | Tillering-Booting | Booting-Earing | Earing-Flowering | Flowering-Milk Maturity | Milk-Waxy Maturity | Waxy-Full Maturity | Sowing-Full Grain Maturity |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | control | 2019 | 11 | 21 | 18 | 43 | 6 | 9 | 12 | 11 | 254 |
2020 | 28 | 41 | 20 | 40 | 5 | 9 | 11 | 11 | 239 | ||
2 | P30 | 2019 | 11 | 20 | 17 | 40 | 6 | 8 | 11 | 10 | 249 |
2020 | 28 | 40 | 19 | 38 | 5 | 8 | 10 | 11 | 235 | ||
3 | P45 | 2019 | 11 | 20 | 17 | 40 | 6 | 8 | 10 | 10 | 248 |
2020 | 28 | 40 | 19 | 38 | 5 | 7 | 10 | 10 | 234 | ||
4 | P30 N50 | 2019 | 11 | 19 | 16 | 40 | 6 | 9 | 13 | 12 | 255 |
2020 | 28 | 39 | 18 | 39 | 5 | 9 | 12 | 13 | 241 | ||
5 | P30 N70 | 2019 | 11 | 19 | 16 | 41 | 6 | 9 | 13 | 12 | 256 |
2020 | 28 | 39 | 18 | 40 | 5 | 9 | 12 | 13 | 242 | ||
6 | P45 N50 | 2019 | 11 | 18 | 16 | 40 | 6 | 9 | 13 | 12 | 255 |
2020 | 28 | 38 | 18 | 39 | 5 | 9 | 12 | 13 | 241 | ||
7 | P45 N70 | 2019 | 11 | 18 | 16 | 41 | 6 | 9 | 13 | 12 | 257 |
2020 | 28 | 38 | 18 | 40 | 5 | 9 | 12 | 13 | 243 | ||
8 | GS+MNF † | 2019 | 11 | 18 | 16 | 39 | 6 | 8 | 12 | 11 | 243 |
2020 | 28 | 38 | 18 | 38 | 5 | 8 | 11 | 10 | 234 |
No. | Treatment | Number of Overwintered Plants, pcs m−2 | Ear Quantity, pcs m−2 | Plant Height, cm | Ear Length, cm | Number of Grains per Ear, pcs | Weight of 1000 Seeds | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | ||
1 | control | 238.0 a † | 243.4 a | 202.3a | 207.0a | 68.5a | 73.6a | 7.0a | 6.8a | 20.0a | 21.1a | 30.6a | 13.2a |
2 | P30 | 261.6b | 270.3b | 212.1a | 217.2b | 78.5b | 80.1b | 8.6b | 8.9b | 25.1b | 23.9a | 35.0b | 17.5b |
3 | P45 | 269.7b | 272.0b | 215.8a | 220.1b | 80.2b | 81.3b | 8.7b | 8.8b | 26.0b | 25.3ab | 35.7b | 19.1b |
4 | P30 N50 | 271.5b | 295.6c | 265.4b | 271.3c | 88.1bc | 90.4bc | 9.9c | 9.6bc | 32.4c | 31.7b | 37.1bc | 31.7c |
5 | P30 N70 | 288.9c | 303.8c | 281.1bc | 283.2c | 89.7bc | 92.1bc | 10.2c | 9.8c | 33.2c | 32.6b | 37.3bc | 34.3c |
6 | P45 N50 | 295.5c | 318.6cd | 290.0c | 300.1cd | 94.9c | 93.4bc | 10.8c | 10.9c | 33.4c | 32.0b | 37.0bc | 35.4c |
7 | P45 N70 | 310.6cd | 325.8d | 302.2c | 302.0cd | 95.8c | 98.4b | 10.9c | 11.2c | 34.0c | 32.8b | 37.5bc | 36.8cd |
8 | GS + MNF †† | 269.5b | 288.6e | 245.0d | 269.0c | 79.8b | 84.5b | 8.5b | 9.3bc | 28.1bc | 29.8b | 35.1b | 27.7c |
Sampling Date | Moisture Reserve (mm) in Soil Layers (cm) | |||
---|---|---|---|---|
0–10 | 0–20 | 0–50 | 0–100 | |
08 March 2019 | 11 | 28 | 82 | 176.0 |
18 March 2019 | 10 | 23 | 71 | 169.5 |
28 March 2019 | 15 | 34 | 76 | 176.0 |
08 April 2019 | 20 | 41 | 98 | 191.0 |
18 April 2019 | 20 | 40 | 96 | 182.0 |
28 April 2019 | 23 | 47 | 98 | 196.0 |
08 May 2019 | 10 | 22 | 63 | 152.0 |
18 May 2019 | 11 | 27 | 58 | 143.0 |
28 May 2019 | 10 | 30 | 45 | 94.0 |
08 March 2020 | 25 | 49 | 102 | 173.0 |
18 March 2020 | 23 | 45 | 100 | 166.0 |
28 March 2020 | 21 | 46 | 110 | 207.7 |
08 April 2020 | 21 | 44 | 108 | 205.2 |
18 April 2020 | 11 | 24 | 68 | 160.1 |
28 April 2020 | 9 | 20 | 59 | 150.7 |
08 May 2020 | 11 | 24 | 61 | 146.4 |
18 May 2020 | 5 | 12 | 43 | 170.0 |
28 May 2020 | 2 | 6 | 29 | 84.0 |
No. | Treatment | Grain Yield, t/ha | Average Grain Yield, t/ha | Deviation from Control, t/ha | |
---|---|---|---|---|---|
2019 | 2020 | ||||
1 | control | 1.24a † | 1.32a | 1.28a | - |
2 | P30 | 1.80b | 1.75a | 1.76b | +0.48 |
3 | P45 | 2.01b | 1.91ab | 1.96b | +0.68 |
4 | P30 N50 | 3.19c | 3.17c | 3.18c | +1.90 |
5 | P30 N70 | 3.48c | 3.43c | 3.46c | +2.18 |
6 | P45 N50 | 3.58c | 3.54c | 3.56c | +2.28 |
7 | P45 N70 | 3.85cd | 3.68c | 3.77c | +2.49 |
8 | GS + MNF †† | 2.42bc | 2.77bc | 2.59bc | +1.31 |
Treatment | Grain Yield | Production Costper 1 ha | Price of Grain Produced | Net Profit per Hectare | Cost of 1 Ton of Product | Cost of 1 Ton of Product | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
t/ha | KZT * | EUR | ||||||||||
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
control | 1.24 | 1.32 | 21,800 | 26,300 | 86,800 | 118,800 | 65,000 | 92,500 | 17,580 | 19,920 | 35,472 | 40,194 |
P30 | 1.86 | 1.75 | 30,600 | 38,500 | 130,200 | 157,800 | 99,600 | 119,300 | 16,450 | 22,000 | 33,192 | 44,391 |
P45 | 2.01 | 1.91 | 35,000 | 44,700 | 140,700 | 171,900 | 105,700 | 127,200 | 17,410 | 23,400 | 35,129 | 47,215 |
P30 N50 | 3.19 | 3.17 | 45,100 | 54,800 | 223,300 | 285,300 | 178,200 | 230,500 | 14,130 | 17,280 | 28,511 | 34,867 |
P30 N70 | 3.48 | 3.43 | 50,900 | 61,300 | 243,600 | 308,700 | 192,700 | 247,400 | 14,620 | 17,870 | 29,500 | 36,057 |
P45 N50 | 3.58 | 3.54 | 49,600 | 60,900 | 250,600 | 318,600 | 201,000 | 257,700 | 13,850 | 17,200 | 27,946 | 34,705 |
P45 N70 | 3.85 | 3.68 | 55,400 | 67,400 | 269,500 | 331,200 | 214,100 | 263,800 | 14,390 | 18,320 | 29,036 | 36,965 |
GS + MNF ** | 2.42 | 2.77 | 30,200 | 30,200 | 169,400 | 249,300 | 139,200 | 219,100 | 12,470 | 10,900 | 25,161 | 21,994 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turebayeva, S.; Zhapparova, A.; Yerkin, A.; Aisakulova, K.; Yesseyeva, G.; Bissembayev, A.; Saljnikov, E. Productivity of Rainfed Winter Wheat with Direct Sowing and Economic Efficiency of Diversified Fertilization in Arid Region of South Kazakhstan. Agronomy 2022, 12, 111. https://doi.org/10.3390/agronomy12010111
Turebayeva S, Zhapparova A, Yerkin A, Aisakulova K, Yesseyeva G, Bissembayev A, Saljnikov E. Productivity of Rainfed Winter Wheat with Direct Sowing and Economic Efficiency of Diversified Fertilization in Arid Region of South Kazakhstan. Agronomy. 2022; 12(1):111. https://doi.org/10.3390/agronomy12010111
Chicago/Turabian StyleTurebayeva, Sagadat, Aigul Zhapparova, Akbota Yerkin, Khaiyrnisa Aisakulova, Gainiya Yesseyeva, Anuarbek Bissembayev, and Elmira Saljnikov. 2022. "Productivity of Rainfed Winter Wheat with Direct Sowing and Economic Efficiency of Diversified Fertilization in Arid Region of South Kazakhstan" Agronomy 12, no. 1: 111. https://doi.org/10.3390/agronomy12010111
APA StyleTurebayeva, S., Zhapparova, A., Yerkin, A., Aisakulova, K., Yesseyeva, G., Bissembayev, A., & Saljnikov, E. (2022). Productivity of Rainfed Winter Wheat with Direct Sowing and Economic Efficiency of Diversified Fertilization in Arid Region of South Kazakhstan. Agronomy, 12(1), 111. https://doi.org/10.3390/agronomy12010111