Effect of Differently Matured Composts from Willow on Growth and Development of Lettuce †
Abstract
:1. Introduction
2. Materials and Methods
- variant A: composts produced from willow chips (diameter of approx. 2.5 cm, obtained from 3-year-old plants);
- variant B: willow mixed with hay (extensive meadows: 50% grasses, 25% legumes and 25% other herbaceous plants);
- variant C: willow mixed with hay and mineral (ammonium nitrate 34% N) nitrogen fertilizer (Nmin).
2.1. Basic Chemical Analyses
2.2. Vegetation Experiments
2.3. Statistical Analyses
3. Results and Discussion
3.1. Changes in pH, TOC, TN and TP Contents in the Studied Compost Samples
3.2. Results of the Pot Experiment
3.2.1. Influence of Investigated Composts on Lettuce Germination
3.2.2. The Influence of Investigated Composts on Lettuce Growth and Yield
4. Summary and Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weber, J.; Kocowicz, A.; Bekier, J.; Jamroz, E.; Tyszka, R.; Dębicka, M.; Parylak, D.; Kordas, L. The effect of a sandy soil amendment with municipal solid waste (MSW) compost on nitrogen uptake efficiency by plants. Eur. J. Agron. 2014, 54, 54–60. [Google Scholar] [CrossRef]
- Van Gerrewey, T.; Ameloot, N.; Navarrete, O.; Vandecruys, M.; Perneel, M.; Boon, N.; Geelen, D. Microbial activity in peat-reduced plant growing media: Identifying influential growing medium constituents and physicochemical properties using fractional factorial design of experiments. J. Clean. Prod. 2020, 256, 120323. [Google Scholar] [CrossRef]
- Lazcano, C.; Arnold, J.; Tato, A.; Zaller, J.G.; Dominguez, J.; Salgado, A.T. Compost and vermicompost as nursery pot components: Effects on tomato plant growth and morphology. Span. J. Agric. Res. 2009, 7, 944–951. [Google Scholar] [CrossRef] [Green Version]
- Scarlat, N.; Dallemand, J.-F.; Monforti-Ferrario, F.; Nita, V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015, 15, 3–34. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Biancalani, R.; Salvatore, M.; Rossi, S.; Conchedda, G. A worldwide assessment of greenhouse gas emissions from drained organic soils. Sustainability 2016, 8, 371. [Google Scholar] [CrossRef] [Green Version]
- Clarke, D.; Rieley, J. Strategy for Responsible Peatland Management; International Peat Society: Jyväskylä, Finland, 2010; pp. 5–29. [Google Scholar]
- Kern, J.; Tammeorg, P.; Shanskiy, M.; Sakrabani, R.; Knicker, H.; Kammann, C.; Tuhkanen, E.-M.; Smidt, G.; Prasad, M.; Tiilikkala, K.; et al. Synergistic use of peat and charred material in growing media—An option to reduce the pressure on peatlands? J. Environ. Eng. Landsc. Manag. 2017, 25, 160–174. [Google Scholar] [CrossRef]
- Duque-Acevedo, M.; Belmonte-Urena, L.J.; Plaza-Ubeda, J.A.; Camacho-Ferre, F. The management of agricultural waste biomass in the framework of circular economy and bioeconomy: An opportunity for greenhouse agriculture in southeast Spain. Agronomy 2020, 10, 489. [Google Scholar] [CrossRef] [Green Version]
- Resolution of the 17th World Congress of Soil Science. In Global Enhancement of Soil Organic Matter; Bulletin of the International Union of Soil Sciences; No 102; Blum, W.E.H. (Ed.) IUSS: Vienna, Austria, 2002; pp. 22–23. [Google Scholar]
- Weber, J.; Karczewska, A.; Drozd, J.; Licznar, M.; Licznar, S.E.; Jamroz, E.; Kocowicz, A. Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts. Soil Biol. Biochem. 2007, 39, 1294–1302. [Google Scholar] [CrossRef]
- Komatsuzaki, M.; Ohta, H. Soil management practices for sustainable agro-ecosystems. Sustain. Sci. 2007, 2, 103–120. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Abbott, L.K.; Murphy, D.V. What is soil biological fertility? In Soil Biological Fertility; Abbott, L.K., Murphy, D.V., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 1–15. [Google Scholar]
- Lal, R. Carbon management in agricultural soils. Mitig. Adapt. Strateg. Glob. Change 2007, 12, 303–322. [Google Scholar] [CrossRef]
- Adamczewska-Sowińska, K.; Sowińsk, J.; Jamroz, E.; Bekier, J. Combining willow compost and peat as media for juvenile tomato transplant production. Agronomy 2021, 11, 2089. [Google Scholar] [CrossRef]
- Bekier, J.; Jamroz, E.; Kałuża-Haładyn, A.; Sowiński, J.; Adamczewska-Sowińska, K. Effect of Differently Matured Compost Produced from Willow (Salix viminalis L.) on Growth and Development of Lettuce (Lactuca sativa L.). 2021. Available online: https://sciforum.net/manuscripts/10067/manuscript.pdf (accessed on 14 August 2021).
- Mondini, C.; Sequi, P. Implication of soil C sequestration on sustainable agriculture and environment. Waste Manag. 2008, 28, 678–684. [Google Scholar] [CrossRef]
- Hay, J.C.; Kuchenrither, R. Fundamentals and application of windrow composting. J. Environ. Eng. 1990, 116, 746–763. [Google Scholar] [CrossRef]
- Cesaro, A.; Belgiorno, V.; Guida, M. Compost from organic solid waste: Quality assessment and European regulations for its sustainable use. Resour. Conserv. Recycl. 2015, 94, 72–79. [Google Scholar] [CrossRef]
- Gariglio, N.F.; Buyatti, M.A.; Pilatti, R.A.; Rossia, D.E.G.; Acosta, M.R. Use of a germination bioassay to test compost maturity of willow (Salix sp.) sawdust. N. Z. J. Crop Hortic. Sci. 2002, 30, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Kaluza-Haladyn, A.; Jamroz, E.; Bekier, J. Humic substances of differently matured composts produced from municipal solid wastes and biomass of energetic plants. Soil Sci. Ann. 2019, 70, 292–297. [Google Scholar] [CrossRef]
- Kwaśniewski, T. The Impact of the Degree of Maturity of Composts Produced from Biomass of Selected Plants Grown for Energy Purposes on the Growth and Development of the Test Plants. Master Thesis, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland, 2021. [Google Scholar]
- Kaluza-Haladyn, A.; Jamroz, E.; Bekier, J. The dynamics of some physical and physico-chemical properties during composting of municipal solid wastes and biomass of energetic plants. Soil Sci. Ann. 2018, 69, 155–159. [Google Scholar] [CrossRef] [Green Version]
- Jamroz, E.; Bekier, J.; Medynska-Juraszek, A.; Kaluza-Haladyn, A.; Cwielag-Piasecka, I.; Bednik, M. The contribution of water extractable forms of plant nutrients to evaluate MSW compost maturity: A case study. Sci. Rep. 2020, 10, 12842. [Google Scholar] [CrossRef] [PubMed]
- Boelens, J.; De Wilde, B.; De Baere, L. Comparative study on biowaste definition: Effects on biowaste collection, composting process and compost quality. Compost Sci. Util. 1996, 1, 60–72. [Google Scholar] [CrossRef]
- N’Dayegamiye, A.; Isfan, D. Chemical and biological changes in compost of wood shavings, sawdust and peat moss. Can. J. Soil Sci. 1991, 71, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Wróblewska, H. Studies on the effect of compost made of post-use wood waste on the growth of willow plants. Mol. Cryst. Liq. Cryst. 2008, 483, 352–366. [Google Scholar] [CrossRef]
- Carlile, W.R. The use of composted materials in growing media. Acta Hortic. 2008, 779, 321–328. [Google Scholar] [CrossRef]
- Jiménez, E.I.; Garcia, V.P. Evaluation of city refuse compost maturity: A review. Biol. Wastes 1989, 27, 115–142. [Google Scholar] [CrossRef] [Green Version]
- De Nobili, M.; Petussi, F. Humification index as evaluation of the stabilization degree during compost. J. Ferment. Technol. 1988, 66, 557–583. [Google Scholar] [CrossRef]
- Chefetz, B.; Hatcher, P.G.; Hadar, Y.; Chen, Y. Chemical and biological characterization of organic matter during composting of municipal solid waste. J. Environ. Qual. 1996, 25, 776–785. [Google Scholar] [CrossRef]
- Desrochers, V.; Frenette-Dussault, C.; Nissim, W.G.; Brisson, J.; Labrecque, M. Using willow microcuttings for ecological restoration: An alternative method for establishing dense plantations. Ecol. Eng. 2020, 151, 105859. [Google Scholar] [CrossRef]
- Hue, N.; Sobieszczyk, B.A. Nutritional values of some biowastes as soil amendments. Compost Sci. Util. 1999, 7, 34–41. [Google Scholar] [CrossRef]
- Koerner, I.; Stegmann, R. Influence of biowaste composition and composting parameters on the nitrogen dynamics during composting and on nitrogen contents in composts. Acta Hortic. 1998, 469, 97–109. [Google Scholar] [CrossRef]
- Eichler-Loebermann, B.; Koehne, S.; Koeppen, D. Effect of organic, inorganic, and combined organic and inorganic P fertilization on plant P uptake and soil P pools. J. Plant. Nutr. Soil Sci. 2007, 170, 623–628. [Google Scholar] [CrossRef]
- Duddigan, S.; Alexander, P.D.; Shaw, L.J.; Collins, C.D. Effects of repeated application of organic soil amendments on horticultural soil physicochemical properties, nitrogen budget and yield. Horticulturae 2021, 7, 371. [Google Scholar] [CrossRef]
- Chanyasak, V.; Katayama, A.; Hirai, F.M.; Mori, S.; Kubota, H. Growth inhibitory factors and assessment of degree of maturity by org-C/org-N ratio of water extract. Soil Sci. Plant Nutr. 1983, 29, 215–219. [Google Scholar]
- González, M.; Gomez, E.; Comese, R.; Quesada, M.; Conti, M. Influence of organic amendments on soil quality potential indicators in an urban horticultural system. Bioresour. Technol. 2010, 101, 8897–8901. [Google Scholar] [CrossRef]
- Gariglio, N.F.; Buyatti, M.A.; Bouzo, C.A.; Weber, M.E.; Pilatti, R.A. Use of willow (Salix sp.) sawdust as a potting medium for calendula (Calendula officinalis) and marigold (Tagetes erecta) plant production. N. Z. J. Crop Hortic. Sci. 2004, 32, 147–151. [Google Scholar] [CrossRef] [Green Version]
- Dębska, B.; Długosz, J.; Piotrowska-Długosz, A.; Banach-Szott, M. The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration—Results from a field-scale study. J. Soils Sediments 2016, 16, 2335–2343. [Google Scholar] [CrossRef] [Green Version]
- Zaccone, C.; Schiavon, M.; Celletti, S.; Miano, T. Selected plant-related papers from the First Joint Meeting on Soil and Plant System Sciences (SPSS 2019)—“Natural and human-induced impacts on the critical zone and food production”. Plants 2020, 9, 1132. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Arunachalam, K.; Dutta, B.K.; Arunachalam, A. Effect of organic amendments of soil on growth and productivity of three common crops viz. Zea mays, Phaseolus vulgaris and Abelmoschus esculentus. Appl. Soil Ecol. 2010, 45, 78–84. [Google Scholar] [CrossRef]
- Erhart, E.; Hardl, W.; Putz, B. Biowaste compost affects yield, nitrogen supply during the vegetation period and crop quality of agricultural crops. Eur. J. Agron. 2005, 23, 305–314. [Google Scholar] [CrossRef]
- Hartl, W.; Putz, B.; Erhart, E. Influence of rates and timing of biowaste compost application on rye yield and soil nitrate levels. Eur. J. Soil Biol. 2003, 39, 129–139. [Google Scholar] [CrossRef]
- Alexander, P.D.; Nevison, I.M. The long-term effects of repeated application of the same organic material to soil in a horticultural context. Acta Hortic. 2015, 1076, 143–150. [Google Scholar] [CrossRef]
- Carmichael, E.; Ghassemieh, E.; Lyons, G. Biorefining of lignocellulosic feedstock and waste materials using ionic liquid. Mater. Sci. Eng. B 2020, 262, 114741. [Google Scholar] [CrossRef]
- Chefetz, B.; Hadar, Y.; Chen, Y. Dissolved organic carbon fractions formed during composting of municipal solid waste: Properties and significance. Acta Hydrochim. Hydrobiol. 1998, 469, 111–119. [Google Scholar] [CrossRef]
- Banach-Szott, M.; Dębska, B.; Tobiasova, E. Properties of humic acids depending on the land use in different parts of Slovakia. Environ. Sci. Pollut. Res. 2021, 28, 58068–58080. [Google Scholar] [CrossRef] [PubMed]
Variant | Composting Days | |||||||
---|---|---|---|---|---|---|---|---|
1 | St. Dev. | 32 | St. Dev. | 71 | St. Dev. | 167 | St. Dev. | |
pH | ||||||||
A | 4.16 a | 0.07 | 3.64 a | 0.12 | 4.41 a | 0.13 | 4.47 a | 0.13 |
B | 5.12 b | 0.09 | 5.14 a | 0.08 | 5.26 b | 0.16 | 5.68 b | 0.17 |
C | 4.46 c | 0.16 | 5.65 ab | 0.17 | 5.38 b | 0.16 | 5.01 c | 0.15 |
TOC g kg−1 | ||||||||
A | 478.9 a | 14.37 | 469.6 a | 14.09 | 455.6 a | 13.67 | 458.4 a | 13.75 |
B | 431.4 b | 12.94 | 409.1 ab | 12.27 | 425.4 b | 11.25 | 374.9 b | 11.25 |
C | 404.1c | 12.12 | 403.3 b | 12.10 | 399.1 b | 11.24 | 374.8 c | 11.24 |
TN g kg−1 | ||||||||
A | 4.30 a | 0.12 | 4.54 a | 0.14 | 5.59 a | 0.17 | 6.71 a | 0.20 |
B | 6.90 b | 0.20 | 8.343 b | 0.24 | 9.57 b | 0.28 | 13.39 b | 0.39 |
C | 9.78 c | 0.29 | 27.70 c | 0.81 | 36.66 c | 1.10 | 50.06 c | 1.46 |
TP g kg−1 | ||||||||
A | 1.36 a | 0.05 | 1.26 a | 0.04 | 1.33 a | 0.05 | 1.39 a | 0.05 |
B | 1.12 b | 0.04 | 1.12 b | 0.04 | 1.55 b | 0.05 | 1.77 b | 0.06 |
C | 0.92 c | 0.04 | 1.60 c | 0.06 | 1.36 a | 0.05 | 1.03 c | 0.04 |
Variant | Composting Days | |||
---|---|---|---|---|
1 | 32 | 71 | 167 | |
A | 10 | 9 | 10 | 12 |
B | 14 | 15 | 15 | 13 |
C | 0 | 9 | 12 | 14 |
Control | 8 |
Variant | Composting Days | |||
---|---|---|---|---|
1 | 32 | 71 | 167 | |
A | 1.22 | 1.83 | 1.13 | 1.35 |
B | 0.86 | 1.98 | 2.09 | 2.15 |
C | 4.78 | 1.97 | 10.37 | 5.55 |
Control | 2.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekier, J.; Jamroz, E.; Sowiński, J.; Adamczewska-Sowińska, K.; Kałuża-Haładyn, A. Effect of Differently Matured Composts from Willow on Growth and Development of Lettuce. Agronomy 2022, 12, 175. https://doi.org/10.3390/agronomy12010175
Bekier J, Jamroz E, Sowiński J, Adamczewska-Sowińska K, Kałuża-Haładyn A. Effect of Differently Matured Composts from Willow on Growth and Development of Lettuce. Agronomy. 2022; 12(1):175. https://doi.org/10.3390/agronomy12010175
Chicago/Turabian StyleBekier, Jakub, Elżbieta Jamroz, Józef Sowiński, Katarzyna Adamczewska-Sowińska, and Andrea Kałuża-Haładyn. 2022. "Effect of Differently Matured Composts from Willow on Growth and Development of Lettuce" Agronomy 12, no. 1: 175. https://doi.org/10.3390/agronomy12010175
APA StyleBekier, J., Jamroz, E., Sowiński, J., Adamczewska-Sowińska, K., & Kałuża-Haładyn, A. (2022). Effect of Differently Matured Composts from Willow on Growth and Development of Lettuce. Agronomy, 12(1), 175. https://doi.org/10.3390/agronomy12010175