Molecular Authentication, Propagation Trials and Field Establishment of Greek Native Genotypes of Sambucus nigra L. (Caprifoliaceae): Setting the Basis for Domestication and Sustainable Utilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Plant Material
2.2. DNA Isolation
2.3. Polymerase Chain Reaction (PCR) Amplification
2.4. Sequence Analysis
2.5. Molecular Data Analysis
2.6. Phylogenetic Relationships
2.7. Establishment of Mother Plant Stock Material for Propagation
2.8. Screening Experimental Design and General Propagation Trials
2.9. Special Propagation Trials of Genotype GR-1-BBGK-19,192
2.10. Measurement of Early Vegetative Growth of Genotype GR-1-BBGK-19,192
2.11. Pilot Field Cultivation Trial of the Nine (9) Genotypes
2.12. Statistical Analysis of Propagation and Field Growth Data
3. Results
3.1. Molecular Authentication Efficiency Using Barcoding ITS2 Region
3.2. Screening of Genotypes in Terms of Propagation Success
3.3. Field Cultivation Trial of the Collected Genotypes
3.4. Multifaceted Assessment of Greek Sambucus Nigra Genotypes
3.5. Propagation of Genotype GR-1-BBGK-19,192
3.6. Vegetative Growth of Genotype GR-1-BBGK-19,192
4. Discussion
4.1. Molecular Authentication of Greek Native Genotypes of Sambucus nigra
4.2. Propagation of Greek Native Genotypes of Sambucus nigra
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cole, M.B.; Augustin, M.A.; Robertson, M.J.; Manners, J.M. The science of food security. NPJ Sci. Food 2018, 2, 14. [Google Scholar] [CrossRef]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te, M.L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Che, C.T.; Zhang, H. Plant Natural Products for Human Health. Int. J. Mol. Sci. 2019, 20, 830. [Google Scholar] [CrossRef] [Green Version]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and effects of human health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef] [Green Version]
- Olas, B. Berry phenolic antioxidants—Implications for human health? Front. Pharmacol. 2018, 9, 78. [Google Scholar] [CrossRef]
- Zafra-Stone, S.; Yasmin, T.; Bagchi, M.; Chatterjee, A.; Vinson, J.A.; Bagchi, D. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res. 2007, 51, 675–683. [Google Scholar] [CrossRef]
- Ozgen, M.; Scheerens, J.C.; Reese, R.N.; Miller, R.A. Total phenolic, anthocyanin contents and antioxidant capacity of selected elderberry (Sambucus canadensis L.) accessions. Pharmacogn. Mag. 2010, 6, 198–203. [Google Scholar] [CrossRef] [Green Version]
- Młynarczyk, K.; Walkowiak-Tomczak, D.; Łysiak, G.P. Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. J. Funct. Foods 2018, 40, 377–390. [Google Scholar] [CrossRef]
- Domínguez, R.; Zhang, L.; Rocchetti, G.; Lucini, L.; Pateiro, M.; Munekata, P.E.S.; Lorenzo, J.M. Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chem. 2020, 330, 127266. [Google Scholar] [CrossRef]
- Zakay-Rones, Z.; Thom, E.; Wollan, T.; Wadstein, J. Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections. Int. J. Med. Res. 2004, 32, 132–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, R.S.; Bode, R.F. A review of the antiviral properties of black elder (Sambucus nigra L.) products. Phytother. Res. 2017, 31, 533–554. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, J.; Baker, C.; Cherry, L.; Dunne, E. Black elderberry (Sambucus nigra) supplementation effectively treats upper respiratory symptoms: A meta-analysis of randomized, controlled clinical trials. Complement. Ther. Med. 2019, 42, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Brendler, T.; Al-Harrasi, A.; Bauer, R.; Gafner, S.; Hardy, M.L.; Heinrich, M.; Hosseinzadeh, H.; Izzo, A.A.; Michaelis, M. Botanical drugs and supplements affecting the immune response in the time of COVID-19: Implications for research and clinical practice. Phytother. Res. 2020, 35, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Harnett, J.; Oakes, K.; Carè, J.; Leach, M.; Brown, D.; Cramer, H.; Pinder, T.-A.; Steel, A.; Anheyer, D. The effects of Sambucus nigra berry on acute respiratory viral infections: A rapid review of clinical studies. Adv. Integr. Med. 2020, 7, 240–246. [Google Scholar] [CrossRef]
- Boroduske, A.; Jekabsons, K.; Riekstina, U.; Muceniece, R.; Rostoks, N.; Nakurte, I. Wild Sambucus nigra L. from north-east edge of the species range: A valuable germplasm with inhibitory capacity against SARS-CoV2 S-protein RBD and hACE2 binding in vitro. Ind. Crops Prod. 2021, 165, 113438. [Google Scholar] [CrossRef] [PubMed]
- Berry, J.A. Adaptation of photosynthetic processes to stress. Science 1975, 188, 644–650. [Google Scholar] [CrossRef]
- Alonso-Blanco, C.; Aarts, M.G.M.; Bentsink, L.; Keurentjes, J.J.B.; Reymond, M.; Vreugdenhil, D.; Koornneef, M. What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 2009, 21, 1877–1896. [Google Scholar] [CrossRef] [Green Version]
- Anthony, B.M.; Chaparro, J.M.; Prenni, J.E.; Minas, I.S. Early metabolic priming under differing carbon sufficiency conditions influences peach fruit quality development. Plant Physiol. Biochem. 2020, 157, 416–431. [Google Scholar] [CrossRef]
- Krigas, N.; Tsoktouridis, G.; Anestis, I.; Khabbach, A.; Libiad, M.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; Lamchouri, F.; Tsiripidis, I.; Tsiafouli, M.A.; et al. Exploring the potential of neglected local endemic plants of three Mediterranean regions in the ornamental sector: Value chain feasibility and readiness timescale for their sustainable exploitation. Sustainability 2021, 13, 2539. [Google Scholar] [CrossRef]
- Libiad, M.; Khabbach, A.; El Haissoufi, M.; Anestis, I.; Lamchouri, F.; Bourgou, S.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; Greveniotis, V.; Tsiripidis, I.; et al. Agro-alimentary potential of the neglected and underutilized local endemic plants of Crete (Greece), Rif-Mediterranean Coast of Morocco and Tunisia: Perspectives and challenges. Plants 2021, 10, 1770. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, P.; Raus, T.; Bergmeier, E.; Constantinidis, T.; Iatrou, G.; Kokkini, S.; Strid, A.; Tzanoudakis, D. Vascular Plants of Greece: An Annotated Checklist; Englera Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin: Berlin, Germany; Hellenic Botanical Society: Athens, Greece, 2013; Volume 31. [Google Scholar]
- Dimopoulos, P.; Raus, T.; Bergmeier, E.; Constantinidis, T.; Iatrou, G.; Kokkini, S.; Strid, A.; Tzanoudakis, D. Vascular plants of Greece: An annotated checklist. Supplement. Willdenowia 2016, 46, 301–347. [Google Scholar] [CrossRef] [Green Version]
- Maloupa, E.; Krigas, N.; Grigoriadou, K.; Lazari, D.; Tsoktouridis, G. Conservation Strategies for Native Plant Species and Their Sustainable Exploitation: Case of the Balkan Botanic Garden of Kroussia, N. Greece. In Floriculture Ornamental Plant Biotechnology, 1st ed.; Teixeira da Silva, J.A., Ed.; Global Science Books: Middlesex, UK, 2008; pp. 37–56. [Google Scholar]
- Grigoriadou, K.; Krigas, N.; Lazari, D.; Maloupa, E. Sustainable Use of Mediterranean Medicinal—Aromatic Plants. In Feed Additives, 1st ed.; Florou-Paneri, P., Christaki, E., Giannenas, I., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 57–74. [Google Scholar]
- Perrino, E.V.; Wagensommer, R.P. Crop Wild Relatives (CWR) priority in Italy: Distribution, ecology, in situ and ex situ conservation and expected actions. Sustainability 2021, 13, 1682. [Google Scholar] [CrossRef]
- Hebert, P.D.; Cywinska, A.; Ball, S.L.; De Waard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. B 2003, 270, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Madesis, P.; Ganopoulos, I.; Ralli, P.; Tsaftaris, A. Barcoding the major Mediterranean leguminous crops by combining universal chloroplast and nuclear DNA sequence targets. Genet. Mol. Res 2012, 11, 2548–2558. [Google Scholar] [CrossRef]
- Amini, E.; Nasrollahi, F.; Sattarian, A.; Isazadeh-Araei, M.; Habibi, M. Systematic and molecular biological study of Sambucus, L. (Caprifoliaceae) in Iran. Thaiszia J. Bot. 2019, 29, 133–150. [Google Scholar] [CrossRef] [Green Version]
- De Graaf, B.H.J.; Dewitte, W. Fertilisation and cell cycle in Angiosperms. Ann. Plant Rev. 2019, 2, 361–386. [Google Scholar] [CrossRef]
- Wilson, P.M.W.; Wilson, J.W. Experiments on the rate of development of adventitious roots on Sambucus nigra cuttings. Aust. J. Bot. 1977, 25, 367–375. [Google Scholar] [CrossRef]
- Matejicek, A.; Kaplan, J.; Vespalcova, M. Investigation of fruit chemical composition and vegetative propagation of cultivated and wild Elderberry. Acta Hortic. 2012, 926, 353–356. [Google Scholar] [CrossRef]
- Koleva Gudeva, L.; Trajkova, F.; Mihajlov, L.; Troicki, J. Influence of different Auxins on rooting of rosemary, sage, and elderberry. Ann. Res. Rev. Biol. 2017, 12, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rhodenbaugh, E.J.; Pallardy, S.G. Water stress, photosynthesis and early growth patterns of cuttings of three Populus clones. Tree Physiol. 1993, 13, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Górnik, K.; Grzesik, M.; Romanowska-Duda, B. The effect of chitosan on rooting of grapevine cuttings and on subsequent plant growth under drought and temperature stress. J. Fruit Ornam. Plant Res. 2008, 16, 333–343. [Google Scholar]
- Agulló-Antón, M.Á.; Ferrández-Ayela, A.; Fernández-García, N.; Nicolás, C.; Albacete, A.; Pérez-Alfocea, F.; Sánchez-Bravo, J.; Pérez-Pérez, J.M.; Acosta, M. Early steps of adventitious rooting: Morphology, hormonal profiling, and carbohydrate turnover in carnation stem cuttings. Physiol. Plant. 2014, 150, 446–462. [Google Scholar] [CrossRef]
- Strid, A. Atlas of the Aegean Flora, Part 1: Text & Plates; Part 2: Maps; Englera Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin: Berlin, Germany, 2016; Volume 33. [Google Scholar]
- Chen, S.; Pang, X.; Song, J.; Shi, L.; Yao, H.; Han, J.; Leon, C. A renaissance in herbal medicine identification: From morphology to DNA. Biotechol. Adv. 2014, 32, 1237–1244. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Nat. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Blythe, E.K.; Sibley, J.L.; Tilt, K.M.; Ruter, J.M. Methods of auxin application in cutting propagation: A review of 70 years of scientific discovery and commercial practice. J. Environ. Hortic. 2007, 25, 166–185. [Google Scholar] [CrossRef]
- Talia, M.A.; La Viola, A.M.F. Identification of Propagation Methods for Some Species Common to Albania and Southern Italy. In Italo-Albanian Cooperation for the Enhancement of Plant Biodiversity; Ricciardi, L., Myrta, A., De Castro, F., Eds.; FAO: Bari, Italy, 2001; pp. 103–115. [Google Scholar]
- Ercişli, S.; Güleryüz, M. A study of the propagation of the hardwood cuttings of some rose hips. Turk. J. Agric. For. 1999, 23, 305–310. [Google Scholar]
- Pooler, M.R.; Dix, R.L. Screening of Cercis (redbud) taxa for ability to root from cuttings. J. Environ. Hortic. 2001, 19, 137–139. [Google Scholar] [CrossRef]
- Rosa, G.G.; da Zanandrea, I.; Mayer, N.A.; Bianchi, V.J. Effect of genotype on rooting and acclimatization of semi hardwood cutting of peach rootstock (in Portuguese with English abstract). Rev. Cienc. Agrovet. 2017, 16, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Owen, J.; Johnson, W.; Maynard, B. Cutting propagation screening trials at University of Rhode Island. Proc. Int. Plant Prop. Soc. 2001, 51, 514–516. [Google Scholar]
- De Klerk, G.J.; Van der Krieken, W.; De Jong, J.C. The formation of adventitious roots: New concepts, new possibilities. Vitr. Cell. Dev. Biol. Plant 1999, 35, 189–199. [Google Scholar] [CrossRef]
- Da Costa, C.T.; de Almeida, M.R.; Ruedell, C.M.; Schwambach, J.; Maraschin, F.S.; Fett-Neto, A.G. When stress and development go hand in hand: Main hormonal controls of adventitious rooting in cuttings. Front. Plant Sci. 2013, 4, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarropoulou, V.; Maloupa, E. Asexual propagation of four medicinal Greek endemic plants of Lamiaceae family with conservation priority from the collection of the Balkan Botanic Garden of Kroussia, N. Greece. J. Adv. Agric. 2019, 10, 1611–1622. [Google Scholar] [CrossRef]
- Scoggins, H.L. Cutting Propagation of Perennials. In Cutting Propagation of Floral Crops; Dole, J., Gibson, J., Eds.; Ball Publishing: Batavia, NY, USA, 2006; pp. 173–185. [Google Scholar]
- Hopkins, W.G.; Hüner, N.P.A. Introduction to Plant Physiology, 3rd ed.; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Barbier, F.F.; Dun, E.A.; Beveridge, C.A. Apical dominance. Curr. Biol. 2017, 27, R864–R865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zargar, A.A.; Kumar, D. Effect of maturity stage of donor plant on propagation of Diploknema butyracea through branch cuttings. World J. Agric. Res. 2018, 6, 15–19. [Google Scholar] [CrossRef]
- Rianawati, H. Effect of donor plants and rooting medium on the stem cutting propagation of faloak (Sterculia quadrifida). Trop. Drylands 2019, 4, 31–35. [Google Scholar] [CrossRef]
- Silber, A.; Bar-Yosef, B.; Levkovitch, I.; Soryano, S. pH-Dependent surface properties of perlite: Effects of plant growth. Geoderma 2010, 158, 275–281. [Google Scholar] [CrossRef]
- Kormanek, M.; Małek, S.; Banach, J.; Durło, G.; Jagiełło-Leńczuk, K.; Dudek, K. Seasonal changes of perlite–peat substrate properties in seedlings grown in different sized container trays. New For. 2020, 52, 271–283. [Google Scholar] [CrossRef]
- Al-Shammari, A.M.A.; Abood, M.A.; Hamdi, G.J. Perlite affects some plant indicators and reduces water deficit in tomato. Int. J. Veg. Sci. 2018, 24, 490–500. [Google Scholar] [CrossRef]
- Poethig, R.S. Leaf morphogenesis in flowering plants. Plant Cell 1997, 9, 1077–1087. [Google Scholar] [CrossRef] [PubMed]
- Rudall, P.J. Anatomy of Flowering Plants: An Introduction to Structure and Development; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Maughan, T.; Black, B.L.; Rupp, L.A.; Yost, M.A. Propagation techniques for Sambucus cerulea (blue elderberry). Nativ. Plants J. 2018, 19, 81–88. [Google Scholar] [CrossRef]
No. | IPEN Accession Number | Greek Prefecture | Area | Coordinates (HGRS87/EGSA87) | Altitude (m) | Sampling |
---|---|---|---|---|---|---|
1 | GR-1-BBGK-19,73 | Central Macedonia | Mt Voras | 40.801549999999999, 21.935230000000001 | 462 | SWSC, LS |
2 | GR-1-BBGK-19,192 | Epirus | Ioannina | 39.704830000000001, 20.727409999999999 | 490 | SWSC, LS |
3 | GR-1-BBGK-19,425 | Thessaly | Trikala | 39.667850000000001, 21.184380000000001 | 1117 | SWSC, LS |
4 | GR-1-BBGK-19,478 | Central Macedonia | Mt Voras | 40.909920000000000, 21.955359999999999 | 566 | LS |
5 | GR-1-BBGK-19,479 | Central Macedonia | Mt Voras | 40.878860000000003, 21.959170000000000 | 749 | SWSC, LS |
6 | GR-1-BBGK-19,503 | Central Macedonia | Kilkis | 40.970910000000003, 22.376750000000001 | 790 | LS |
7 | GR-1-BBGK-19,562 | Central Macedonia | Mt Vermio | 40.649999999999999, 21.949999999999999 | 1615 | SWSC, LS |
8 | GR-1-BBGK-19,574 | Epirus | Ioannina | 40.056390000000000, 20.856770000000001 | 930 | SWSC, LS |
9 | GR-1-BBGK-19,584 | Central Macedonia | Kilkis | 41.002249999999997, 22.294530000000002 | 1224 | LS |
10 | GR-1-BBGK-19,596 | Central Macedonia | Mt Tzena | 41.128920000000001, 22.190809999999999 | 1263 | SWSC |
11 | GR-1-BBGK-19,629 | Epirus | Ioannina | 39.787129999999998, 20.797750000000001 | 990 | SWSC |
12 | GR-1-BBGK-19,637 | Epirus | Ioannina | 39.873710000000003, 20.752459999999999 | 955 | SWSC |
Application Period | Conventional Crop Nutrition | Organic Crop Nutrition |
---|---|---|
March -plantings | Peat (planting pit) | 100 g zeolite + 50 g biocompost + 30 g Ρ-30 + 30 g organic fertilizer (water-soluble Fe 12% w/w, water-soluble Mn 0.55% w/w, water-soluble Zn 0.49% w/w, total MgO 5.1% w/w, water-soluble MgO 3% w/w, water-soluble SO3 37% w/w) (planting pit) |
April | 80 g/plant 21% N—17% P2O5—0.15% Zn—4% S | 50 g natural product (2% organic acids, as complexes of natural aluminosilicate minerals and hydrated copper sulphate, adsorbed on the natural crystal)/10 L water |
May | Fe: 20 g + Zn: 5 mL + B: 5 mL/10 L | 20 g organic fertilizer (organic water-soluble N 11% w/w, organic C 40% w/w, total amino acids 69.2% w/w) + 1.5 g organic fertilizer [organic & humic compounds: 68–78% (humic acids 40% min.), nutrient inorganic elements: 5% Ν, 3% Ρ2O5, 3–5% CaO, 0.7–1.0% MgO, 1.2 Fe & trace elements (Zn, B, Cu) in ppm] + 5 mL natural product (amino acids from vegetal organic matrixes, natural cytokinins, folic acid, humic and fulvic acids, glutamic acid, asparagine, alanine, lysine, vitamins (A, B, C, PP, K), carbohydrates, micronutrients)/10 L water |
50 g natural product (organic acids, organic calcium and boron sources and 3% of vitamins as complexes of natural aluminosilicate minerals) + 20 mL organic biostimulator (5% w/w total aminoacids, 1.5% w/w free aminoacids, 10% w/w organic carbon, 10 mg/kg natural triacontanol)/10 L water | ||
June | 80 g/plant 21% N—17% P2O5—0.15% Zn—4% S | 20 mL organic biostimulator (5% w/w total aminoacids, 1.5% w/w free aminoacids, 10% w/w organic carbon, 10 mg/kg natural triacontanol)/10 L water |
September | - | 100 g natural product (2% organic acids, as complexes of natural aluminosilicate minerals and hydrated copper sulphate, adsorbed on the natural crystal 12.5% w/w)/10 L water |
November | 35 g/10 L 46—0—0 | 20 mL organic fertilizer (total N 2% w/w, organic N 1% w/w, water-soluble K2O 9% w/w)/10 L water |
IPEN Accession Number | DNA Barcoding | Ease of Propagation * | Field Establishment | ||
---|---|---|---|---|---|
Rooting Frequency | Speed | Rooting Quality | |||
GR-1-BBGK-19,73 | Effective | High | Low | Medium | Medium |
GR-1-BBGK-19,192 | Effective | High | Very high | Very high | High |
GR-1-BBGK-19,425 | Effective | High | Low | Medium | Medium |
GR-1-BBGK-19,479 | Effective | Medium | Low | Low | High |
GR-1-BBGK-19,562 | Effective | High | Low | Low | Medium |
GR-1-BBGK-19,574 | Effective | High | Low | Medium | Medium |
GR-1-BBGK-19,596 | - | High | Low | Medium | Medium |
GR-1-BBGK-19,629 | - | High | Low | High | Medium |
GR-1-BBGK-19,637 | - | High | Low | Low | Medium |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karapatzak, E.; Dichala, O.; Ganopoulos, I.; Karydas, A.; Papanastasi, K.; Kyrkas, D.; Yfanti, P.; Nikisianis, N.; Fotakis, D.; Patakioutas, G.; et al. Molecular Authentication, Propagation Trials and Field Establishment of Greek Native Genotypes of Sambucus nigra L. (Caprifoliaceae): Setting the Basis for Domestication and Sustainable Utilization. Agronomy 2022, 12, 114. https://doi.org/10.3390/agronomy12010114
Karapatzak E, Dichala O, Ganopoulos I, Karydas A, Papanastasi K, Kyrkas D, Yfanti P, Nikisianis N, Fotakis D, Patakioutas G, et al. Molecular Authentication, Propagation Trials and Field Establishment of Greek Native Genotypes of Sambucus nigra L. (Caprifoliaceae): Setting the Basis for Domestication and Sustainable Utilization. Agronomy. 2022; 12(1):114. https://doi.org/10.3390/agronomy12010114
Chicago/Turabian StyleKarapatzak, Eleftherios, Olga Dichala, Ioannis Ganopoulos, Antonis Karydas, Katerina Papanastasi, Dimitris Kyrkas, Paraskevi Yfanti, Nikos Nikisianis, Dimitrios Fotakis, Giorgos Patakioutas, and et al. 2022. "Molecular Authentication, Propagation Trials and Field Establishment of Greek Native Genotypes of Sambucus nigra L. (Caprifoliaceae): Setting the Basis for Domestication and Sustainable Utilization" Agronomy 12, no. 1: 114. https://doi.org/10.3390/agronomy12010114
APA StyleKarapatzak, E., Dichala, O., Ganopoulos, I., Karydas, A., Papanastasi, K., Kyrkas, D., Yfanti, P., Nikisianis, N., Fotakis, D., Patakioutas, G., Maloupa, E., & Krigas, N. (2022). Molecular Authentication, Propagation Trials and Field Establishment of Greek Native Genotypes of Sambucus nigra L. (Caprifoliaceae): Setting the Basis for Domestication and Sustainable Utilization. Agronomy, 12(1), 114. https://doi.org/10.3390/agronomy12010114