A Predictive Study of the Redistribution of Some Bread Wheat Genotypes in Response to Climate Change in Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climatic Analysis
2.1.1. Rainfall
2.1.2. Temperature
2.2. Experiment Procedures
2.2.1. Plant Material
2.2.2. Experimental Site
2.2.3. Climatic Data of the of Experimental Site
2.2.4. Experimental Setup
- Normal condition: all cultivars were subjected to the optimum amount of irrigation water requirements (IR) under these conditions, which were 6529 m3 ha−1 and 5244 m3 ha−1 for the 2018/2019 and 2019/2020 seasons, respectively.
- Stress conditions: all cultivars were subjected to 70% of the optimum amount of irrigation water requirements in the previous treatment, which were 4570.3 m3 ha−1 and 3670.8 m3 ha−1 for the 2018/2019 and 2019/2020 seasons, respectively, and the treatment started 15 days after transplanting.
2.2.5. Phenotypic Evaluation
2.2.6. Data Analysis
3. Results
3.1. Climatic Change
3.1.1. Rainfall
3.1.2. Temperature
3.2. Phenotypic Evaluation
3.2.1. Plant Height (PH)
3.2.2. Spike Length (SL)
3.2.3. Number of Grains per Spike (GN)
3.2.4. Weight of Grains per Spike (GW)
3.2.5. Seed Index (SI)
3.2.6. Biological Yield kg/m2 (BY)
3.2.7. Grain Yield kg/m2 (GY)
3.2.8. Tolerance and Susceptibility Indices
3.2.9. Cluster Analysis
- Super cultivars, which had an average yield more than 25% higher than the mean of all cultivars;
- High-yielding cultivars have yields equal to or not higher than 25% of the mean of all cultivars;
- Low yielding cultivars, whose yield is not lower than 25% of the mean of all cultivars;
- Weak cultivars, which had an average yield lower than 25% of the mean of all cultivars.
- Super cultivars (with SSI lower than 0.25) in a group of 9 genotypes;
- Drought tolerant cultivars (0.25 ≥ SSI ≤ 0.50) in a group of 4 genotypes;
- Drought susceptible cultivars (0. 50 ≥ SSI ≤ 0.75);
- Drought high susceptible cultivars (SSI ≥ 0.75).
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asyut, Asyut, Egypt Monthly Weather|AccuWeather. Available online: https://www.accuweather.com/en/eg/asyut/127376/april-weather/127376?year=2021 (accessed on 24 December 2021).
- Djanaguiraman, M.; Narayanan, S.; Erdayani, E.; Prasad, P.V.V. Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biol. 2020, 20, 268. [Google Scholar] [CrossRef]
- Sayed, M.A.; Ali, M.B.; Bakry, B.A.; El-Sadek, A.N.; Léon, J. Advanced backcross-quantitative trait loci mapping of grain yield, heading date, and their stability parameters in barley across multienvironmental trials in Egypt. Plant Breed. 2021. [Google Scholar] [CrossRef]
- Mir, R.R.; Zaman-Allah, M.; Sreenivasulu, N.; Trethowan, R.; Varshney, R.K. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor. Appl. Genet. 2012, 125, 625–645. [Google Scholar] [CrossRef] [Green Version]
- Daryanto, S.; Wang, L.; Jacinthe, P.-A. Global Synthesis of Drought Effects on Maize and Wheat Production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef]
- Balla, K.; Karsai, I.; Bencze, S.; Veisz, O. Germination ability and seedling vigour in the progeny of heat-stressed wheat plants. Acta Agron. Hung. 2012, 60, 299–308. [Google Scholar] [CrossRef]
- Asseng, S.; Foster, I.; Turner, N.C. The impact of temperature variability on wheat yields. Glob. Chang. Biol. 2011, 17, 997–1012. [Google Scholar] [CrossRef]
- Nahar, K.; Ahamed, K.U.; Fujita, M. Phenological Variation and its Relation with Yield in several Wheat (Triticum aestivum L.) Cultivars under Normal and Late Sowing Mediated Heat Stress Condition. Not. Sci. Biol. 2010, 2, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.; Claussen, J.; Wörlein, N.; Eggert, A.; Fleury, D.; Garnett, T.; Gerth, S. Drought and heat stress tolerance screening in wheat using computed tomography. Plant Methods 2020, 16, 15. [Google Scholar] [CrossRef]
- Tang, Y.; Wu, X.; Li, C.; Wu, C.; Ma, X.; Huang, G. Long-term Effect of Year-Round Tillage Patterns on Yield and Grain Quality of Wheat. Plant Prod. Sci. 2015, 16, 365–373. Available online: http://www.tandfonline.com/action/authorSubmission?journalCode=tpps20&page=instructions (accessed on 25 October 2021). [CrossRef]
- Sadek, I.; Moursy, F.; Heggi, M.; Farag, A. An Investigation of the Relationship between Climate Change, Water Demand and Price of Wheat and Maize Crops in Egypt. Int. J. Plant Soil Sci. 2014, 3, 1210–1235. [Google Scholar] [CrossRef]
- Shiferaw, B.; Smale, M.; Braun, H.-J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef] [Green Version]
- FAO FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 25 October 2021).
- Ali, A.; ElSarag, E.; Abdallah, M. Impact of Climate Change Scenarios on Some Rainfed Wheat Cultivars Under North Sinai Region Conditions. Sinai J. Appl. Sci. 2019, 8, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Sayed, A.; Hiroshi, Y.; Goto, T.; Enteria, N.; Radwan, M.; Eid, M. An Analysis of Thermal Comfort for Indoor Environment of the New Assiut Housing in Egypt. World Acad. Sci. Eng. Technol. 2013. Available online: https://www.researchgate.net/publication/259912923_An_Analysis_of_Thermal_Comfort_for_Indoor_Environment_of_the_New_Assiut_Housing_in_Egypt (accessed on 25 October 2021).
- Mizuta, R.; Yoshimura, H.; Ose, T.; Hosaka, M.; Yukimoto, S. MRI MRI-AGCM3-2-S model output prepared for CMIP6 HighResMIP. Earth Syst. Grid Fed. 2019. [Google Scholar] [CrossRef]
- FAO CropWat|Land & Water|Food and Agriculture Organization of the United Nations|Land & Water|Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/land-water/databases-and-software/cropwat/en/ (accessed on 25 October 2021).
- Fischer, R.; Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res. 1978, 29, 897–912. [Google Scholar] [CrossRef]
- Fischer, R.; Wood, J. Drought resistance in spring wheat cultivars. III.* Yield associations with morpho-physiological traits. Aust. J. Agric. Res. 1979, 30, 1001–1020. [Google Scholar] [CrossRef]
- Rosielle, A.A.; Hamblin, J. Theoretical Aspects of Selection for Yield in Stress and Non-Stress Environment1. Crop Sci. 1981, 21, 943–946. [Google Scholar] [CrossRef]
- Bouslama, M.; Schapaugh, W.T. Stress Tolerance in Soybeans. I. Evaluation of Three Screening Techniques for Heat and Drought Tolerance1. Crop Sci. 1984, 24, 933–937. [Google Scholar] [CrossRef]
- Bidinger, F.R.; Mahalakshmi, V.; Rao, G.D.P. Assessment of drought resistance in pearl millet [Pennisetum americanum (L.) Leeke]. I.* Factors affecting yields under stress. Aust. J. Agric. Res. 1987, 38, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Golestani Araghi, S.; Assad, M.T. Evaluation of four screening techniques for drought resistance and their relationship to yield reduction ratio in wheat. Euphytica 1998, 103, 293–299. [Google Scholar] [CrossRef]
- Fernandez, G.C.J. Effective selection criteria for assessing plant stress tolerance. Adapt. Food Crop. Temp. Water Stress 1992. [Google Scholar] [CrossRef]
- Gavuzzi, P.; Rizza, F.; Palumbo, M.; Campanile, R.G.; Ricciardi, G.L.; Borghi, B. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Can. J. Plant Sci. 1997, 77, 523–531. [Google Scholar] [CrossRef]
- SAS Institute. The SAS System for Windows; release 9.2; SAS Institute: Cary, NC, USA, 2008. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed.; McGraw-Hill Publishing Co.: New York, NY, USA, 1980; 631p. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis PAST: PALEONTOLOGICAL STATISTICS SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS Even a cursory glance at the recent paleontological literature should convince anyone tha. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Liu, W.; Ye, T.; Jagermeyr, J.; Müller, C.; Chen, S.; Liu, X.; Shi, P. Future climate change significantly alters interannual wheat yield variability over half of harvested areas. Environ. Res. Lett. 2021, 16, 094045. [Google Scholar] [CrossRef]
- Chowdhury, M.K.; Hasan, M.A.; Bahadur, M.M.; Islam, M.R.; Iqbal, M.A.H.A.; Javed, T.; Raza, A.; Shabbir, R.; Sorour, S.; Elsanafawy, N.E.M.; et al. Evaluation of Drought Tolerance of Some Wheat (Triticum aestivum L.) Genotypes through Phenology, Growth, and Physiological Indices. Agronomy 2021, 11, 1792. [Google Scholar] [CrossRef]
- Liu, B.; Martre, P.; Ewert, F.; Porter, J.R.; Challinor, A.J.; Müller, C.; Ruane, A.C.; Waha, K.; Thorburn, P.J.; Aggarwal, P.K.; et al. Global wheat production with 1.5 and 2.0 °C above pre-industrial warming. Glob. Chang. Biol. 2019, 25, 1428–1444. [Google Scholar] [CrossRef]
- Ben-Ari, T.; Boé, J.; Ciais, P.; Lecerf, R.; Van Der Velde, M.; Makowski, D. Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France. Nat. Commun. 2018, 9, 1627. [Google Scholar] [CrossRef]
- Zhu, P.; Abramoff, R.; Makowski, D.; Ciais, P. Uncovering the Past and Future Climate Drivers of Wheat Yield Shocks in Europe With Machine Learning. Earth’s Future 2021, 9, e2020EF001815. [Google Scholar] [CrossRef]
- Bento, V.A.; Ribeiro, A.F.S.; Russo, A.; Gouveia, C.M.; Cardoso, R.M.; Soares, P.M.M. The impact of climate change in wheat and barley yields in the Iberian Peninsula. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Mohammadi, R.; Etminan, A.; Shooshtari, L.; Maleki-Tabrizi, N.; Poczai, P. Effects of Drought Stress on Some Agronomic and Morpho-Physiological Traits in Durum Wheat Genotypes. Sustainability 2020, 12, 5610. [Google Scholar] [CrossRef]
- Porker, K.; Straight, M.; Hunt, J.R. Evaluation of G × E × M Interactions to Increase Harvest Index and Yield of Early Sown Wheat. Front. Plant Sci. 2020, 11, 994. [Google Scholar] [CrossRef] [PubMed]
- Mohan, D.; Mamrutha, H.M.; Khobra, R.; Singh, G.; Singh, G. Can crop phenology and plant height be channelized to improvise wheat productivity in diverse production environments? bioRxiv 2020. [Google Scholar] [CrossRef]
- Zhao, M.R.; Li, F.; Fang, Y.; Gao, Q.; Wang, W. Expansin-regulated cell elongation is involved in the drought tolerance in wheat. Protoplasma 2011, 248, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Taheri, S.; Saba, J.; Shekari, F.; Abdullah, T.L. Effects of drought stress condition on the yield of spring wheat (Triticum aestivum) lines. Afr. J. Biotechnol. 2011, 10, 18339–18348. [Google Scholar] [CrossRef]
- Vahamidis, P.; Karamanos, A.J.; Economou, G. Grain number determination in durum wheat as affected by drought stress: An analysis at spike and spikelet level. Ann. Appl. Biol. 2019, 174, 190–208. [Google Scholar] [CrossRef]
- Denčić, S.; Kastori, R.; Kobiljski, B.; Duggan, B. Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions. Euphytica 2000, 113, 43–52. [Google Scholar] [CrossRef]
- Sehgal, A.; Sita, K.; Siddique, K.H.M.; Kumar, R.; Bhogireddy, S.; Varshney, R.K.; HanumanthaRao, B.; Nair, R.M.; Prasad, P.V.V.; Nayyar, H. Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Front. Plant Sci. 2018, 9, 1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wang, Z.; Fan, Z.; Li, J.; Gao, X.; Zhang, H.; Zhao, Q.; Wang, Z.; Liu, Z. Phenotyping and evaluation of CIMMYT WPHYSGP nursery lines and local wheat varieties under two irrigation regimes. Breed. Sci. 2019, 69, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokoto, M.B.; Abubakar, I.U.; Dikko, A.U. Correlation Analysis of some Growth, Yield, Yield Components and Grain Quality of Wheat (Triticum aestivum L.). Niger. J. Basic Appl. Sci. 2012, 20, 349–356. [Google Scholar]
- Nofouzi, F. Evaluation of seed yield of durum wheat (Triticum durum) under drought stress and determining correlation among some yield components using path coefficient analysis. Cuad. Investig. UNED 2018, 10, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Sayed, M.A.; Said, M.T.; El-Rawy, M.A. Evaluation of Local Bread Wheat Cultivars for Grain Yield and Its Attributes at Different Sowing Dates under Assiut Conditions. Egypt. J. Agron. 2021, 43, 189–206. [Google Scholar] [CrossRef]
- Sayed, M.; Bakry, B.; El Samad, Y.A.; Samah. Eldemery Phenotypic stability and genotypic responses of bread wheat genotypes across multiple environments in Egypt. Asian J. Plant Sci. 2021; in press. [Google Scholar]
- Etminan, A.; Pour-Aboughadareh, A.; Mohammadi, R.; Shooshtari, L.; Yousefiazarkhanian, M.; Moradkhani, H. Determining the best drought tolerance indices using Artificial Neural Network (ANN): Insight into application of intelligent agriculture in agronomy and plant breeding. Cereal Res. Commun. 2019, 47, 170–181. [Google Scholar] [CrossRef]
- Weather Atlas|Weather Forecast and Climate Information for Cities All over the Globe. Available online: https://www.weather-atlas.com/ (accessed on 24 December 2021).
Test Type | Properties | 2018/2019 | 2019/2020 |
---|---|---|---|
Mechanical analysis | Sand | 86.4 | 85.3 |
Silt | 7.4 | 8.2 | |
Clay | 6.2 | 6.5 | |
Soil Type | Sandy | Sandy | |
Chemical analysis | pH | 8.1 | 8.3 |
Organic matter % | 0.093 | 0.099 | |
Total N% | 0.019 | 0.017 | |
Total CaCO3% | 20.5 | 19.75 |
Month | T Max | T Min | RH % | ETo (mm) Cropwat Result | WS (km h−1) |
---|---|---|---|---|---|
December 2018 | 13 | 20 | 53 | 4.27 | 18.1 |
January 2019 | 11 | 20 | 35 | 4.79 | 15.3 |
February 2019 | 12 | 22 | 36 | 5.96 | 19.7 |
March 2019 | 15 | 25 | 29 | 8.05 | 22.4 |
April 2019 | 19 | 30 | 24 | 10.32 | 23.3 |
December 2019 | 10 | 22 | 51 | 3.82 | 18.2 |
January 2020 | 8 | 18 | 52 | 3.46 | 19.3 |
February 2020 | 11 | 22 | 46 | 4.67 | 20.9 |
March 2020 | 16 | 27 | 32 | 7.47 | 24.2 |
April 2020 | 19 | 31 | 26 | 9.29 | 24.2 |
Index | Formula | Reference |
---|---|---|
Stress susceptibility index | [18] | |
Relative stress index (RSI) | [19] | |
Tolerance index (TI) | [20] | |
Mean productivity (MP) | [20] | |
Yield stability index (YSI) | [21] | |
Harmonic mean (HM) | [22] | |
Yield reduction ratio (YRR) | [23] | |
Geometric mean productivity (GMP) | [24] | |
Stress tolerance tndex (STI) | [24] | |
Yield index (YI) | [25] |
Source of Variance | D.F | Mean Square | ||||||
---|---|---|---|---|---|---|---|---|
PH | SL | GN | GW | SI | BY | GY | ||
Season (S) | 1 | 139.19 ** | 0.01NS | 226.94NS | 3.87 * | 716.99 * | 2.11 * | 0.08NS |
Error S | 2 | 0.89 | 1.3 | 15.69 | 0.09 | 15.94 | 0.04 | 0.01 |
Treatment (T) | 1 | 5331.05 ** | 154.13 ** | 7998.45 ** | 51.33 ** | 4696.78 ** | 23.62 ** | 4.16 ** |
S*T | 1 | 0.61 * | 3.43NS | 130.95NS | 0.03NS | 10.008NS | 0.08NS | 0.01NS |
Error T | 2 | 0.03 | 0.25 | 7.13 | 0.08 | 7.42 | 0.02 | 0.01 |
Cultivar (C) | 22 | 520.85 ** | 7.13 ** | 802.37 ** | 2.98 ** | 737.84 ** | 1.88 ** | 0.26 ** |
Y*C | 22 | 2.39NS | 0.73NS | 35.84 ** | 0.03 ** | 36.98 ** | 0.01NS | 0.01NS |
Error C | 44 | 1.14 | 0.5 | 0.88 | 0.02 | 7.42 | 0.01 | 0.01 |
T*C | 22 | 165.77 ** | 3.09 ** | 331.02 ** | 0.52 ** | 84.80 ** | 0.89 ** | 0.13 ** |
Y*T*C | 22 | 7.64 ** | 0.55NS | 35.09 ** | 0.07 ** | 6.08NS | 0.01NS | 0.01NS |
Error | 134 | 139.19 | 0.48 | 0.37 | 0.01 | 5.11 | 0.01 | 0.01 |
Seasons (S) | Season 2018/2019 | Season 2019/2020 | Combined | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment (T) | Normal | Drought | Mean | Normal | Drought | Mean | Normal | Drought | Mean | |
Cultivar (C) | ||||||||||
Gemmeza 07 | 0.59 ± 0.01 | 0.31 ± 0.01 | 0.45 ± 0.01 | 0.63 ± 0.02 | 0.31 ± 0.02 | 0.47 ± 0.02 | 0.61 ± 0.03 | 0.31 ± 0.02 | 0.46 ± 0.02 | |
Gemmeza 09 | 0.61 ± 0.01 | 0.56 ± 0.01 | 0.59 ± 0.01 | 0.65 ± 0.02 | 0.6 ± 0.02 | 0.62 ± 0.02 | 0.63 ± 0.03 | 0.58 ± 0.02 | 0.61 ± 0.03 | |
Gemmeza 10 | 0.61 ± 0.01 | 0.22 ± 0.01 | 0.42 ± 0.01 | 0.65 ± 0.02 | 0.22 ± 0.03 | 0.44 ± 0.03 | 0.63 ± 0.03 | 0.22 ± 0.02 | 0.43 ± 0.02 | |
Gemmeza 11 | 0.82 ± 0.03 | 0.69 ± 0.02 | 0.75 ± 0.02 | 0.88 ± 0.03 | 0.74 ± 0.03 | 0.81 ± 0.03 | 0.85 ± 0.04 | 0.71 ± 0.03 | 0.78 ± 0.04 | |
Gemmeza 12 | 0.72 ± 0.02 | 0.5 ± 0.01 | 0.61 ± 0.01 | 0.77 ± 0.03 | 0.52 ± 0.02 | 0.65 ± 0.02 | 0.74 ± 0.04 | 0.51 ± 0.02 | 0.63 ± 0.03 | |
Giza 160 | 0.84 ± 0.03 | 0.83 ± 0.03 | 0.83 ± 0.03 | 0.91 ± 0.04 | 0.89 ± 0.03 | 0.9 ± 0.04 | 0.88 ± 0.05 | 0.86 ± 0.04 | 0.87 ± 0.05 | |
Giza 164 | 0.52 ± 0.01 | 0.46 ± 0.01 | 0.49 ± 0.01 | 0.55 ± 0.02 | 0.48 ± 0.02 | 0.52 ± 0.02 | 0.54 ± 0.02 | 0.47 ± 0.02 | 0.5 ± 0.02 | |
Giza 165 | 0.58 ± 0.01 | 0.41 ± 0.01 | 0.5 ± 0.01 | 0.62 ± 0.02 | 0.43 ± 0.02 | 0.52 ± 0.02 | 0.6 ± 0.03 | 0.42 ± 0.02 | 0.51 ± 0.02 | |
Giza 171 | 0.28 ± 0.01 | 0.27 ± 0.01 | 0.28 ± 0.01 | 0.29 ± 0.02 | 0.26 ± 0.01 | 0.27 ± 0.02 | 0.29 ± 0.02 | 0.27 ± 0.01 | 0.28 ± 0.02 | |
Masr 01 | 0.85 ± 0.03 | 0.33 ± 0.01 | 0.59 ± 0.02 | 0.91 ± 0.04 | 0.34 ± 0.02 | 0.62 ± 0.03 | 0.88 ± 0.05 | 0.33 ± 0.02 | 0.6 ± 0.03 | |
Masr 03 | 0.41 ± 0 | 0.14 ± 0.02 | 0.27 ± 0.01 | 0.43 ± 0.02 | 0.13 ± 0.03 | 0.28 ± 0.03 | 0.42 ± 0.02 | 0.13 ± 0.02 | 0.27 ± 0.02 | |
Sahel 01 | 0.79 ± 0.02 | 0.6 ± 0.01 | 0.69 ± 0.02 | 0.84 ± 0.03 | 0.64 ± 0.02 | 0.74 ± 0.03 | 0.82 ± 0.04 | 0.62 ± 0.03 | 0.72 ± 0.03 | |
Sakha 69 | 0.68 ± 0.02 | 0.35 ± 0 | 0.52 ± 0.01 | 0.73 ± 0.03 | 0.36 ± 0.02 | 0.54 ± 0.02 | 0.7 ± 0.03 | 0.36 ± 0.02 | 0.53 ± 0.02 | |
Sakha 92 | 0.66 ± 0.02 | 0.15 ± 0.02 | 0.41 ± 0.02 | 0.71 ± 0.03 | 0.14 ± 0.03 | 0.42 ± 0.03 | 0.68 ± 0.03 | 0.15 ± 0.02 | 0.42 ± 0.03 | |
Sakha 93 | 0.75 ± 0.02 | 0.54 ± 0.01 | 0.65 ± 0.02 | 0.8 ± 0.03 | 0.57 ± 0.02 | 0.69 ± 0.03 | 0.78 ± 0.04 | 0.56 ± 0.02 | 0.67 ± 0.03 | |
Sakha 94 | 0.72 ± 0.02 | 0.68 ± 0.02 | 0.7 ± 0.02 | 0.78 ± 0.03 | 0.73 ± 0.03 | 0.75 ± 0.03 | 0.75 ± 0.04 | 0.7 ± 0.03 | 0.73 ± 0.03 | |
Sakha 95 | 0.77 ± 0.02 | 0.47 ± 0.01 | 0.62 ± 0.01 | 0.83 ± 0.03 | 0.49 ± 0.02 | 0.66 ± 0.03 | 0.8 ± 0.04 | 0.48 ± 0.02 | 0.64 ± 0.03 | |
Sakha 98 | 0.73 ± 0.02 | 0.63 ± 0.01 | 0.68 ± 0.02 | 0.78 ± 0.03 | 0.67 ± 0.02 | 0.72 ± 0.03 | 0.75 ± 0.04 | 0.65 ± 0.03 | 0.7 ± 0.03 | |
Shandaweel 01 | 0.94 ± 0.03 | 0.06 ± 0.01 | 0.5 ± 0.02 | 1.02 ± 0.04 | 0.1 ± 0.01 | 0.56 ± 0.03 | 0.98 ± 0.05 | 0.08 ± 0.03 | 0.53 ± 0.04 | |
Sids 01 | 0.53 ± 0.01 | 0.49 ± 0.01 | 0.51 ± 0.01 | 0.56 ± 0.02 | 0.52 ± 0.02 | 0.54 ± 0.02 | 0.55 ± 0.02 | 0.5 ± 0.02 | 0.53 ± 0.02 | |
Sids 04 | 0.63 ± 0.07 | 0.58 ± 0.01 | 0.6 ± 0.04 | 0.71 ± 0.09 | 0.56 ± 0.19 | 0.64 ± 0.14 | 0.67 ± 0.09 | 0.57 ± 0.12 | 0.62 ± 0.1 | |
Sids 12 | 0.73 ± 0.02 | 0.58 ± 0.01 | 0.65 ± 0.02 | 0.79 ± 0.03 | 0.61 ± 0.02 | 0.7 ± 0.03 | 0.76 ± 0.04 | 0.59 ± 0.03 | 0.68 ± 0.03 | |
Sids 14 | 0.65 ± 0.02 | 0.28 ± 0.01 | 0.47 ± 0.01 | 0.69 ± 0.03 | 0.28 ± 0.02 | 0.49 ± 0.02 | 0.67 ± 0.03 | 0.28 ± 0.02 | 0.48 ± 0.02 | |
Mean | 0.67 ± 0.02 | 0.44 ± 0.01 | 0.55 ± 0.02 | 0.72 ± 0.03 | 0.46 ± 0.04 | 0.59 ± 0.02 | 0.69 ± 0.01 | 0.45 ± 0.02 | 0.57 ± 0.01 | |
F Test (S) | LSD’ (T × C) | 0.03 | ||||||||
F Test (T) | LSD’ (S × C) | 0.05 | ||||||||
LSD’ (C) | LSD’ (S × C × T) | NS | ||||||||
LSD’ (S × T) |
Cultivar | SSI | RSI | TI | MP | YSI | HM | YRR | GMP | STI | YI |
---|---|---|---|---|---|---|---|---|---|---|
Gemmeza 07 | 1.39 | 0.79 | 0.30 | 0.46 | 0.51 | 0.41 | 0.49 | 0.43 | 0.39 | 0.69 |
Gemmeza 09 | 0.22 | 1.42 | 0.05 | 0.61 | 0.92 | 0.61 | 0.08 | 0.61 | 0.76 | 1.29 |
Gemmeza 10 | 1.83 | 0.54 | 0.41 | 0.43 | 0.35 | 0.33 | 0.65 | 0.38 | 0.29 | 0.50 |
Gemmeza 11 | 0.46 | 1.30 | 0.14 | 0.78 | 0.84 | 0.77 | 0.16 | 0.78 | 1.25 | 1.59 |
Gemmeza 12 | 0.89 | 1.06 | 0.23 | 0.63 | 0.69 | 0.60 | 0.31 | 0.62 | 0.78 | 1.13 |
Giza 160 | 0.06 | 1.52 | 0.02 | 0.87 | 0.98 | 0.87 | 0.02 | 0.87 | 1.56 | 1.91 |
Giza 164 | 0.36 | 1.35 | 0.07 | 0.50 | 0.87 | 0.50 | 0.13 | 0.50 | 0.52 | 1.04 |
Giza 165 | 0.84 | 1.09 | 0.18 | 0.51 | 0.70 | 0.49 | 0.30 | 0.50 | 0.52 | 0.94 |
Giza 171 | 0.19 | 1.44 | 0.02 | 0.28 | 0.93 | 0.28 | 0.07 | 0.28 | 0.16 | 0.59 |
Masr 01 | 1.76 | 0.58 | 0.55 | 0.60 | 0.38 | 0.48 | 0.62 | 0.54 | 0.60 | 0.74 |
Masr 03 | 1.94 | 0.49 | 0.29 | 0.27 | 0.32 | 0.20 | 0.68 | 0.23 | 0.11 | 0.29 |
Sahel 01 | 0.69 | 1.17 | 0.20 | 0.72 | 0.76 | 0.70 | 0.24 | 0.71 | 1.04 | 1.38 |
Sakha 69 | 1.39 | 0.78 | 0.35 | 0.53 | 0.51 | 0.47 | 0.49 | 0.50 | 0.52 | 0.79 |
Sakha 92 | 2.22 | 0.33 | 0.54 | 0.42 | 0.22 | 0.24 | 0.78 | 0.32 | 0.21 | 0.33 |
Sakha 93 | 0.79 | 1.11 | 0.22 | 0.67 | 0.72 | 0.65 | 0.28 | 0.66 | 0.90 | 1.25 |
Sakha 94 | 0.18 | 1.45 | 0.05 | 0.73 | 0.94 | 0.73 | 0.06 | 0.73 | 1.09 | 1.57 |
Sakha 95 | 1.14 | 0.92 | 0.32 | 0.64 | 0.60 | 0.60 | 0.40 | 0.62 | 0.79 | 1.06 |
Sakha 98 | 0.39 | 1.33 | 0.10 | 0.70 | 0.86 | 0.70 | 0.14 | 0.70 | 1.01 | 1.44 |
Shandaweel 01 | 2.60 | 0.12 | 0.90 | 0.53 | 0.08 | 0.15 | 0.92 | 0.28 | 0.16 | 0.17 |
Sids 01 | 0.24 | 1.41 | 0.05 | 0.53 | 0.91 | 0.52 | 0.09 | 0.53 | 0.57 | 1.12 |
Sids 04 | 0.52 | 1.26 | 0.12 | 0.61 | 0.82 | 0.60 | 0.18 | 0.61 | 0.76 | 1.22 |
Sids 12 | 0.61 | 1.21 | 0.16 | 0.68 | 0.78 | 0.67 | 0.22 | 0.67 | 0.93 | 1.32 |
Sids 14 | 1.64 | 0.65 | 0.39 | 0.48 | 0.42 | 0.40 | 0.58 | 0.44 | 0.39 | 0.63 |
Selection pattern | Min | Max | Min | Max | Max | Max | Min | Max | Max | Max |
Zone Name | Average Rainfall (mm) | Average High-Temperature °C | Overall Conditions | Appropriate Cultivar |
---|---|---|---|---|
Alti Plano Egypt | 12.00 | 24.77 | Good | Gemmeza 11, Gemmeza 12, Giza 160 Masr 01, Sahel 01, Sakha 93 Sakha 94, Sakha 95, Sakha 98 Shandaweel 01, Sids 12 |
Delta and Cairo | 3.80 | 21.00 | Good | |
Mediterranean Sea Coast | 11.00 | 22.60 | Good | |
Red Sea Coast | 0.30 | 23.00 | Good | |
Eastern Desert | 5.60 | 28.63 | Moderate | Gemmeza 09, Gemmeza 11 Giza 160, Giza 164, Sahel 01, Sakha 94 Sakha 98, Sids 01, Sids 04, Sids 12 |
Northern Upper Egypt | 2.00 | 29.83 | Moderate | |
Southern Egypt | 0.10 | 33.87 | Severe | Gemmeza 09, Gemmeza 11 Giza 160, Giza 164, Giza 171 Sakha 94, Sakha 98, Sids 01, Sids 04 |
Southern Upper Egypt | 0.20 | 30.57 | Severe | |
Western Desert | 0.00 | 33.83 | Severe |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamada, A.; Said, M.T.; Ibrahim, K.M.; Saber, M.; Sayed, M.A. A Predictive Study of the Redistribution of Some Bread Wheat Genotypes in Response to Climate Change in Egypt. Agronomy 2022, 12, 113. https://doi.org/10.3390/agronomy12010113
Hamada A, Said MT, Ibrahim KM, Saber M, Sayed MA. A Predictive Study of the Redistribution of Some Bread Wheat Genotypes in Response to Climate Change in Egypt. Agronomy. 2022; 12(1):113. https://doi.org/10.3390/agronomy12010113
Chicago/Turabian StyleHamada, Alhosein, Mohamed Tharwat Said, Khaled M. Ibrahim, Mohamed Saber, and Mohammed Abdelaziz Sayed. 2022. "A Predictive Study of the Redistribution of Some Bread Wheat Genotypes in Response to Climate Change in Egypt" Agronomy 12, no. 1: 113. https://doi.org/10.3390/agronomy12010113
APA StyleHamada, A., Said, M. T., Ibrahim, K. M., Saber, M., & Sayed, M. A. (2022). A Predictive Study of the Redistribution of Some Bread Wheat Genotypes in Response to Climate Change in Egypt. Agronomy, 12(1), 113. https://doi.org/10.3390/agronomy12010113