Influence of Buckwheat Seed Fractions on Dough and Baking Performance of Wheat Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Milling of Buckwheat Kernels
2.3. Sample’s Formulations
2.4. Physicochemical Characterization of the Formulated Flours
2.5. Dough and Bread Manufacturing
2.6. Flours’ Microscopy
2.7. Flours’ ATR FTIR Spectra Collection
2.8. Empirical Dough Rheology
2.9. Dynamic Dough Rheology
2.10. Bread Quality Parameters Analysis
2.11. Statistical Analysis
3. Results
3.1. Microstructure of Flours
3.2. Fourier Transforms Infrared Spectrometry Analysis of Flours
3.3. Physicochemical Properties of Composite Flours
3.4. Dough Rheological Properties
3.4.1. Alveograph Rheological Parameters
3.4.2. Dynamic Rheological Parameters
3.5. Physical Properties of Bread
3.6. Textural Parameters of Bread
4. Discussion
4.1. Microstructure of Flours
4.2. Fourier Transform Infrared Spectrometry Analysis of Flours
4.3. Physicochemical Properties of Composite Flours
4.4. Dough Rheological Properties
4.4.1. Alveograph Rheological Parameters
4.4.2. Dynamic Rheological Parameters
4.5. Physical Properties of Bread
4.6. Relations between the Characteristics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cankurtaran, T.; Bilgiçli, N. Improvement of functional couscous formulation using ancient wheat and pseudocereals. Int. J. Gastron. Food Sci. 2021, 25, 100400. [Google Scholar] [CrossRef]
- Mattila, P.; Pihlava, J.M.; Hellström, J. Contents of phenolic acids, alkyl-and alkenylresorcinols, and avenanthramides in commercial grain products. J. Agric. Food Chem. 2005, 53, 8290–8295. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Villaluenga, C.; Penas, E.; Hernández-Ledesma, B. Pseudocereal grains: Nutritional value, health benefits and current 558 applications for the development of gluten-free foods. Food Chem. Toxicol. 2020, 137, 111178. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.C.; Chaudhari, G.V.; Sood, S.; Kant, L.; Pattanayak, A.; Zhang, K.; Fan, Y.; Janovska, D.; Meglic, V.; Zhou, M. Revisiting 560 the versatile buckwheat: Reinvigorating genetic gains through integrated breeding and genomics approach. Planta 2019, 250, 783–801. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.; Arana, J.V. Carbohydrates of kernels. In Pseudocereals: Chemistry and Technology; Haros, M., Schoenlechner, R., Eds.; Wiley: Oxford, UK, 2017; pp. 28–48. [Google Scholar]
- Alvarez-Jubete, L.; Wijngaard, H.; Arendt, E.K.; Gallagher, E. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem. 2010, 119, 770–778. [Google Scholar] [CrossRef]
- Dziedzic, K.; Górecka, D.; Kucharska, M.; Przybylska, B. Influence of technological process during buckwheat groats 589 production on dietary fibre content and sorption of bile acids. Food Res. Int. 2012, 47, 279–283, 590. [Google Scholar] [CrossRef]
- Farzana, T.; Fatema, J.; Hossain, F.B.; Afrin, S.; Rahman, S.S. Quality Improvement of Cakes with Buckwheat Flour, and its Comparison with Local Branded Cakes. Curr. Res. Nutr. Food Sci. 2021, 9, 570–577. [Google Scholar] [CrossRef]
- Kreft, I.G.; De Leeuw, J. Introducing Multilevel Modeling; Sage: Newcastle upon Tyne, UK, 1998. [Google Scholar]
- Baljeet, S.Y.; Ritika, B.Y.; Roshan, L.Y. Studies on functional properties and incorporation of buckwheat flour for biscuit making. Int. Food Res. J. 2010, 17, 1067–1076. [Google Scholar]
- Lukšič, L.; Bonafaccia, G.; Timoracka, M.; Vollmannova, A.; Trček, J.; Nyambe, T.K.; Kreft, I. Rutin and quercetin transformation during preparation of buckwheat sourdough bread. J. Cereal Sci. 2016, 69, 71–76. [Google Scholar] [CrossRef]
- Sadowska, A.; Diowksz, A. Gryka-alternatywny surowiec w piekarstwie. Przegląd Zbożowo-Młynarski 2018, 62, 34–38. [Google Scholar]
- Renzetti, S.; Behr, J.; Vogel, R.F.; Arendt, E.K. Transglutaminase polymerisation of buckwheat (Fagopyrum esculentum Moench) proteins. J. Cereal Sci. 2008, 48, 747–754. [Google Scholar] [CrossRef]
- Sadowska, A.; Diowksz, A. Właściwości transglutaminazy i jej rola w piekarstwie. Żywn. Nauka Technol. Jakość 2016, 5, 9–17. [Google Scholar]
- Shin, D.H.; Mostafa Kamal, A.H.; Suzuki, T.; Yun, Y.H.; Lee, M.S.; Chung, K.Y.; Woo, S.H. Reference proteome map of buckwheat (Fagopyrum esculentum and Fagopyrum tataricum) leaf and stem cultured under light or dark. Aust. J. Crop Sci. 2010, 4, 633–641. [Google Scholar]
- Alvarez-Jubete, L.; Arendt, E.K.; Gallagher, E. Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int. J. Food Sci. Nutr. 2009, 60, 240–257. [Google Scholar] [CrossRef] [PubMed]
- Bonafaccia, G.; Marocchini, M.; Kreft, I. Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chem. 2003, 80, 9–15. [Google Scholar] [CrossRef]
- Dziadek, K.; Kopeć, A.; Pastucha, E.; Piątkowska, E.; Leszczyńska, T.; Pisulewska, E.; Witkowicz, R.; Francik, R. Basic chemical composition an bioactive compounds content in selected cultivars of buckwheat whole seeds, dehulled seeds and hulls. J. Cereal Sci. 2016, 69, 1–8. [Google Scholar] [CrossRef]
- Zhou, M.; Ivan, K.; Sun, H.W.; Nikhil, K.C.; Wieslander, G. Molecular Breeding and Nutritional Aspects of Buckwheat; Academic Press: Pittsburgh, PA, USA, 2016; pp. 203–207. [Google Scholar]
- Holasova, M.; Fiedlerova, V.; Smrcinova, H.; Orsak, M.; Lachman, J.; Vavreinova, S. Buckwheat—The source of antioxidant activity in functional foods. Food Res. Int. 2002, 35, 207–211. [Google Scholar] [CrossRef]
- Takahama, U.; Tanaka, M.; Hirota, S. Proanthocyanidins in buckwheat flour can reduce salivary nitrite to nitric oxide in the stomach. Plant Foods Hum. Nutr. 2010, 65, 1–7. [Google Scholar] [CrossRef]
- Sakač, M.; Torbica, A.; Sedej, I.; Hadnađev, M. Influence of breadmaking on antioxidant capacity of gluten free breads based on rice and buckwheat flours. Food Res. Int. 2011, 44, 2806–2813. [Google Scholar] [CrossRef]
- Coțovanu, I.; Mironeasa, S. Buckwheat seeds: Impact of milling fractions and addition level on wheat bread dough rheology. Appl. Sci. 2021, 11, 1731. [Google Scholar] [CrossRef]
- Sakhare, S.D.; Inamdar, A.A.; Soumya, C.; Indrani, D.; Rao, G.V. Effect of flour particle size on microstructural, rheological and physico-sensory characteristics of bread and south Indian parotta. J. Food Sci. Technol. 2014, 51, 4108–4113. [Google Scholar] [CrossRef] [Green Version]
- Coțovanu, I.; Stoenescu, G.; Mironeasa, S. Amaranth Influence on Wheat Flour Dough Rheology: Optimal Particle Size and Amount of Flour Replacement. J. Microbiol. Biotechnol. Food Sci. 2020, 10, 366–373. [Google Scholar] [CrossRef]
- Coțovanu, I.; Batariuc, A.; Mironeasa, S. Characterization of quinoa seeds milling fractions and their effect on the rheological properties of wheat flour dough. Appl. Sci. 2020, 10, 7225. [Google Scholar] [CrossRef]
- ICC. Standard Methods of the International Association for Cereal Chemistry. Methods 104/1, 110/1, 136, 105/2, 171, 121, 107/1; International Association for Cereal Chemistry: Vienna, Austria, 2010. [Google Scholar]
- SR 90:2007; Wheat Flour. Analysis Method. Romanian Standards Association: Bucharest, Romania, 2007.
- Coțovanu, I.; Mironeasa, S. Impact of different amaranth particle size addition level on wheat flour dough rheology and bread features. Foods 2021, 10, 1539. [Google Scholar] [CrossRef] [PubMed]
- Coţovanu, I.; Ungureanu-Iuga, M.; Mironeasa, S. Investigation of Quinoa Seeds Fractions and Their Application in Wheat Bread Production. Plants 2021, 10, 2150. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Z.; Wang, Z.; Hao, Y.; Wang, Y.; Yang, Z.; Li, W.; Wang, J. Physicochemical and functional properties of soluble dietary fiber from different colored quinoa varieties (Chenopodium quinoa Willd). J. Cereal Sci. 2020, 95, 103045. [Google Scholar] [CrossRef]
- Shotts, M.L.; Plans Pujolras, M.; Rossell, C.; Rodriguez-Saona, L. Authentication of indigenous flours (Quinoa, Amaranth and kañiwa) from the Andean region using a portable ATR-Infrared device in combination with pattern recognition analysis. J. Cereal Sci. 2018, 82, 65–72. [Google Scholar] [CrossRef]
- Czekus, B.; Pećinar, I.; Petrović, I.; Paunović, N.; Savić, S.; Jovanović, Z.; Stikić, R. Raman and Fourier transform infrared spectroscopy application to the Puno and Titicaca cvs. of quinoa seed microstructure and perisperm characterization. J. Cereal Sci. 2019, 87, 25–30. [Google Scholar] [CrossRef]
- AACC. Approved Methods of the American Association of Cereal Chemists, 10th ed.; Cereals & Grains Assn: St. Paul, MN, USA, 2000. [Google Scholar]
- Iuga, M.; Mironeasa, C.; Mironeasa, S. Oscillatory rheology and creep-recovery behaviour of grape seed-wheat flour dough: Effect of grape seed particle size, variety and addition level. Bull. UASVM Agric. 2019, 76, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Mironeasa, S.; Mironeasa, C. Dough bread from refined wheat flour partially replaced by grape peels: Optimizing the rheological properties. J. Food Process Eng. 2019, 42, e13207. [Google Scholar] [CrossRef]
- Bordei, D.; Bahrim, G.; Pâslaru, V.; Gasparotti, C.; Elisei, A.; Banu, I.; Ionescu, L.; Codină, G. Quality Control in the Bakery Industry-Analysis Methods. Galați Acad. 2007, 1, 203–212. [Google Scholar]
- Christa, K.; Soral-Śmietana, M.; Lewandowicz, G. Buckwheat starch: Structure, functionality and enzymein vitrosusceptibility upon the roasting process. Int. J. Food Sci. Nutr. 2009, 60, 140–154. [Google Scholar] [CrossRef]
- Xu, X.; Luo, Z.; Yang, Q.; Xiao, Z.; Lu, X. Effect of quinoa flour on baking performance, antioxidant properties and digestibility of wheat bread. Food Chem. 2019, 294, 87–95. [Google Scholar] [CrossRef]
- Filipčev, B.; Šimurina, O.; Bodroža-Solarov, M. Impact of buckwheat flour granulation and supplementation level on the quality of composite wheat/buckwheat ginger-nut-type biscuits. Ital. J. Food Sci. 2015, 27, 495–504. [Google Scholar]
- Kasar, C.; Thanushree, M.P.; Gupta, S.; Inamdar, A.A. Milled fractions of common buckwheat (Fagopyrum esculentum) from the Himalayan regions: Grain characteristics, functional properties and nutrient composition. J. Food Sci. Technol. 2020, 58, 3871–3881. [Google Scholar] [CrossRef]
- Steadman, K.J.; Burgoon, M.S.; Lewis, B.A.; Edwardson, S.E.; Obendorf, R.L. Buckwheat seed milling fractions: Description, macronutrient composition and dietary fibre. J. Cereal Sci. 2001, 33, 271–278. [Google Scholar] [CrossRef]
- Yang, J.; Gu, Z.; Zhu, L.; Cheng, L.; Li, Z.; Li, C.; Hong, Y. Buckwheat digestibility affected by the chemical and structural features of its main components. Food Hydrocoll. 2019, 96, 596–603. [Google Scholar] [CrossRef]
- Wijngaard, H.H.; Renzetti, S.; Arendt, E.K. Microstructure of buckwheat and barley during malting observed by confocal laser scanning microscopy and scanning electron microscopy. J. Ins. Brew. 2007, 113, 34–41. [Google Scholar] [CrossRef]
- Ali, M.H.; Al-Saad, K.; Popelka, A.; van Tilborg, G.; Goormaghtigh, E. Application of Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy in stroke-affected brain tissue. Swift J. Med. Med. Sci. 2016, 2, 011–024. [Google Scholar]
- Kumar, R.; Khatkar, B.S. Thermal, pasting and morphological properties of starch granules of wheat (Triticum aestivum L.) varieties. J. Food Sci. Technol. 2017, 54, 2403–2410. [Google Scholar] [CrossRef]
- Gao, S.; Liu, H.; Sun, L.; Cao, J.; Yang, J.; Lu, M.; Wang, M. Rheological, thermal and in vitro digestibility properties on complex of plasma modified Tartary buckwheat starches with quercetin. Food Hydrocoll. 2021, 110, 106209. [Google Scholar] [CrossRef]
- Dar, M.Z.; Deepika, K.; Jan, K.; Swer, T.L.; Kumar, P.; Verma, R.; Bashir, K. Modification of structure and physicochemical properties of buckwheat and oat starch by γ-irradiation. Int. J. Biol. Macromol. 2018, 108, 1348–1356. [Google Scholar] [CrossRef] [PubMed]
- Lima, B.N.; Cabral, T.B.; C Neto, R.P.; Tavares, M.I.B.; Pierucci, A.P.T. Estudo do amido de farinhas comerciais comestíveis. Polímeros 2012, 22, 486–490. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Chen, J.; Wang, X.; Bai, R.; Chen, D.; Liu, J. Structural and physicochemical properties of chemically modified Chinese water chestnut [Eleocharis dulcis (Burm. f.) Trin. ex Hensch] starches. Int. J. Biol. Macromol. 2018, 120, 547–556. [Google Scholar] [CrossRef]
- Sciarini, L.S.; Steffolani, M.E.; Fernández, A.; Paesani, C.; Pérez, G.T. Gluten-free breadmaking affected by the particle size and chemical composition of quinoa and buckwheat flour fractions. Food Sci. Technol. Int. 2020, 26, 321–332. [Google Scholar] [CrossRef]
- Li-Chan, E.; Chalmers, J.M.; Griffiths, P.R. (Eds.) Applications of Vibrational Spectroscopy in Food Science; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Wei, X.; Ma, X.; Peng, X.; Yao, Z.; Yang, F.; Dai, M. Comparative investigation between co-pyrolysis characteristics of protein and carbohydrate by TG-FTIR and Py-GC/MS. J. Anal. Appl. Pyrolysis 2018, 135, 209–218. [Google Scholar] [CrossRef]
- Lian, X.; Wang, C.; Zhang, K.; Li, L. The retrogradation properties of glutinous rice and buckwheat starches as observed with FT-IR, 13C NMR and DSC. Int. J. Biol. Macromol. 2014, 64, 288–293. [Google Scholar] [CrossRef]
- Marchylo, B.A.; Dexter, J.E.; Clarke, F.R.; Clarke, J.M.; Preston, K.R. Relationships among bread-making quality, gluten strength, physical dough properties, and pasta cooking quality for some Canadian durum wheat genotypes. Can. J. Plant Sci. 2001, 81, 611–620. [Google Scholar] [CrossRef]
- Filipović, J.S.; Filipović, V.S. Application of two rheological methods for flour testing to predict pasta quality. Acta Period. Technol. 2017, 48, 85–93. [Google Scholar] [CrossRef]
- Scanlon, M.G.; Ng, P.K.W.; Lawless, D.E.; Bushuk, W. Suitability of reversed-phase high-performance liquid chromatographic separation of wheat proteins for long-term statistical assessment of breadmaking quality. Cereal Chem. 1990, 67, 395–399. [Google Scholar]
- Dziki, D.; Laskowski, J. Wpływ dodatku mąki gryczanej do mąki pszennej na wybrane cechy ciasta i miękiszu pieczywa. Acta Agrophys. 2005, 6, 617–624. [Google Scholar]
- Mariotti, M.; Lucisano, M.; Pagani, M.A.; Iametti, S. Macromolecular interactions and rheological properties of buckwheat-based dough obtained from differently processed grains. J. Agric. Food Chem. 2008, 56, 4258–4267. [Google Scholar] [CrossRef]
- Liu, H.; Eskin, N.M.; Cui, S.W. Effects of yellow mustard mucilage on functional and rheological properties of buckwheat and pea starches. Food Chem. 2006, 95, 83–93. [Google Scholar] [CrossRef]
- Wu, X.; Liu, J.; Li, D.; Liu, C.M. Rice caryopsis development II: Dynamic changes in the endosperm. J. Integr. Plant Biol. 2016, 58, 786–798. [Google Scholar] [CrossRef]
- Witczak, M.; Korus, J.; Ziobro, R.; Juszczak, L. The effects of maltodextrins on gluten-free dough and quality of bread. J. Food Eng. 2010, 96, 258–265. [Google Scholar] [CrossRef]
- Sivaramakrishnan, H.P.; Senge, B.; Chattopadhyay, P.K. Rheological properties of rice dough for making rice bread. J. Food Eng. 2004, 62, 37–45. [Google Scholar] [CrossRef]
- Singh, N.; Kaur, L. Morphological, thermal, rheological and retrogradation properties of potato starch fractions varying in granule size. J. Sci. Food Agric. 2004, 84, 1241–1252. [Google Scholar] [CrossRef]
- Iuga, M.; Boestean, O.; Ghendov-Mosanu, A.; Mironeasa, S. Impact of dairy ingredients on wheat flour dough rheology and bread properties. Foods 2020, 9, 828. [Google Scholar] [CrossRef]
- Kong, X.; Kasapis, S.; Bao, J. Viscoelastic properties of starches and flours from two novel rice mutants induced by gamma irradiation. LWT Food Sci. Technol. 2015, 60, 578–582. [Google Scholar] [CrossRef]
- Tsai, M.L.; Li, C.F.; Lii, C.Y. Effects of granular structures on the pasting behaviors of starches. Cereal Chem. 1997, 74, 750–757. [Google Scholar] [CrossRef]
- Yaqoob, S.; Liu, H.; Liu, M.; Zheng, M.; Awan, K.A.; Cai, D.; Liu, J. The effect of lactic acid bacteria and co-culture on structural, rheological, and textural profile of corn dough. Food Sci. Nutr. 2021. [Google Scholar] [CrossRef]
- Torbica, A.; Hadnađev, M.; Dapčević, T. Rheological, textural and sensory properties of gluten-free bread formulations based on rice and buckwheat flour. Food Hydrocoll. 2010, 24, 626–632. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch retrogradation: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Houben, A.; Höchstötter, A.; Becker, T. Possibilities to increase the quality in gluten-free bread production: An overview. Eur. Food Res. Technol. 2012, 235, 195–208. [Google Scholar] [CrossRef]
- Sullivan, P.; O’Flaherty, J.; Brunton, N.; Arendt, E.; Gallagher, E. The utilisation of barley middlings to add value and health benefits to white breads. J. Food Eng. 2011, 105, 493–502. [Google Scholar] [CrossRef]
- Lin, L.Y.; Liu, H.M.; Yu, Y.W.; Lin, S.D.; Mau, J.L. Quality and antioxidant property of buckwheat enhanced wheat bread. Food Chem. 2009, 112, 987–991. [Google Scholar] [CrossRef]
- Sedej, I.; Sakač, M.; Mandić, A.; Mišan, A.; Tumbas, V.; Hadnađev, M. Assessment of antioxidant activity and rheological properties of wheat and buckwheat milling fractions. J. Cereal Sci. 2011, 54, 347–353. [Google Scholar] [CrossRef]
- Moroni, A.V.; Zannini, E.; Sensidoni, G.; Arendt, E.K. Exploitation of buckwheat sourdough for the production of wheat bread. Eur. Food Res. Technol. 2012, 235, 659–668. [Google Scholar] [CrossRef]
- Diowksz, A.; Sadowska, A. Impact of sourdough and transglutaminase on gluten-free buckwheat bread quality. Food Biosci. 2021, 43, 101309. [Google Scholar] [CrossRef]
- Ikeda, K.; Fujiwara, J.; Asami, Y.; Arai, R.; Bonafaccia, G.; Kreft, I.; Yasumoto, K. Relationship of protein to the textural characteristics of buckwheat products: Analysis with various buckwheat flour fractions. Fagopyrum 1999, 16, 79–83. [Google Scholar]
- Wei, Y.M.; Zhang, G.Q.; Li, Z.X. Study on nutritive and physical-chemical properties of buckwheat flour. Nahrung 1995, 39, 48–54. [Google Scholar] [CrossRef]
- Pruska-Kędzior, A.; Kędzior, Z.; Gorący, M.; Pietrowska, K.; Przybylska, A.; Spychalska, K. Comparison of rheological, fermentative and baking properties of gluten-free dough formulations. Eur. Food Res. Technol. 2008, 227, 1523–1536. [Google Scholar] [CrossRef]
- Sciarini, L.S.; Ribotta, P.D.; León, A.E.; Pérez, G.T. Influence of gluten-free flours and their mixtures on batter properties and bread quality. Food Bioprocess Technol. 2010, 3, 577–585. [Google Scholar] [CrossRef]
- Fessas, D.; Schiraldi, A. Texture and staling of wheat bread crumb: Effects of water extractable proteins andpentosans’. Thermochim. Acta 1998, 323, 17–26. [Google Scholar] [CrossRef]
- Brites, C.; Trigo, M.J.; Santos, C.; Collar, C.; Rosell, C.M. Maize-based gluten-free bread: Influence of processing parameters on sensory and instrumental quality. Food Bioprocess Technol. 2010, 3, 707–715. [Google Scholar] [CrossRef]
- Mironeasa, S.; Iuga, M.; Zaharia, D.; Mironeasa, C. Rheological Analysis of Wheat Flour Dough as Influenced by Grape Peels of Different Particle Sizes and Addition Levels. Food Bioprocess Technol. 2019, 12, 228–245. [Google Scholar] [CrossRef]
- Pomeranz, Y.; Shogren, M.D.; Finney, K.F.; Bechtel, D.B. Fiber in breadmaking—Effects on functional properties. Cereal Chem. 1977, 54, 25–41. [Google Scholar]
- Moore, M.M.; Schober, T.J.; Dockery, P.; Arendt, E.K. Textural Comparisons of Gluten-Free and Wheat-Based Doughs, Batters, and Breads. Cereal Chem. J. 2004, 81, 567–575. [Google Scholar] [CrossRef]
- Trinh, K.T.; Glasgow, S. On the texture profile analysis test. In Chemeca: Quality of Life through Chemical Engineering; Publons: London, UK, 2012. [Google Scholar]
- Cai, L.; Choi, I.; Hyun, J.N.; Jeong, Y.K.; Baik, B.K. Influence of bran particle size on bread-baking quality of whole grain wheat flour and starch retrogradation. Cereal Chem. 2014, 91, 65–71. [Google Scholar] [CrossRef]
Sample | Moisture (%) | Protein (%) | Lipids (%) | Ash (%) | Carbohydrates (%) | Color Parameters | ||
---|---|---|---|---|---|---|---|---|
L* | a* | b* | ||||||
Control | 14.08 ± 0.08 e | 12.45 ± 0.15 a | 1.41 ± 0.01 a | 0.69 ± 0.04 a | 73.36 ± 0.01 e | 91.46 ± 0.15 d | −5.13 ± 0.03 a | 15.09 ± 0.07 c |
BL_5 | 13.94 ± 0.00 dy | 12.48 ± 0.00 bx | 1.43 ± 0.00 bx | 0.67 ± 0.00 bx | 71.48 ± 0.00 dy | 90.84 ± 0.06 cy | −5.22 ± 0.00 bx | 14.64 ± 0.05 bx |
BL_10 | 13.88 ± 0.00 cy | 12.36 ± 0.00 bcx | 1.45 ± 0.00 cx | 0.69 ± 0.00 cx | 71.61 ± 0.00 cy | 90.11 ± 0.16 bcy | −5.10 ± 0.07 bcx | 14.12 ± 0.02 abx |
BL_15 | 13.82 ± 0.00 by | 12.23 ± 0.00 cx | 1.48 ± 0.00 dx | 0.70 ± 0.00 dx | 71.75 ± 0.00 by | 89.69 ± 0.35 aby | −5.08 ± 0.06 cdx | 14.18 ± 0.06 ax |
BL_20 | 13.77 ± 0.01 ay | 12.17 ± 0.06 cx | 1.50 ± 0.00 ex | 0.72 ± 0.00 ex | 71.88 ± 0.00 ay | 88.91 ± 0.33 ay | −5.19 ± 0.03 dx | 13.47 ± 0.20 ax |
BM_5 | 13.90 ± 0.00 dx | 13.30 ± 0.00 by | 1.61 ± 0.00 bz | 0.83 ± 0.00 bz | 70.36 ± 0.00 dx | 89.74 ± 0.12 cx | −4.90 ± 0.05 by | 14.61 ± 0.55 bx |
BM_10 | 13.80 ± 0.00 cx | 14.00 ± 0.00 bcy | 1.82 ± 0.00 cz | 1.01 ± 0.00 cz | 69.36 ± 0.00 cx | 89.53 ± 0.03 bcx | −4.94 ± 0.01 bcy | 14.45 ± 0.10 abx |
BM_15 | 13.70 ± 0.01 bx | 14.70 ± 0.00 cy | 2.03 ± 0.00 dz | 1.18 ± 0.00 dz | 68.38 ± 0.01 bx | 88.66 ± 0.81 abx | −4.72 ± 0.09 cdy | 14.19 ± 0.17 ax |
BM_20 | 13.60 ± 0.01 ax | 14.95 ± 0.44 cy | 2.24 ± 0.00 ez | 1.36 ± 0.00 ez | 67.38 ± 0.01 ax | 88.74 ± 0.07 ax | −4.80 ± 0.02 dy | 14.18 ± 0.10 ax |
BS_5 | 13.93 ± 0.00 dy | 12.47 ± 0.00 bx | 1.43 ± 0.09by | 0.68 ± 0.00 by | 71.48 ± 0.00 dy | 89.85 ± 0.33c y | −4.96 ± 0.01 by | 14.21 ± 0.15 bx |
BS_10 | 13.87 ± 0.00 cy | 12.35 ± 0.10 bcx | 1.46 ± 0.00 cy | 0.71 ± 0.00 cy | 71.61 ± 0.01 cy | 90.03 ± 0.05 bcy | −4.93 ± 0.02 bcy | 14.19 ± 0.09 abx |
BS_15 | 13.80 ± 0.00 by | 12.22 ± 0.00 cx | 1.49 ± 0.00 dy | 0.73 ± 0.00 dy | 71.74 ± 0.01 by | 89.82 ± 0.60 aby | −4.94 ± 0.02 cdy | 13.76 ± 0.00 ax |
BS_20 | 13.73 ± 0.00 ay | 12.10 ± 0.01 cx | 1.52 ± 0.00 ey | 0.77 ± 0.00 ey | 71.87 ± 0.02 ay | 89.18 ± 0.23 ay | −4.71 ± 0.10 dy | 14.20 ± 0.55 ax |
Two-way ANOVA p value | ||||||||
Factor I | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
Factor II | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p = 0.018 |
Factor I × Factor II | p = 0.003 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p = 0.007 |
Sample | P (mm H2O) | L (mm) | G (mL) | W (10−4 J) | P/L (adim.) |
---|---|---|---|---|---|
Control | 86.50 ± 0.50 d | 94.00 ± 3.00 e | 21.55 ± 0.35 d | 253.00 ± 4.00 e | 0.92 ± 0.03 a |
BL_5 | 83.50 ± 1.50 az | 48.00 ± 1.00 dx | 15.45 ± 0.15 cx | 155.50 ± 0.50 dx | 1.74 ± 0.07 bz |
BL_10 | 86.00 ± 1.00 bz | 41.50 ± 0.50 cx | 14.35 ± 0.05 bcx | 131.50 ± 1.50 cx | 2.07 ± 0.05 cz |
BL_15 | 88.50 ± 0.50 cz | 30.50 ± 0.50 bx | 12.30 ± 0.10 bx | 115.00 ± 0.00 bx | 2.90 ± 0.03 dz |
BL_20 | 93.50 ± 0.50 dz | 26.00 ± 0.00 ax | 11.40 ± 0.00 ax | 95.00 ± 1.00 ax | 3.59 ± 0.02 ez |
BM_5 | 68.50 ± 0.50 ax | 66.00 ± 4.00 dz | 17.21 ± 1.54 cz | 138.50 ± 1.50 dx | 1.04 ± 0.05 bx |
BM_10 | 70.50 ± 1.50 bx | 52.50 ± 1.50 cz | 15.46 ± 1.20 bcz | 128.00 ± 6.00 cx | 1.34 ± 0.01 cx |
BM_15 | 78.00 ± 1.00 cx | 50.00 ± 0.00 bz | 16.38 ± 1.45 bz | 123.50 ± 1.50 bx | 1.56 ± 0.02 dx |
BM_20 | 81.00 ± 1.00 dx | 40.00 ± 0.00 az | 14.78 ± 1.18 az | 107.00 ± 5.00 ax | 2.02 ± 0.02 ex |
BS_5 | 82.50 ± 0.50 ay | 52.00 ± 1.00 dy | 16.05 ± 0.15 cy | 168.50 ± 0.50 dy | 1.58 ± 0.04 by |
BS_10 | 83.50 ± 0.50 by | 48.50 ± 0.50 cy | 15.50 ± 0.10 bcy | 145.50 ± 2.50 cy | 1.72 ± 0.03 cy |
BS_15 | 84.00 ± 1.00 cy | 41.50 ± 1.50 by | 14.35 ± 0.25 by | 131.00 ± 2.00 by | 2.02 ± 0.10 dy |
BS_20 | 88.00 ± 1.00 dy | 33.50 ± 0.50 ay | 12.90 ± 0.10 ay | 111.50 ± 0.50 ay | 2.62 ± 0.01 ey |
Two-way ANOVA p value | |||||
Factor I: | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
Factor II | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
Factor I × Factor II | p < 0.0001 | p < 0.0001 | p = 0.036 | p < 0.0001 | p < 0.0001 |
Sample | G′ (Pa) | G″ (Pa) | tan δ (adim.) | Tmax (°C) |
---|---|---|---|---|
Control | 26,370.00 ± 257.00 ab | 9488.00 ± 95.00 ab | 0.3598 ± 0.00 a | 82.74 ± 0.49 d |
BL_5 | 23,600.00 ± 360.00 abz | 8765.50 ± 196.50 abcz | 0.3713 ± 0.00 ax | 78.73 ± 0.63 ax |
BL_10 | 34,780.00 ± 3450.00 bz | 12,431.00 ± 1189.15 bcz | 0.3590 ± 0.01 ax | 79.75 ± 0.12 bcx |
BL_15 | 28,560.00 ± 1570.00 az | 10,730.00 ± 470.05 az | 0.3760 ± 0.00 ax | 79.03 ± 0.12 bx |
BL_20 | 30,105.00 ± 2705.00 bz | 10,645.00 ± 515.75 cz | 0.3569 ± 0.02 ax | 81.03 ± 0.91 cx |
BM_5 | 26,055.00 ± 595.00 abyz | 10,285.00 ± 255.50 abcyz | 0.3947 ± 0.00 ay | 80.91 ± 0.33 ay |
BM_10 | 25,680.00 ± 310.00 byz | 9509.50 ± 210.50 bcyz | 0.3702 ± 0.00 ay | 80.69 ± 0.31 bcy |
BM_15 | 25,630.00 ± 1200.00 ayz | 9590.50 ± 619.50 ayz | 0.3739 ± 0.00 ay | 82.63 ± 0.17 by |
BM_20 | 30,255.00 ± 2445.00 byz | 11,475.00 ± 825.04 ayz | 0.3794 ± 0.00 ay | 80.99 ± 0.10 cy |
BS_5 | 26,240.00 ± 1260.00 abx | 9752.00 ± 358.00 abcx | 0.3455 ± 0.00 ax | 79.42 ± 0.72 ay |
BS_10 | 23,295.00 ± 525.00 bx | 8339.00 ± 209.00 bcx | 0.3579 ± 0.00 ax | 81.74 ± 0.26 bcy |
BS_15 | 19,680.00 ± 400.00 ax | 7105.50 ± 307.50 ax | 0.3608 ± 0.00 ax | 79.67 ± 0.41 by |
BS_20 | 24,360.00 ± 2676.00 bx | 8911.00 ± 300.00 cx | 0.3657 ± 0.00 ax | 81.76 ± 0.60 cy |
Two-way ANOVA p value | ||||
Factor I | p = 0.001 | p < 0.0001 | p = 0.222 | p < 0.0001 |
Factor II | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
Factor I × Factor II | p < 0.0001 | p < 0.0001 | p = 0.004 | p < 0.0001 |
Sample | Loaf Volume (cm3) | Specific Volume (cm3/g) | Porosity (%) | Elasticity (%) |
---|---|---|---|---|
Control | 378.70 ± 1.12 e | 2.27 ± 0.03 a | 64.33 ± 0.11 a | 91.72 ± 0.07 b |
BL_5 | 387.75 ± 0.25 dz | 2.70 ± 0.03 by | 75.07 ± 0.29 cy | 94.15 ± 0.05 cz |
BL_10 | 371.29 ± 0.71 cz | 2.92 ± 0.20 cy | 71.09 ± 0.77 dy | 94.83 ± 0.17 dz |
BL_15 | 350.37 ± 1.54 bz | 2.53 ± 0.11 by | 70.98 ± 0.13 cy | 93.34 ± 0.01 cz |
BL_20 | 314.05 ± 1.35 az | 2.42 ± 0.00 ay | 70.58 ± 0.26 by | 92.08 ± 0.21 az |
BM_5 | 374.57 ± 0.43 dy | 2.71 ± 0.00 by | 74.42 ± 0.57 cy | 91.85 ± 0.19 cy |
BM_10 | 369.14 ± 0.36 cy | 2.86 ± 0.04 cy | 73.27 ± 0.42 dy | 93.54 ± 0.21 dy |
BM_15 | 356.01 ± 0.98 by | 2.70 ± 0.03 by | 73.10 ± 0.14 cy | 92.69 ± 0.04 cy |
BM_20 | 296.90 ± 3.30 ay | 2.26 ± 0.00 ay | 65.21 ± 0.11 by | 91.26 ± 0.39 ay |
BS_5 | 291.27 ± 3.73 dx | 2.37 ± 0.04 bx | 72.52 ± 0.30 cx | 93.89 ± 0.35 cx |
BS_10 | 279.96 ± 1.03 cx | 2.52 ± 0.04 cx | 71.67 ± 0.29 dx | 91.46 ± 0.19 dx |
BS_15 | 231.77 ± 0.77 bx | 2.51 ± 0.00 bx | 68.13 ± 0.28 cx | 91.25 ± 0.40 cx |
BS_20 | 229.20 ± 1.70 ax | 2.19 ± 0.02 ax | 66.55 ± 0.19 bx | 86.61 ± 0.66 ax |
Two-way ANOVA p value | ||||
Factor I | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
Factor II | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
Factor I × Factor II | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
Sample | Crust Color | Crumb Color | ||||
---|---|---|---|---|---|---|
L* | a* | b* | L* | a* | b* | |
Control | 67.36 ± 0.19 d | 0.78 ± 0.22 a | 31.60 ± 0.28 b | 72.30 ± 0.27 d | −4.48 ± 0.03 a | 19.02 ± 0.23 b |
BL_5 | 64.79 ± 0.67 c y | 4.20 ± 0.40 bx | 30.92 ± 0.59 bx | 62.42 ± 0.13 bx | −3.12 ± 0.12 by | 17.48 ± 0.31 ax |
BL_10 | 63.91 ± 0.51 by | 4.75 ± 0.23 cx | 31.98 ± 0.44 bcx | 64.55 ± 0.13 cx | −3.25 ± 0.06 by | 17.53 ± 0.05 abx |
BL_15 | 62.71 ± 0.26 ay | 4.85 ± 0.23 cx | 33.00 ± 0.82 bcx | 57.28 ± 0.22 ax | −1.94 ± 0.43 cy | 16.46 ± 0.57 bx |
BL_20 | 61.19 ± 0.57 by | 4.97 ± 0.26 cx | 33.36 ± 0.14 cx | 57.33 ± 0.51 ax | −1.57 ± 0.37 dy | 17.14 ± 0.67 ax |
BM_5 | 62.86 ± 0.67 cx | 5.48 ± 0.24 by | 29.03 ± 1.19 bx | 69.72 ± 0.81 by | −3.77 ± 0.09 by | 17.67 ± 0.33 ay |
BM_10 | 57.66 ± 0.38 bx | 6.84 ± 0.39 cy | 31.18 ± 1.38 bcx | 68.89 ± 1.25 cy | −2.69 ± 0.25 by | 19.02 ± 0.71 aby |
BM_15 | 55.07 ± 1.23 ax | 6.72 ± 0.61 cy | 32.66 ± 0.81 bcx | 56.79 ± 0.34 ay | −1.38 ± 0.24 cy | 17.69 ± 0.41 by |
BM_20 | 61.19 ± 0.57 bx | 6.78 ± 0.42 cy | 33.54 ± 0.25 cx | 56.41 ± 0.66 ay | −0.86 ± 0.26 dy | 18.21 ± 0.69 ay |
BS_5 | 64.81 ± 0.11 cy | 2.08 ± 1.04 bx | 28.91 ± 0.82 bx | 59.96 ± 1.08 by | −2.81 ± 0.14 bx | 17.63 ± 0.40 az |
BS_10 | 61.79 ± 0.68 by | 5.52 ± 0.82 cx | 33.43 ± 2.03 bcx | 67.33 ± 0.61 cy | −3.64 ± 0.09 bx | 18.79 ± 0.32 abz |
BS_15 | 59.21 ± 0.06 ay | 5.73 ± 1.53 cx | 33.64 ± 1.14 bcx | 63.36 ± 0.96 ay | −3.10 ± 0.16 cx | 22.41 ± 0.76 bz |
BS_20 | 63.42 ± 0.40 cy | 5.90 ± 1.15 cx | 34.37 ± 0.90 cx | 64.91 ± 0.92 ay | −2.60 ± 0.23 dx | 18.35 ± 0.71 az |
Two-way ANOVA p value | ||||||
F1 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
F2 | p < 0.001 | p < 0.001 | p = 0.062 | p < 0.001 | p < 0.001 | p < 0.001 |
F1 × F2 | p < 0.001 | p = 0.02 | p = 0.092 | p < 0.001 | p < 0.001 | p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coţovanu, I.; Mironeasa, S. Influence of Buckwheat Seed Fractions on Dough and Baking Performance of Wheat Bread. Agronomy 2022, 12, 137. https://doi.org/10.3390/agronomy12010137
Coţovanu I, Mironeasa S. Influence of Buckwheat Seed Fractions on Dough and Baking Performance of Wheat Bread. Agronomy. 2022; 12(1):137. https://doi.org/10.3390/agronomy12010137
Chicago/Turabian StyleCoţovanu, Ionica, and Silvia Mironeasa. 2022. "Influence of Buckwheat Seed Fractions on Dough and Baking Performance of Wheat Bread" Agronomy 12, no. 1: 137. https://doi.org/10.3390/agronomy12010137
APA StyleCoţovanu, I., & Mironeasa, S. (2022). Influence of Buckwheat Seed Fractions on Dough and Baking Performance of Wheat Bread. Agronomy, 12(1), 137. https://doi.org/10.3390/agronomy12010137