Different Organic Fertilisation Systems Modify Tomato Quality: An Opportunity for Circular Fertilisation in Intensive Horticulture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment Design
2.2. Sampling and Analyses
2.2.1. Yield
2.2.2. Physical Analysis of Fruits
2.2.3. Colour Evaluation of Fruits
2.2.4. Chemical Parameters of Fruits
2.2.5. Chemical Characteristics of the Soil
2.3. Statistical Analysis
3. Results and Discussions
3.1. Tomato Yield
3.2. Tomato Quality
3.2.1. Tomato Physical Proprieties
3.2.2. Tomato Chemicals Proprieties
3.3. Soil Chemical Properties
3.4. Influence of Soil Proprieties on Tomato Yield and Quality
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; García-Arca, D.; López-Felices, B. Identification of Opportunities for Applying the Circular Economy to Intensive Agriculture in Almería (South-East Spain). Agronomy 2020, 10, 1499. [Google Scholar] [CrossRef]
- Toop, T.A.; Ward, S.; Oldfield, T.; Hull, M.; Kirby, M.E.; Theodorou, M.K. AgroCycle–developing a circular economy in agriculture. Energy Procedia 2017, 123, 76–80. [Google Scholar] [CrossRef]
- Lopez, M.J.; Masaguer, A.; Paredes, C.; Perez, L.; Muñoz, M.; Salas, M.C.; Hernandez, R. De resíduos a recursos. El camino hacia la sostenibilidad. Red Española Compost. 2015, 1, 170. [Google Scholar]
- Sánchez-Navarro, A.; Sánchez-Romero, J.A.; Salas-Sanjuan, M.C.; Bernardeau, M.A.B.; Delgado-Iniesta, M.J. Medium-Term Influence of Organic Fertilization on the Quality and Yield of a Celery Crop. Agronomy 2020, 10, 1418. [Google Scholar] [CrossRef]
- Walling, E.; Vaneeckhaute, C. Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. J. Environ. Manag. 2020, 276, 111211. [Google Scholar] [CrossRef]
- Shen, W.; Hu, M.; Quian, D.; Xue, H.; Gao, N.; Lin, X. Microbial deterioration and restoration in greenhouse-based intensive vegetable production systems. Plant Soil 2021, 463, 1–18. [Google Scholar] [CrossRef]
- Gao, W.; Yang, H.; Kou, L.; Li, S. Effects of nitrogen deposition and fertilization on N transformations in forest soils: A review. J. Soils Sediments 2015, 15, 863–879. [Google Scholar] [CrossRef]
- Mona, S.; Malyan, S.K.; Saini, N.; Deepak, B.; Pugazhendhi, A.; Kumar, S.S. Towards sustainable agriculture with carbon sequestration, and greenhouse gas mitigation using algal biochar. Chemosphere 2021, 275, 129856. [Google Scholar] [CrossRef]
- Madrid, R.; Valverde, M.; Guillén, I.; Sanchez, A.; Lax, A. Evolution of organic matter added to soils under cultivation conditions. J. Plant Natur. Soil Sci. 2004, 167, 39–44. [Google Scholar] [CrossRef]
- Williams, H.; Colombi, T.; Keller, T. The influence of soil management on soil health: An on-farm study in southern Sweden. Geoderma 2020, 360, 114010. [Google Scholar] [CrossRef]
- Hernández, T.; Chocano, C.; Moreno, J.L.; García, C. Use of compost as an alternative to conventional inorganic fertilizers in intensive lettuce (Lactuca sativa L.) crops—Effects on soil and plant. Soil Tillage Res. 2016, 160, 14–22. [Google Scholar] [CrossRef]
- Liang, B.; Zhao, W.; Yang, X.; Zhou, J. Fate of nitrogen-15 as influenced by soil and nutrient management history in a 19-year wheat–maize experiment. Field Crops Res. 2013, 144, 126–134. [Google Scholar] [CrossRef]
- Dorais, M.; Ehret, D.L.; Papadopoulos, A.P. Tomato (Solanum lycopersicum) health components: From the seed to the consumer. Phytochem. Rev. 2008, 7, 231–250. [Google Scholar] [CrossRef]
- Fortis-Hernández, M.; Antonio-Ordoñez, E.; Preciado-Rangel, P.; Gallegos-Robles, M.A.; Vázquez-Vázquez, C.; Reyes-Gonzales, A.; Esparza-Rivera, J.R. Effect of substrate formulated with organic material on yielding, commercial and phytochemical quality, and benefit-cost ratio of tomato (Solanum lycoperdicum L.) produced under greenhouse conditions. Not. Bot. Horti. Agrobot. Cluj Napoca 2021, 49, 11999. [Google Scholar] [CrossRef]
- Abu-Zahra, T.R. Influence of agricultural practices on fruit quality of bell pepper. Pak. J. Biol. Sci. 2011, 14, 867–881. [Google Scholar] [CrossRef]
- Worthington, V. Nutritional Quality of Organic Versus Conventional Fruits, Vegetables, and Grains. J. Altern. Complement. Med. 2001, 7, 161–173. [Google Scholar] [CrossRef]
- Vélez-Terreros, P.Y.; Romero-Estévez, D.; Yánez-Jácome, G.S.; Simbaña-Farinango, K.; Navarrete, H. Comparison of major nutrients and minerals between organic and conventional tomatoes. A review. J. Food Compost Anal. 2021, 100, 103922. [Google Scholar] [CrossRef]
- Bergougnoux, V. The history of tomato: From domestication to biopharming. Biotechnol. Adv. 2014, 32, 70–189. [Google Scholar] [CrossRef] [PubMed]
- Guil-Guerrero, J.L.; Rebolloso-Fuentes, M.M. Nutrient composition and antioxidant activity of eight tomato (Lycopersicon esculentum) varieties. J. Food Compost. Anal. 2009, 22, 123–129. [Google Scholar] [CrossRef]
- Perveen, R.; Suleria, H.A.; Anjum, F.M.; Butt, M.S.; Pasha, I.; Ahmad, S. Tomato (Solanum lycopersicum) carotenoids and lycopene chemistry; metabolism, absorption, nutrition, and allied health claims A comprehensive review. Crit. Rev. Food. Sci. Nutr. 2015, 55, 919–929. [Google Scholar] [CrossRef] [PubMed]
- Bilalis, D.; Krokida, M.; Roussis, I.; Papastylianou, P.; Travlos, I.; Cheimona, N.; Dede, A. Effects of organic and inorganic fertilization on yield and quality of processing tomato (Lycopersicon esculentum Mill.). Folia Hort. 2018, 30, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.X.; Zhao, F.; Zhang, G.; Zhang, Y.; Yang, L. Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study. Front. Plant Sci. 2017, 8, 1978. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Bueno, R.P.; Romero-González, R.; González-Fernández, M.J.; Guil-Guerrero, J.L. Phytochemical composition and in vitro anti-tumour activities of selected tomato varieties. J. Sci. Food Agric. 2017, 97, 488–496. [Google Scholar] [CrossRef]
- Guillén, F.; Castillo, S.; Zapata, P.J.; Martínez-Romero, D.; Valero, D.; Serrano, M. Efficacy of 1-MCP treatment in tomato fruit: 2- Effect of cultivar and ripening stage at harvest. Postharvest Biol. Technol. 2006, 42, 235–242. [Google Scholar] [CrossRef]
- Fabrikov, D.; Guil-Guerrero, J.L.; González-Fernández, M.J.; Rodríguez-García, I.; Gómez-Mercado, F.; Urrestarazu, M.; Lao, M.T.; Rincón-Cervera, M.Á.; Álvaro, J.E.; Lyashenko, S. Borage oil: Tocopherols, sterols and squalene in farmed and endemic-wild Borago species. J. Food Compost. Anal. 2019, 83, 103299. [Google Scholar] [CrossRef]
- Suárez, M.H.; Rodrìguez, E.R.; Romero, C.D. Analysis of organic acid content in cultivars of tomato harvested in Tenerife. Eur. Food Res. Technol. 2008, 226, 423–435. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, G.; Zhang, F.; Sun, Z.; Geng, G.; Li, T. Effects of continuous tomato monoculture on soil microbial properties and enzyme activities in a solar greenhouse. Sustainability 2017, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Mejia, P.A.; Salas, M.C.; López, M.J. Evaluation of physicochemical properties and enzymatic activity of organic substrates during four crop cycles in soilless containers. Food Sci. Nutr. 2018, 6, 2066–2078. [Google Scholar]
- Bremner, J.M. Organic forms of nitrogen. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1965, 9, 1238–1255. [Google Scholar]
- Zuba, S.N.; Nogueira, W.C.L.; Fernandes, L.A.; Sampaio, R.A.; da Costa, D.A. Yield and nutrition of tomato using different nutrient sources. Hortic. Bras. 2011, 29, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Murmu, K.; Ghosh, B.C.; Swain, D.K. Yield and quality of tomato grown under organic and conventional nutrient management. Arch. Agron. Soil Sci. 2013, 59, 1311–1321. [Google Scholar] [CrossRef]
- Ferreira, M.M.M.; Ferreira, B.F.; Fontes, P.C.R.; Dantas, J.P. Qualidade de tomate em função de doses de nitrogênio e da adubação orgânica em duas estações. Hortic. Bras. 2006, 24, 141–145. [Google Scholar] [CrossRef] [Green Version]
- De Matos, R.M.; Da Silva, P.F.; Neto, J.D.; De Lima, A.S.; De Lima, V.L.A.; Saboya, L.M.F. Organic fertilization as an alternative to the chemical in cherry tomato growing under irrigation depths. Biosci. J. 2021, 37, e37006. [Google Scholar] [CrossRef]
- López, A.F.; Gómez, P.A. Comparison of color indexes for tomato ripening. Hortic. Bras. 2004, 22, 534–537. [Google Scholar] [CrossRef]
- Nour, V.; Ionica, M.E.; Trandafir, I. Bioactive compounds, antioxidant activity and color of hydroponic tomato fruits at different stages of ripening. Not. Bot. Horti Agrobot. Cluj Napoca 2015, 43, 404–412. [Google Scholar] [CrossRef] [Green Version]
- Barrett, D.M.; Weakley, C.; Diaz, J.V.; Watnik, M. Qualitative and nutritional differences in processing tomatoes grown under commercial organic and conventional production systems. J. Food Sci. 2007, 72, 441–451. [Google Scholar] [CrossRef]
- Viskelis, P.; Radzevicius, A.; Urbonaviciene, D.; Viskelis, J.; Karkleliene, R.; Bobinas, C. Biochemical parameters in tomato fruits from different cultivars as functional foods for agricultural, industrial, and pharmaceutical uses. Plants Future 2015, 11, 45. [Google Scholar]
- Van Roy, J.; Keresztes, J.C.; Wouters, N.; De Ketelaere, B.; Saeys, W. Measuring colour of vine tomatoes using hyperspectral imaging. Postharvest Biol. Tech. 2017, 129, 79–89. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Xyrafis, E.; Polyzos, N.; Antoniadis, V.; Barros, L.; Ferreira, I.C.F.R. The optimization of nitrogen fertilization regulates crop performance and quality of processing tomato (Solanum lycopersicum L. cv. Heinz 3402). Agronomy 2020, 10, 715. [Google Scholar] [CrossRef]
- Chassy, A.W.; Bui, L.; Renaud, E.N.; Van Horn, M.; Mitchell, A.E. Three-year comparison of the content of antioxidant microconstituents and several quality characteristics in organic and conventionally managed tomatoes and bell peppers. J. Agric. Food Chem. 2006, 54, 8244–8252. [Google Scholar] [CrossRef]
- Dumas, Y.; Dadomo, M.; Di Lucca, G.; Grolier, P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 2003, 83, 369–382. [Google Scholar] [CrossRef]
- Borguini, R.G.; Bastos, D.H.M.; Moita-Neto, J.M.; Capasso, F.S.; Torres, E.A.F.D.S. Antioxidant potential of tomatoes cultivated in organic and conventional systems. Braz. Arch. Biol. Technol. 2013, 56, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Vinha, A.F.; Barriera, S.V.P.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P. Organic versus conventional tomatoes: Influence on physicochemical parameters, bioactive compounds and sensorial attributes. Food Chem. Toxicol. 2014, 67, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.B.; Moura, C.F.H.; Gomes-Filho, E.; Marco, C.A.; Urban, L.; Miranda, M.R.A. The Impact of Organic Farming on Quality of Tomatoes Is Associated to Increased Oxidative Stress during Fruit Development. PLoS ONE 2013, 8, e56354. [Google Scholar] [CrossRef] [Green Version]
- Ulrichs, C.; Fischer, G.; Büttner, C.; Mewis, I. Comparison of lycopene, β-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF). Agron. Colomb. 2008, 26, 40–46. [Google Scholar]
- Ewulo, B.S.; Ojeniyi, S.O.; Akanni, D.A. Effect of poultry manure on selected soil physical and chemical properties, growth, yield and nutrient status of tomato. Afr. J. Agric. Res. 2008, 3, 9–14. [Google Scholar]
- Caris-Veyrat, C.; Amiot, M.J.; Tyssandier, V.; Grasselly, D.; Buret, M.; Mikolajczak, M.; Guilland, J.C.; Bouteloup, C.; Borel, P. Influence of organic versus conventional agricultural practice on the antioxidant microconstituent content of tomatoes and derived purees; consequences on antioxidant plasma status in humans. J. Agric. Food Chem. 2004, 52, 6503–6509. [Google Scholar] [CrossRef]
- Choo, W.S.; Birch, J.; Dufour, J.P. Physicochemical and quality characteristics of cold—Press flaxseed oils. J. Food Compos. Anal. 2007, 20, 202–211. [Google Scholar] [CrossRef]
- Hakkinen, S.H.; Torren, A.R. Content of flavonols and selected phenolic acids in strawberries and Vaccinum species: Influence of cultivar, cultivation site and technique. Food Res. Int. 2000, 33, 517–524. [Google Scholar] [CrossRef]
- Toor, R.K.; Savage, G.P.; Heeb, A. Influence of different types of fertilisers on the major antioxidant components of tomatoes. J. Food Compos. Anal. 2006, 19, 20–27. [Google Scholar] [CrossRef]
- Fuentes, M.M.R.; Fernández, G.G.A.; Pérez, J.A.S.; Guerrero, J.L.G. Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem. 2000, 70, 345–353. [Google Scholar] [CrossRef]
- Zhang, E.; Duan, Y.; Tan, F.; Zhang, S. Effects of Long-term Nitrogen and Organic Fertilization on Antioxidants Content of Tomato Fruits. J. Hortic. 2016, 3, 172. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.; Sharma, A.; Kumar, R.; Kaur, C.; Arora, A.; Shah, R.; Nain, L. Improvement of antioxidant and defense properties of Tomato (var. Pusa Rohini) by application of bioaugmented compost. Saudi J. Biol. Sci. 2015, 22, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Gravel, V.; Blok, W.; Hallmann, E.; Carmona-Torres, C.; Wang, H.; Van De Peppel, A.; Golec, A.F.C.; Dorais, M.; Van Meeteren, U.; Heuvelink, E.; et al. Differences in N uptake and fruit quality between organically and conventionally grown greenhouse tomatoes. Agron. Sustain. Dev. 2010, 30, 797–806. [Google Scholar] [CrossRef] [Green Version]
- Kiehl, E.J.; Fertilizantes Organominerais. Piracicaba: Edição do Autor. 1993. Available online: https://repositorio.usp.br/item/000850337 (accessed on 18 December 2021).
- Ruiz, J.L.; Salas, M.C. Evaluation of organic substrates and microorganisms as bio-fertilisation tool in container crop production. Agronomy 2019, 9, 705. [Google Scholar] [CrossRef] [Green Version]
- Doll, H.; Holm, U.; Sogaard, B.; Bay, H. Phenolic compounds in barley varieties with different degree of partial resistance against powdery mildew. Acta Hortic. 1994, 381, 576–582. [Google Scholar] [CrossRef]
- Mumivand, H.; Babalar, M.; Hadian, J.; Fakhr-Tabatabaei, M. Plant growth and essential oil content and composition of Saturn (Satureja hortensis L.) in response to calcium carbonate and nitrogen application rates. J. Med. Plants Res. 2011, 5, 1859–1866. [Google Scholar]
- Kadir, S.A. Fruit quality at harvest of “Jonathan” apple treated with foliarly-applied calcium chloride. J. Plant Nutr. 2005, 27, 1991–2006. [Google Scholar] [CrossRef]
- Arancon, N.Q.; Edwards, C.A.; Bierman, P.; Welch, C.; Metzger, J.D. Influences of vermicomposts on field strawberries: 1. Effects on growth and yields. Bioresour. Technol. 2004, 93, 145–153. [Google Scholar] [CrossRef] [PubMed]
pH | E.C. | O.M. | N Kjeldahl | C/N | N-NO3− | PO42− | K+ | Ca2+ | Mg2+ | Na+ | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8.3 | 2360 | 0.93 | 0.07 | 7.7 | 47.0 | 120 | 1000 | 5160 | 973 | 566 | 53.5 | 12.4 | 34.1 |
pH | E.C. | O.M | N Kjeldahl | C/N | P | K | Ca | Mg | |
---|---|---|---|---|---|---|---|---|---|
GM | 9.6 | 7.73 | 30.2 | 1.35 | 11 | 0.53 | 2.18 | 3.28 | 0.91 |
CR | 6.9 | 10.79 | 75.5 | 2.50 | 15 | 0.89 | 3.39 | 4.34 | 0.72 |
CO | 8.3 | 12.30 | 21.4 | 1.20 | 8.9 | 0.67 | 2.84 | 8.00 | 1.51 |
V | 8.3 | 3.39 | 17.2 | 1.11 | 7.7 | 0.64 | 0.77 | 7.80 | 1.31 |
Treatments | Fruit Yield (kg m−2) | N° Fruits (N m2) | |
---|---|---|---|
IF (Control) | 5.00 | a | 72.88 |
GM | 4.10 | b | 66.22 |
CR | 4.14 | b | 65.12 |
CO | 4.32 | b | 66.80 |
V3 | 4.50 | ab | 66.50 |
V9 | 4.43 | ab | 68.97 |
* | ns |
SS (°Brix) | L* | a* | b* | CI (Colour Index) | C Chroma | Brightness (a*/b*) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IF | 5.68 | 39.50 | b | 21.20 | a | 20.00 | d | 26.93 | a | 29.15 | bc | 1.06 | a |
GM | 5.69 | 40.40 | b | 18.20 | c | 23.80 | b | 18.91 | b | 29.96 | ab | 0.76 | c |
CR | 5.49 | 42.80 | a | 16.90 | d | 21.80 | c | 18.15 | b | 27.58 | d | 0.78 | c |
C0 | 5.88 | 43.30 | a | 16.50 | d | 25.80 | a | 14.75 | c | 30.63 | a | 0.64 | d |
V3 | 5.64 | 40.10 | b | 19.90 | b | 20.60 | d | 24.27 | a | 28.65 | cd | 0.97 | b |
V9 | 5.91 | 43.90 | a | 15.50 | e | 20.50 | d | 17.26 | bc | 25.70 | e | 0.76 | c |
ns | * | * | * | * | * | * |
Moisture (g·100 g−1) | β-Carotene (mg·kg−1) | Lycopene (mg·kg−1) | Total Sterols (mg·kg−1) | Total Tocopherols (mg·kg−1) | Total Phenolics (mg·kg−1) | Ascorbic Acid (mg·kg−1) | |
---|---|---|---|---|---|---|---|
IF | 94.6 a | 2.4 b | 51.4 a | 70.5 d | 6.3 e | 58.5 bc | 190.0 b |
GM | 94.5 a | 6.5 a | 36.9 b | 94.8 a | 9.1 a | 85.5 a | 284.0 a |
CR | 93.9 a | 6.4 a | 30.6 c | 67.8 e | 7.6 abc | 55.1 c | 107.0 c |
CO | 94.3 a | 7.2 a | 35.6 b | 73.0 c | 7.1 cd | 50.8 c | 124.0 c |
V3 | 94.8 a | 5.7 ab | 49.7 a | 51.0 f | 6.8 de | 66.3 b | 113.0 c |
V9 | 93.9 a | 8.0 a | 35.5 b | 86.4 b | 8.0 b | 79.2 a | 267.0 a |
* | * | * | * | * | * | * |
pH | E.C. | O.M. | N Kjeldahl | C/N | N-NO3− | PO42− | K+ | Ca2+ | Mg2+ | Na+ | CEC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
IF | 8.6 | 2330 | 0.50 | 0.05 | 5.8 | 26.9 | 170 | 1260 | 5320 | 1030 | 771 | 41.6 |
GM | 8.7 | 2630 | 0.42 | 0.05 | 4.9 | 12.9 | 113 | 1390 | 5360 | 820 | 965 | 41.3 |
CR | 8.6 | 1960 | 0.58 | 0.05 | 6.7 | 8.8 | 190 | 697 | 5230 | 1030 | 506 | 38.6 |
CO | 8.8 | 2240 | 1.04 | 0.08 | 7.6 | 9.9 | 311 | 998 | 5140 | 1050 | 735 | 40.1 |
V3 | 8.7 | 2330 | 0.63 | 0.06 | 6.1 | 11.0 | 198 | 889 | 5230 | 972 | 780 | 39.8 |
V9 | 8.9 | 2110 | 0.45 | <0.05 | 6.5 | 9.8 | 123 | 1000 | 5400 | 1010 | 626 | 40.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carricondo-Martínez, I.; Berti, F.; Salas-Sanjuán, M.d.C. Different Organic Fertilisation Systems Modify Tomato Quality: An Opportunity for Circular Fertilisation in Intensive Horticulture. Agronomy 2022, 12, 174. https://doi.org/10.3390/agronomy12010174
Carricondo-Martínez I, Berti F, Salas-Sanjuán MdC. Different Organic Fertilisation Systems Modify Tomato Quality: An Opportunity for Circular Fertilisation in Intensive Horticulture. Agronomy. 2022; 12(1):174. https://doi.org/10.3390/agronomy12010174
Chicago/Turabian StyleCarricondo-Martínez, Isidoro, Francesca Berti, and Maria del Carmen Salas-Sanjuán. 2022. "Different Organic Fertilisation Systems Modify Tomato Quality: An Opportunity for Circular Fertilisation in Intensive Horticulture" Agronomy 12, no. 1: 174. https://doi.org/10.3390/agronomy12010174
APA StyleCarricondo-Martínez, I., Berti, F., & Salas-Sanjuán, M. d. C. (2022). Different Organic Fertilisation Systems Modify Tomato Quality: An Opportunity for Circular Fertilisation in Intensive Horticulture. Agronomy, 12(1), 174. https://doi.org/10.3390/agronomy12010174