Crop Yield and Soil Quality Are Partners in a Sustainable Agricultural System
1. Introduction
2. Inoculation with Beneficial Soil Microbes
3. Intercropping and Organic Farming Effect on Soil Bacteria and Nutrient Stocks
4. Irrigation, Fertilization, and Environmental Conditions Affecting Crop Production
5. Plant Based Nematicides and Zeolites’ Amendments
6. Sustainability in CH4 Emissions
7. Land Suitability for Specific Crop Production
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gagné-Bourque, F.; Mayer, B.F.; Charron, J.B.; Vali, H.; Bertrand, A.; Jabaji, S. Accelerated growth rate and increased drought stress resilience of the model grass brachypodium distachyon colonized by bacillus subtilis B26. PLoS ONE 2015, 10, e0130456. [Google Scholar] [CrossRef]
- Hashem, A.; Tabassum, B.; Fathi Abd_Allah, E. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 2019, 26, 1291–1297. [Google Scholar] [CrossRef]
- Nikolaidou, C.; Monokrousos, N.; Kapagianni, P.D.; Orfanoudakis, M.; Dermitzoglou, T.; Papatheodorou, E.M. The Effect of Rhizophagus irregularis, Bacillus subtilis and Water Regime on the Plant–Microbial Soil System: The Case of Lactuca sativa. Agronomy 2021, 11, 2183. [Google Scholar] [CrossRef]
- Angelina, E.; Papatheodorou, E.M.; Demirtzoglou, T.; Monokrousos, N. Effects of Bacillus subtilis and Pseudomonas fluorescens Inoculation on Attributes of the Lettuce (Lactuca sativa L.) Soil Rhizosphere Microbial Community: The Role of the Management System. Agronomy 2020, 10, 1428. [Google Scholar] [CrossRef]
- Fu, Z.; Zhou, L.; Chen, P.; Du, Q.; Pang, T.; Song, C.; Wang, X.; Liu, W.; Yang, W.; Yong, T. Effects of maize-soybean relay intercropping on crop nutrient uptake and soil bacterial community. J. Integr. Agric. 2019, 18, 2006–2018. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Sun, L.; Qi, X.; Song, F.; Zhu, X. Impact of Maize–Mushroom Intercropping on the Soil Bacterial Community Composition in Northeast China. Agronomy 2020, 10, 1526. [Google Scholar] [CrossRef]
- Brock, C.; Oltmanns, M.; Matthes, C.; Schmehe, B.; Schaaf, H.; Burghardt, D.; Horst, H.; Spieß, H. Compost as an Option for Sustainable Crop Production at Low Stocking Rates in Organic Farming. Agronomy 2021, 11, 1078. [Google Scholar] [CrossRef]
- Brock, C.; Oberholzer, H.-R.; Schwarz, J.; Fließbach, A.; Hülsbergen, K.-J.; Koch, W.; Pallutt, B.; Reinicke, F.; Leithold, G.; Fliessbach, A. Soil organic matter balances in organic versus conventional farming—modelling in field experiments and regional upscaling for cropland in Germany. Org. Agric. 2012, 2, 185–195. [Google Scholar] [CrossRef]
- Kaniszewski, S. Nawadnianie Warzyw Polowych (Irrigation of Field Vegetables); Plantpress: Kraków, Poland, 2005; pp. 1–85. [Google Scholar]
- Rolbiecki, R.; Rolbiecki, S.; Figas, A.; Jagosz, B.; Wichrowska, D.; Ptach, W.; Prus, P.; Sadan, H.A.; Ferenc, P.-F.; Stachowski, P.; et al. Effect of Drip Fertigation with Nitrogen on Yield and Nutritive Value of Melon Cultivated on a Very Light Soil. Agronomy 2021, 11, 934. [Google Scholar] [CrossRef]
- Katsenios, N.; Sparangis, P.; Chanioti, S.; Giannoglou, M.; Leonidakis, D.; Christopoulos, M.V.; Katsaros, G.; Efthimiadou, A. Genotype × Environment Interaction of Yield and Grain Quality Traits of Maize Hybrids in Greece. Agronomy 2021, 11, 357. [Google Scholar] [CrossRef]
- Karamanoli, K.; Menkissoglu-Spiroudi, U.; Bosabalidis, A.M.; Vokou, D.; Constantinidou, H.I.A. Bacterial colonization of the Phyllosphere of nineteen plant species and antimicrobial activity of their leaf secondary metabolites against leaf associate bacteria. Chemoecology 2005, 15, 59–67. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, G.J.; Pedro, L.G.; Scheffer, J.J.C. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Ntalli, N.G.; Ozalexandridou, E.X.; Kasiotis, K.M.; Samara, M.; Golfinopoulos, S.K. Nematicidal Activity and Phytochemistry of Greek Lamiaceae Species. Agronomy 2020, 10, 1119. [Google Scholar] [CrossRef]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-Lόpez, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef]
- Shahsavari, N.; Jais, H.M.; Shirani Rad, A.H. Responses of canola oil quality characteristics and fatty acid composition to zeolite and zinc fertilization under drought stress. Int. J. Agric. Sci. 2014, 4, 49–59. [Google Scholar]
- Chen, T.; Guimin, X.; Qi, W.; Zheng, J.; Jin, Y.; Sun, D.; Wang, S.; Chi, D. The Influence of Zeolite Amendment on Yield Performance, Quality Characteristics, and Nitrogen Use Efficiency of Paddy Rice. Crop. Sci. 2017, 57, 2777–2787. [Google Scholar] [CrossRef]
- Mondal, M.; Biswas, B.; Garai, S.; Sarkar, S.; Banerjee, H.; Brahmachari, K.; Bandyopadhyay, P.K.; Maitra, S.; Brestic, M.; Skalicky, M.; et al. Zeolites Enhance Soil Health, Crop Productivity and Environmental Safety. Agronomy 2021, 11, 448. [Google Scholar] [CrossRef]
- Collins, W.J.; Fry, M.M.; Yu, H.; Fuglestvedt, J.S.; Shindell, D.T.; West, J.J. Global and regional temperature-change potentials for near-term climate forcers. Atmos. Chem. Phys. 2013, 13, 2471–2485. [Google Scholar] [CrossRef] [Green Version]
- Luta, W.; Ahmed, O.H.; Omar, L.; Heng, R.K.J.; Choo, L.N.L.K.; Jalloh, M.B.; Musah, A.A.; Abdu, A. Water Table Fluctuation and Methane Emission in Pineapples (Ananas comosus (L.) Merr.) Cultivated on a Tropical Peatland. Agronomy 2021, 11, 1448. [Google Scholar] [CrossRef]
- Said, M.E.S.; Ali, A.M.; Borin, M.; Abd-Elmabod, S.K.; Aldosari, A.A.; Khalil, M.M.N.; Abdel-Fattah, M.K. On the Use of Multivariate Analysis and Land Evaluation for Potential Agricultural Development of the Northwestern Coast of Egypt. Agronomy 2020, 10, 1318. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.; Shalaby, A.; Mohamed, E.S. Comparison of two soil quality indices using two methods based on geographic information system. Egypt. J. Remote Sens. Space Sci. 2019, 22, 127–136. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Schütt, B.; Belal, A. Assessment of environmental hazards in the north western coast-Egypt using RS and GIS. Egypt. J. Remote Sens. Space Sci. 2013, 16, 219–229. [Google Scholar] [CrossRef] [Green Version]
- De la Rosa, D.; Moreno, J.A.; García, L.V.; Almorza, J. MicroLEIS: A microcomputer-based Mediterranean land evaluation information system. Soil Use Manag. 1992, 8, 89–96. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papatheodorou, E.M.; Monokrousos, N. Crop Yield and Soil Quality Are Partners in a Sustainable Agricultural System. Agronomy 2022, 12, 140. https://doi.org/10.3390/agronomy12010140
Papatheodorou EM, Monokrousos N. Crop Yield and Soil Quality Are Partners in a Sustainable Agricultural System. Agronomy. 2022; 12(1):140. https://doi.org/10.3390/agronomy12010140
Chicago/Turabian StylePapatheodorou, Efimia M., and Nikolaos Monokrousos. 2022. "Crop Yield and Soil Quality Are Partners in a Sustainable Agricultural System" Agronomy 12, no. 1: 140. https://doi.org/10.3390/agronomy12010140
APA StylePapatheodorou, E. M., & Monokrousos, N. (2022). Crop Yield and Soil Quality Are Partners in a Sustainable Agricultural System. Agronomy, 12(1), 140. https://doi.org/10.3390/agronomy12010140