Estimating Nutrient Uptake Requirements for Melon Based on the QUEFTS Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Development of the QUEFTS Model
2.3. Field Validation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Fleshy Fruit Yield and Nutrient Uptake
3.2. Internal Efficiency and Reciprocal Internal Efficiency
3.3. Determining the Parameters to Adapt the QUEFTS Model
3.4. Estimation of the Optimal Nutrient Uptake
3.5. Field Validation of the QUEFTS Model
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. Database: Production. Available online: http://faostat3.fao.org/browse/Q/QC/E (accessed on 31 May 2020).
- China Agriculture Statistical Report; China Agriculture Press: Beijing, China, 2017. (In Chinese)
- Castellanos, M.T.; Cartagena, M.C.; Ribas, F.; Cabello, M.J.; Arce, A.; Tarquis, A.M. Impact of nitrogen uptake on field water balance in fertirrigated melon. Agric. Water Manag. 2013, 120, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Rolbiecki, R.; Rolbiecki, S.; Figas, A.; Jagosz, B.; Wichrowska, D.; Ptach, W.; Prus, P.; Sadan, H.; Ferenc, P.F.; Stachowski, P.; et al. Effect of Drip Fertigation with Nitrogen on Yield and Nutritive Value of Melon Cultivated on a Very Light Soil. Agronomy 2021, 11, 934. [Google Scholar] [CrossRef]
- Wen, M.J.; Yang, S.C.; Wang, C.B.; Huo, L.; Jiang, W.L. Effect of Fertilizer recommendation based on Nutrient Expert system on yield and quality of melon and soil nitrogen leaching. Plant Nutr. Fertil. 2021, 26, 2223–2233. [Google Scholar]
- Ehigiator, J.O.; Iremiren, G.O.; Falodun, E.J. Effect of NPK Fertilizer and Cropping Ratios on Nutrient Uptake and Quality Components of Maize (Zea mays) and Egusi Melon (Colocynthis citrullus). Plant Soil Sci. 2016, 9, 1–13. [Google Scholar] [CrossRef]
- Cui, Z.L.; Zhang, F.S.; Chen, X.P.; Miao, Y.X.; Li, J.L.; Shi, L.W.; Xu, J.F.; Ye, Y.L.; Liu, C.S.; Yang, Z.P.; et al. On-farm estimation of indigenous nitrogen supply for site-specific nitrogen management in the North China plain. Nutr. Cycl. Agroecosystems 2007, 81, 37–47. [Google Scholar] [CrossRef]
- Xue, L.; Ma, Z.M.; Du, S.P.; Fen, S.J.; Ran, S.B. Effects of Application of Nitrogen on Melon Yield, Nitrogen Balance and Soil Nitrogen Accumulation Under Plastic Mulching with Drip Irrigation. Sci. Agric. Sin. 2019, 52, 690–700. [Google Scholar]
- Huang, S.Y.; Miao, Y.X.; Yuan, F.; Gao, Q.; Ye, H.C.; Victoria, I.S.; Bareth, G. In-Season Diagnosis of Rice Nitrogen Status Using Proximal Fluorescence Canopy Sensor at Different Growth Stages. Remote Sens. 2019, 11, 1847. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.P.; He, P.; Pampolino, M.F.; Chuan, L.M.; Johnston, A.M.; Qiu, S.J.; Zhao, S.C.; Zhou, W. Nutrient requirements for maize in China based on QUEFTS analysis. Field Crop. Res. 2013, 150, 115–125. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, P.; Gao, Q.; Chen, X.P.; Zhang, F.S.; Cui, Z.L. On-Farm Estimation of Nutrient Requirements for Spring Corn in North China. Agron. J. 2012, 104, 1436–1442. [Google Scholar] [CrossRef]
- Divina, G.P.; Rodrigue, Z. An Assessment of the Site-Specific Nutrient Management (SSNM) Strategy for Irrigated Rice in Asia. Agriculture 2020, 10, 559. [Google Scholar]
- Chuan, L.M.; He, P.; Pampolino, M.F.; Johnston, A.M.; Jin, J.Y.; Xu, X.P.; Zhao, S.; Qiu, S.J.; Zhou, W. Establishing a scientific basis for fertilizer recommendations for wheat in China: Yield response and agronomic efficiency. Field Crop. Res. 2013, 140, 1–8. [Google Scholar] [CrossRef]
- Janssen, B.H.; Guiking, F.C.; Eijk, D.; Smaling, E.M.; Wolf, J.; Reuler, H. A system for quantitative evaluation of the fertility of tropical soils (QUEFTS). Geoderma 1990, 46, 299–318. [Google Scholar] [CrossRef] [Green Version]
- Buresh, R.J.; Pampolino, M.F.; Witt, C. Field-specific potassium and phosphorus balances and fertilizer requirements for irrigated rice-based cropping systems. Plant Soil 2010, 335, 35–64. [Google Scholar] [CrossRef]
- Witt, C.D.; Dobermann, A.; Abdulrachman, S.; Gines, H.C.; Hu, W.G.; Nagarajan, R.; Satawatananont, S.; Son, T.T.; Tan, P.S.; Van Tiem, L.; et al. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia. Field Crop. Res. 1999, 63, 113–138. [Google Scholar] [CrossRef]
- Dobermann, A.; Cassman, K.G. Plant nutrient management for enhanced productivity in intensive grain production systems of the United States and Asia. Plant Soil 2002, 247, 153–175. [Google Scholar] [CrossRef]
- Zhang, J.J.; He, P.; Xu, X.P.; Ding, W.C.; Ullah, S.; Wang, Y.L.; Jia, L.L.; Cui, R.Z.; Wang, H.T.; Zhou, W. Nutrient Expert Improves Nitrogen Efficiency and Environmental Benefits for Winter Wheat in China. Agron. J. 2018, 110, 696–706. [Google Scholar] [CrossRef]
- Yang, F.Q.; Xu, X.P.; Wang, W.; Ma, J.C.; Wei, D.; He, P.; Pampolino, M.F.; Johnston, A.M. Estimating nutrient uptake requirements for soybean using QUEFTS model in China. PLoS ONE 2017, 12, e0177509. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, W.; Hu, F.; Fan, Z.; Fan, H.; Zhao, C.; Yu, A.; Chai, Q.; Coulter, J.A. Reduced irrigation and nitrogen coupled with no-tillage and plastic mulching increase wheat yield in maize-wheat rotation in an arid region. Field Crop. Res. 2019, 243, 107615. [Google Scholar] [CrossRef]
- Shehu, B.M.; Lawan, B.A.; Jibrin, J.M.; Kamara, A.Y.; Mohammed, I.B.; Rurinda, J.; Zingore, S.; Craufurd, P.; Vanlauwe, B.; Adam, A.M.; et al. Balanced nutrient requirements for maize in the Northern Nigerian Savanna: Parameterization and validation of QUEFTS model. Field Crop. Res. 2019, 241, 107585. [Google Scholar] [CrossRef]
- Maiti, D.; Das, D.K.; Pathak, H.S. Simulation of fertilizer requirement for irrigated wheat in eastern India using the QUEFTS model. Arch. Agron. Soil Sci. 2006, 52, 403–418. [Google Scholar] [CrossRef]
- Tang, S.; Liu, Y.L.; Zheng, N.; Li, Y.; Ma, Q.X.; Xiao, H.; Zhou, X.; Xu, X.P.; Jiang, T.M.; He, P.; et al. Temporal variation in nutrient requirements of tea (Camellia sinensis) in China based on QUEFTS analysis. Sci. Rep. 2020, 10, 1745. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.P.; Liu, X.Y.; He, P.; Johnston, A.M.; Zhao, S.C.; Qiu, S.J.; Zhou, W. Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China. PLoS ONE 2015, 10, e0140767. [Google Scholar] [CrossRef]
- Xu, Y.X.; He, P.; Xu, X.P.; Qiu, S.J.; Sami, U.; Gao, Q.; Zhou, W. Estimating Nutrient Uptake Requirements for Potatoes Based on QUEFTS Analysis in China. Agron. J. 2019, 111, 2387–2394. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.J.; He, P.; Ding, W.C.; Xu, X.P.; Ullah, S.; Abbas, T.; Ai, C.; Li, M.Y.; Cui, R.Z.; Jin, C.W.; et al. Estimating nutrient uptake requirements for radish in China based on QUEFTS model. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Lan, Y.; Zhou, Z.; Ouyang, F.; Wang, G.; Huang, X.; Deng, X.; Cheng, S. Estimation of Watermelon Nutrient Requirements Based on the QUEFTS Model. Agronomy 2020, 10, 1776. [Google Scholar] [CrossRef]
- Smaling, E.M.A.; Janssen, B.H. Calibration of quefts, a model predicting nutrient uptake and yields from chemical soil fertility indices. Geoderma 1993, 59, 21–44. [Google Scholar] [CrossRef]
- Liu, X.Y.; He, P.; Jin, J.Y.; Zhou, W.; Sulewski, G.; Phillips, S. Yield Gaps, Indigenous Nutrient Supply, and Nutrient Use Efficiency of Wheat in China. Agron. J. 2011, 103, 1452–1463. [Google Scholar] [CrossRef] [Green Version]
- Chuan, L.M.; He, P.; Jin, J.Y.; Li, S.T.; Grant, C.; Xu, X.P.; Qiu, S.J.; Zhao, S.C.; Zhou, W. Estimating nutrient uptake requirements for wheat in China. Field Crop. Res. 2013, 146, 96–104. [Google Scholar] [CrossRef]
- Liu, M.Q.; Yu, Z.; Liu, Y.H.; Konijn, N.T. Fertilizer requirements for wheat and maize in China: The QUEFTS approach. Nutr. Cycl. Agroecosystems 2006, 74, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Pampolino, M.F.; Witt, C.; Pasuquin, J.M.; Johnston, A.; Fisher, M.J. Development approach and evaluation of the Nutrient Expert software for nutrient management in cereal crops. Comput. Electron. Agric. 2012, 88, 103–110. [Google Scholar] [CrossRef]
- He, P.; Jin, J.Y.; Mirasol, F.P.; Adrian, M.J. Approach and decision support system based on crop yield response and agronomic efficiency. Plant Nutr. Fertil. Sci. 2012, 18, 499–505. [Google Scholar]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Martuscelli, M.; Di Mattia, C.; Stagnari, F.; Speca, S.; Pisante, M.; Mastrocola, D. Influence of phosphorus management on melon (Cucumis melo L.) fruit quality. J. Sci. Food Agric. 2016, 96, 2715–2722. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Talukder, M.; Tanaka, H.; Ueno, M.; Kawaguchi, M.; Yano, S.; Ban, T.; Asao, T. Production of Low-Potassium Content Melon Through Hydroponic Nutrient Management Using Perlite Substrate. Front. Plant Sci. 2018, 9, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Saghaiesh, S.P.; Souri, M.K.; Moghaddam, M. Effects of different magnesium levels on some morphophysiological characteristics and nutrient elements uptake in Khatouni melons (Cucumis melo var. inodorus). J. Plant Nutr. 2018, 42, 27–39. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.L.; Li, Y.X.; Zhu, L.; Liu, S.R.; Yan, L.; Feng, G.Z.; Gao, Q. Agronomic and environmental benefits of nutrient expert on maize and rice in Northeast China. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Hu, G.Z.; Feng, J.X.; Zhang, Y.; Wu, H.B.; Xiong, T.; Li, Q.J. Effects of nitrogen fertilization on nutrient uptake, assignment, utilization and yield of melon. Plant Nutr. Fertil. 2013, 19, 760–766. [Google Scholar]
- Tittonell, P.; Vanlauwe, B.; Corbeels, M.; Giller, K.E. Yield gaps, nutrient use efficiencies and response to fertilisers by maize across heterogeneous smallholder farms of western Kenya. Plant Soil 2008, 313, 19–37. [Google Scholar] [CrossRef] [Green Version]
- Kang, L.Y.; Chang, G.Z.; Gao, N.; Li, X.; Li, H.L.; Liang, S.; Xu, X.L.; Zhao, W.X. Effects of Different Nitrogen and Potassium Fertilizing Amount on Nutrition Absorption, Nutrition Distribution and Yield of Muskmelon. J. Fruit Sci. 2018, 35, 997–1005. [Google Scholar]
- Hay, B.K.M. Harvest index: A review of its use in plant breeding and crop physiology. Assoc. Appl. Biol. 1995, 126, 197–216. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Yang, X.F.; Zuo, E.Q.; Jiang, Y.P.; Chen, C.H. Construction of Mathematic Model on Balanced Fertilization of N, P and K for Melon. Chin. Agric. Sci. Bull. 2014, 30, 102–107. [Google Scholar]
- Kumar, P.; Byju, G.; Singh, B.P.; Minhas, J.S.; Dua, V.K. Application of QUEFTS Model for Site-Specific Nutrient Management of NPK in Sweet Potato (Ipomoea batatas L. Lam). Commun. Soil Sci. Plant Anal. 2016, 47, 1599–1611. [Google Scholar] [CrossRef]
- Setiyono, T.D.; Walters, D.T.; Cassman, K.G.; Witt, C.; Dobermann, A. Estimating maize nutrient uptake requirements. Field Crop. Res. 2010, 118, 158–168. [Google Scholar] [CrossRef]
Province | Cases (n) | Longitude (°E) | Latitude (°N) | pH | Organic Matter (%) | Alkali-Hydrolysable N (mg/kg) | Olsen P (mg/kg) | NH4OAc-K (mg/kg) |
---|---|---|---|---|---|---|---|---|
Shandong | 24 | 112.59–117.77 | 34.65–40.16 | 7.5–8.0 | 1.8–2.0 | 74.3–98.8 | 18.7–27.2 | 76.1–211.2 |
Jiangsu | 14 | 117.24–120.89 | 31.22–34.55 | 7.6–8.1 | 2.0–3.3 | 53.6–186.8 | 12.4–21.3 | 76.8–98.5 |
Shanghai | 40 | 121.46–122.16 | 31.11–31.23 | 6.3–8.0 | 1.6–2.7 | 80.2–198.0 | 38.5–96.7 | 89.6–110.5 |
Guangdong | 10 | 116.23–116.54 | 23.78–23.89 | 4.6–6.3 | 1.9–5.1 | 78.5–110.6 | 10.4–66.3 | 71.3–150.3 |
Hainan | 6 | 109.36 | 19.20 | 6.63 | 2.0 | 98.8 | 27.2 | 211.0 |
Hubei | 24 | 109.24–114.22 | 30.29–32.65 | 5.6–7.6 | 1.5–4.2 | 68.5–152.2 | 15.6–39.8 | 85.2–123.0 |
Henan | 2 | 115.63 | 33.56 | 7.81 | 1.7 | 19.2 | 10.9 | 139.6 |
Hebei | 6 | 115.26 | 36.13 | 7.4 | 1.16 | 32.0 | 45.0 | 50.0 |
Inner Mongolia | 70 | 107.50–107.52 | 41.12–41.35 | 8.2–8.5 | 0.8–1.2 | 61.0–97.4 | 14.5–24.3 | 134.0–198.0 |
Tianjin | 119 | 112.59–115.93 | 34.48–41.60 | 7.8–8.1 | 2.3–4.2 | 110.3–150.3 | 35.3–63.5 | 105.3–186.0 |
Ningxia | 68 | 105.15–105.18 | 36.15–36.20 | 8.2–8.7 | 0.6–1.1 | 24.0–119.6 | 16.3–116.5 | 19.7–252.3 |
Xinjiang | 94 | 76.45–76.49 | 39.12–39.14 | 8.1–8.5 | 1.1–2.6 | 12.3–56.2 | 8.4–22.2 | 120.1–208.3 |
Shanxi | 51 | 108.25–108.30 | 34.20–35.25 | 7.5–8.2 | 9.3–15.4 | 68.7–96.4 | 10.9–41.9 | 130.2–177.5 |
Gansu | 463 | 103.02–104.55 | 36.53–40.29 | 8.1–8.9 | 9.5–16.7 | 86.3–100.1 | 8.23–74.4 | 106.9–216.7 |
Province | Cases (n) | Fertilizer Application Rate (kg/ha) | ||
---|---|---|---|---|
N | P2O5 | K2O | ||
Inner Mongolia | 10 | 300 | 106 | 191 |
Gansu | 19 | 225–309 | 88–93 | 83–200 |
Xinjiang | 6 | 317 | 119 | 214 |
Ningxia | 4 | 225 | 93 | 88 |
Parameter | Unit | N 1 | Mean | SD 2 | Minimum | 25% Q 3 | Median | 75% Q | Maximun |
---|---|---|---|---|---|---|---|---|---|
fresh melon fruit yield | t/ha | 1123 | 36.2 | 12.3 | 3.7 | 27.9 | 38.7 | 42.7 | 83.3 |
stem and leaf yield | kg/ha | 919 | 3121.8 | 1418.3 | 744.1 | 2115.5 | 3025.9 | 3634.6 | 10,842.5 |
seed and melon yield | kg/ha | 900 | 3651.6 | 979.0 | 551.1 | 2991.4 | 3692.7 | 4259.7 | 7427.7 |
N in fruit | kg/ha | 564 | 63.8 | 22.3 | 10.0 | 47.4 | 65.1 | 75.3 | 180.9 |
P in fruit | kg/ha | 555 | 9.51 | 3.6 | 2.1 | 7.5 | 9.3 | 11.0 | 35.9 |
K in fruit | kg/ha | 551 | 66.7 | 25.8 | 25.4 | 53.2 | 60.7 | 70.8 | 280.8 |
N in stem and leaf | kg/ha | 547 | 47.3 | 20.3 | 14.7 | 47.4 | 65.1 | 75.3 | 158.8 |
P in stem and leaf | kg/ha | 551 | 5.3 | 3.3 | 1.3 | 3.6 | 4.5 | 5.8 | 36.3 |
K in stem and leaf | kg/ha | 547 | 49.6 | 27.3 | 7.6 | 32.7 | 40.9 | 63.0 | 192.1 |
Nc in fruit | g/kg | 720 | 50.5 | 9.9 | 23.7 | 44.4 | 50.8 | 56.1 | 89.6 |
Pc in fruit | g/kg | 719 | 5.7 | 2.4 | 4.5 | 1.7 | 5.0 | 6.2 | 16.9 |
Kc in fruit | g/kg | 719 | 51.5 | 33.5 | 13.8 | 33.6 | 39.4 | 61.9 | 244.1 |
Nc in stem and leaf | g/kg | 741 | 49.3 | 10.4 | 23.2 | 42.7 | 51.9 | 55.1 | 92.5 |
Pc in stem and leaf | g/kg | 714 | 9.7 | 3.1 | 3.3 | 8.1 | 10.0 | 10.9 | 30.71 |
Kc in stem and leaf | g/kg | 714 | 25.8 | 12.4 | 14.7 | 19.4 | 22.5 | 28.5 | 144.7 |
N in total DM 4 | kg/ha | 623 | 117.9 | 44.4 | 42.2 | 93.7 | 111.3 | 127.5 | 174.2 |
P in total DM | kg/ha | 573 | 14.7 | 4.3 | 5.6 | 14.4 | 16.5 | 19.1 | 33.3 |
K in total DM | kg/ha | 572 | 120.9 | 53.1 | 38.6 | 86.7 | 104.0 | 145.8 | 391.3 |
N Harvest index | g/kg | 557 | 0.58 | 0.12 | 0.19 | 0.56 | 0.62 | 0.65 | 0.85 |
P Harvest index | g/kg | 547 | 0.65 | 0.11 | 0.31 | 0.63 | 0.69 | 0.72 | 0.87 |
K Harvest index | g/kg | 547 | 0.59 | 0.09 | 0.23 | 0.57 | 0.60 | 0.63 | 0.88 |
Harvest index (HI) | g/kg | 704 | 0.62 | 0.08 | 0.32 | 0.53 | 0.66 | 0.68 | 0.84 |
Parameter | Unit | N 1 | Mean | SD | Minimum | 25% Q 2 | Median | 75% Q | Maximun |
---|---|---|---|---|---|---|---|---|---|
IE-N | kg/kg | 759 | 359.0 | 73.3 | 133.0 | 322.1 | 364.7 | 401.6 | 632.7 |
IE-P | kg/kg | 719 | 2725.4 | 722.1 | 349.0 | 2350.1 | 2690.9 | 3098.8 | 6154.6 |
IE-K | kg/kg | 718 | 353.8 | 99.3 | 108.2 | 288.6 | 377.2 | 424.4 | 739.6 |
RIE-N | kg/t | 760 | 2.9 | 0.8 | 1.4 | 2.5 | 2.7 | 3.1 | 7.5 |
RIE-P | kg/t | 720 | 0.4 | 0.12 | 0.2 | 0.3 | 0.4 | 0.4 | 1.3 |
RIE-K | kg /t | 719 | 3.1 | 1.2 | 1.4 | 2.4 | 2.7 | 3.4 | 9.2 |
Nutrients | Set Ⅰ | Set Ⅱ | Set Ⅲ | |||
---|---|---|---|---|---|---|
a (2.5th) | d (97.5th) | a (5th) | d (95th) | a (7.5th) | d (92.5th) | |
N | 201 | 510 | 234 | 465 | 249 | 448 |
P | 1404 | 4183 | 1486 | 3937 | 1644 | 3746 |
K | 163 | 511 | 175 | 488 | 189 | 475 |
Melon Yield (t/ha) | Nutrient Uptake of Above-Ground (kg/ha) | Internal Efficiency (kg/kg) | Nutrient Uptake of Fruit (kg/ha) | Ration in Flesh Fruit (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | N | P | K | N | P | K | N | P | K | |
4 | 11.6 | 1.53 | 12.9 | 345.3 | 2612.6 | 310.1 | 5.4 | 0.9 | 7.5 | 47.0 | 59.5 | 58.2 |
8 | 23.2 | 3.06 | 25.8 | 345.37 | 2612.6 | 310.1 | 10.9 | 1.8 | 15.0 | 47.0 | 59.5 | 58.2 |
12 | 34.8 | 4.59 | 38.7 | 345.3 | 2612.6 | 310.1 | 16.3 | 2.7 | 22.5 | 47.0 | 59.5 | 58.2 |
16 | 46.3 | 6.1 | 51.6 | 345.3 | 2612.6 | 310.1 | 21.8 | 3.6 | 30.0 | 47.0 | 59.5 | 58.2 |
20 | 57.9 | 7.7 | 64.5 | 345.3 | 2612.6 | 310.1 | 27.2 | 4.6 | 37.5 | 47.0 | 59.5 | 58.2 |
24 | 69.5 | 9.2 | 77.4 | 345.3 | 2612.6 | 310.1 | 32.6 | 5.5 | 45.0 | 47.0 | 59.5 | 58.2 |
28 | 81.1 | 10.7 | 90.3 | 345.3 | 2612.6 | 310.1 | 38.1 | 6.4 | 52.5 | 47.0 | 59.5 | 58.2 |
32 | 92.7 | 12.2 | 103.2 | 345.3 | 2612.6 | 310.1 | 43.5 | 7.3 | 60.0 | 47.0 | 59.5 | 58.2 |
36 | 104.2 | 13.8 | 116.1 | 345.3 | 2612.6 | 310.1 | 49.1 | 8.2 | 67.8 | 47.1 | 59.7 | 58.4 |
40 | 116.6 | 15.4 | 129.8 | 343.1 | 2595.7 | 308.1 | 56.2 | 9.4 | 77.5 | 48.2 | 61.1 | 59.7 |
44 | 133.3 | 17.6 | 148.5 | 330.0 | 2496.4 | 296.3 | 64.6 | 10.8 | 89.1 | 48.4 | 61.4 | 60.0 |
48 | 152.9 | 20.2 | 170.3 | 313.9 | 2374.8 | 281.9 | 74.3 | 12.4 | 102.4 | 48.6 | 61.5 | 60.1 |
52 | 176.6 | 23.3 | 196.6 | 294.5 | 2227.6 | 264.4 | 86.0 | 14.4 | 118.7 | 48.7 | 61.7 | 60.4 |
56 | 208.7 | 27.6 | 232.4 | 268.3 | 2029.8 | 240.9 | 102.2 | 17.1 | 140.9 | 49.0 | 62.0 | 60.6 |
60 | 313.6 | 41.4 | 349.2 | 191.4 | 1447.6 | 171.8 | 153.5 | 25.7 | 211.7 | 48.9 | 62.0 | 60.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, M.; Yang, S.; Huo, L.; He, P.; Xu, X.; Wang, C.; Zhang, Y.; Zhou, W. Estimating Nutrient Uptake Requirements for Melon Based on the QUEFTS Model. Agronomy 2022, 12, 207. https://doi.org/10.3390/agronomy12010207
Wen M, Yang S, Huo L, He P, Xu X, Wang C, Zhang Y, Zhou W. Estimating Nutrient Uptake Requirements for Melon Based on the QUEFTS Model. Agronomy. 2022; 12(1):207. https://doi.org/10.3390/agronomy12010207
Chicago/Turabian StyleWen, Meijuan, Sicun Yang, Lin Huo, Ping He, Xinpeng Xu, Chengbao Wang, Yueqiang Zhang, and Wei Zhou. 2022. "Estimating Nutrient Uptake Requirements for Melon Based on the QUEFTS Model" Agronomy 12, no. 1: 207. https://doi.org/10.3390/agronomy12010207
APA StyleWen, M., Yang, S., Huo, L., He, P., Xu, X., Wang, C., Zhang, Y., & Zhou, W. (2022). Estimating Nutrient Uptake Requirements for Melon Based on the QUEFTS Model. Agronomy, 12(1), 207. https://doi.org/10.3390/agronomy12010207