Effect of Different Tillage Systems on Soil Organic Carbon and Enzymatic Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Determination of Soil Properties
2.3. Statistical Analysis
3. Results
3.1. Meteorological Conditions during the Study Years
3.2. Selected Properties of the Investigated Soil in the Different Types of Tillage Systems
3.3. Soil Organic Carbon (SOC), Total Nitrogen (Nt), and C:N Ratio in Soils from the Different Tillage Systems
3.4. Fractional Composition of Organic Matter
3.5. Soil Enzymatic Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kladivko, E.J. Tillage systems and soil ecology. Soil Till. Res. 2001, 61, 61–76. [Google Scholar] [CrossRef]
- Holland, J. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosyst. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- Bielińska, E.; Mocek-Płóciniak, A. Impact of the Tillage System on the Soil Enzymatic Activity. Arch. Environ. Prot. 2012, 38, 75–82. [Google Scholar] [CrossRef]
- Tomkowiak, A.; Starzyk, J.; Kosicka-Dziechciarek, D.; Karwatka, K. The influence of tillage systems on the microbiological conditions of soil. Nauka Przyr. Technol. 2017, 11, 355–364. (In Polish) [Google Scholar] [CrossRef]
- Morris, N.L.; Miller, P.C.H.; Orson, J.H.; Froud-Williams, R.J. The adoption of non-inversion till-age systems in the United Kingdom and the agronomic impact on soil, crops and the environment—A review. Soil Till. Res. 2010, 108, 1–15. [Google Scholar] [CrossRef]
- Verbruggen, E.; Röling, W.F.M.; Gamper, H.; Kowalchuk, G.A.; Verhoef, H.A.; van der Heijden, M.G.A. Positive effects of organic farming on below-ground mutualists: Large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol. 2010, 186, 968–979. [Google Scholar] [CrossRef]
- Smagacz, J. Directions of development of different systems of farming in a change climate. Stud. Raporty IUNG-PIB 2020, 62, 149–167. (In Polish) [Google Scholar] [CrossRef]
- Jaskulski, D.; Jaskulska, I. Contemporary Methods and Systems Soil Cultivation in Agricultural Theory and Practice; Centrum Doradztwa Rolniczego w Brinowie: Poznań, Poland, 2016. (In Polish)
- Drakopoulos, D.; Scholberg, J.M.S.; Lantinga, E.A.; Tittonell, P.A. Influence of reduced tillage and fertilization regime on crop performance and nitrogen utilization of organic potato. Org. Agric. 2016, 6, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Seitz, S.; Goebes, P.; Puerta, V.L.; Pereira, E.I.; Wittwer, R.; Six, J.; Van Der Heijden, M.G.; Scholten, T. Conservation tillage and organic farming reduce soil erosion. Agron. Sustain. Dev. 2018, 39, 4. [Google Scholar] [CrossRef] [Green Version]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Melero, S.; Panettieri, M.; Madejón, E.; Gómez Macpherson, H.; Moreno, F.; Murillo, J.M. Implementation of chiselling and mouldboard ploughing in soil after 8 years of no-till management in SW, Spain: Effect on soil quality. Soil Till. Res. 2011, 112, 107–113. [Google Scholar] [CrossRef]
- Dębska, B.; Długosz, J.; Piotrowska-Długosz, A.; Banach-Szott, M. The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration—results from a field-scale study. J. Soils Sediments 2016, 16, 2335–2343. [Google Scholar] [CrossRef] [Green Version]
- Audette, Y.; Congreves, K.A.; Schneider, K.; Zaro, G.C.; Nunes, A.L.P.; Zhang, H.; Voroney, R.P. The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review. Biol. Fertil. Soils 2021, 57, 881–894. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tu, C.; Cheng, L.; Li, C.; Gentry, L.F.; Hoyt, G.D.; Zhang, X.; Hu, S. Long-term impact of farming practices on soil organic carbon and nitrogen pools and microbial biomass and activity. Soil. Till. Res. 2011, 117, 8–16. [Google Scholar] [CrossRef]
- Maeder, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil Fertility and Biodiversity in Organic Farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, K.; Lal, R. Chapter Three—Environmental Impact of Organic Agriculture. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 139, pp. 99–152. [Google Scholar]
- Krauss, M.; Berner, A.; Perrochet, F.; Frei, R.; Niggli, U.; Mäder, P. enhanced soil quality with reduced tillage and solid manures in organic farming—A synthesis of 15 years. Sci. Rep. 2020, 10, 4403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osman, K.T. Soil Organic Matter. In Soils; Springer: Dordrech, The Netherlands, 2013; pp. 89–96. [Google Scholar] [CrossRef]
- Ghabbour, E.A.; Davies, G.; Misiewicz, T.; Alami, R.A.; Askounis, E.M.; Cuozzo, N.P.; Filice, A.J.; Haskell, J.M.; Moy, A.K.; Roach, A.C.; et al. National Comparison of the Total and Sequestered Organic Matter Contents of Conventional and Organic Farm Soils. Adv. Agron. 2017, 146, 1–35. [Google Scholar] [CrossRef]
- Hole, D.G.; Perkins, A.J.; Wilson, J.D.; Alexander, I.H.; Grice, P.V.; Evans, A.D. Does organic farming benefit biodiversity? Biol. Conserv. 2005, 122, 113–130. [Google Scholar] [CrossRef]
- Šimon, T.; Javurek, M.; Mikanová, O.; Vach, M. The influence of tillage systems on soil organic matter and soil hydrophobicity. Soil Till. Res. 2009, 105, 44–48. [Google Scholar] [CrossRef]
- Haynes, R.J. Labile Organic Matter Fractions as Central Components of the Quality of Agricultural Soils: An Overview. Adv. Agron. 2005, 85, 221–268. [Google Scholar]
- Dębska, B.; Drąg, M.; Tobiasova, E. Effect of post-harvest residue of maize, rapeseed, and sunflower on humic acids properties in various soils. Pol. J. Environ. Stud. 2012, 21, 603–613. [Google Scholar]
- Błońska, E.; Lasota, J.; Zwydak, M. The relationship between soil properties, enzyme activity and land use. For. Res. Pap. 2017, 78, 39–44. [Google Scholar] [CrossRef] [Green Version]
- COM 231 Final, Brussels, 22.9.2006. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions Thematic Strategy for Soil Protection. Commission of the European Communities. 2006. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52006DC0231&from=EN (accessed on 25 August 2020).
- Smith, P. Carbon sequestration in croplands: The potential in Europe and the global context. Eur. J. Agron. 2004, 20, 229–236. [Google Scholar] [CrossRef]
- Huisz, A.; Sleutel, S.; Toth, T.; Hofman, G.; Neve, S.; Németh, T. Effect of cultivation systems on the distribution of soil organic matter in different fractions. Cereal Res. Commun. 2006, 34, 207–210. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Isberg, P.-E. How does tillage intensity affect soil organic carbon? A systematic review. Environ. Évid. 2017, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Kononowa, M. Substancje Organiczne Gleby, ich Budowa, Właściwości i Metody Badań [Organic Substances in Soil, They Structure, Characteristics and Analyzing Methods]; Powszechne Wydawnictwo Rolnicze i Leśne (PWRiL): Warsaw, Poland, 1968. (In Polish) [Google Scholar]
- Piotrowska, A.; Długosz, J.; Zamorski, R.; Bogdanowicz, P. Changes in some biological and chemical properties of an arable soil treated with the microbial biofertilizer UGmax. Pol. J. Environ. Stud. 2012, 21, 455–463. [Google Scholar]
- Januszek, K.; Błońska, E.; Długa, J.; Socha, J. Dehydrogenaze activity of forest soils depend on the assay used. Int. Agrophisics 2015, 29, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis: Part 3 Chemical Methods; SSSA: Madison, WI, USA, 1996; Volume 5, pp. 961–1010. [Google Scholar]
- Dziadowiec, H.; Gonet, S.S. Methodological guide for soil organic matter survey. In Works of Scientific Commissions of Polish Society of Soil Science; Polskie Towarzystwo Geopolityczne (PTG): Kraków, Poland, 1999; Volume 120, 65p. (In Polish) [Google Scholar]
- Alef, K.; Nannipieri, P. Enzyme activities. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Johnson, J.I.; Temple, K.L. Some variables affecting the measurements of catalase activity in soil. Soil Sci. Soc. Am. Proc. 1964, 28, 207–216. [Google Scholar] [CrossRef]
- Pikuła, D. Environmental aspects of managing the organic matter in agriculture. Econ. Reg. Stud. 2015, 8, 98–112. [Google Scholar]
- Du, Z.; Wang, Y.; Gu, R.; Yun, A.; Guo, L.; Han, X.; Li, Y. Changes in soil organic carbon concentration, chemical composition and aggregate stability as influenced by tillage systems in the semi-arid and semi-humid area of North China. Can. J. Soil Sci. 2017, 98, 91–102. [Google Scholar] [CrossRef]
- Kinsella, J. The effect of various tillage systems in soil compaction. In Farming for a Better Environment; A White Paper; Soil and Water Conservation Society: Ankeny, IA, USA, 1995; pp. 15–17. [Google Scholar]
- Lenart, S.; Perzanowska, A. Impact of no-tillage and conventional tillage on physical separated soil organic matter fraction content. Acta Agrophys. 2013, 20, 595–607. (In Polish) [Google Scholar]
- Liu, X.; Herbert, S.J.; Hashemi, A.M.; Zhang, X.; Ding, G. Effects of agricultural management on soil organic matter and carbon transformation—A review. Plant Soil Environ. 2006, 52, 532–543. [Google Scholar] [CrossRef] [Green Version]
- Dębska, B. Properties of Humic Substances of Soil Fertilized with Slurry. Ph.D. Thesis, UTA, Bydgoszcz, Poland, 2004. (In Polish). [Google Scholar]
- Błońska, E.; Lasota, J.; Piaszczyk, W.; Wiecheć, M.; Klamerus-Iwan, A. The effect of landslide on soil organic carbon stock and biochemical properties of soil. J. Soils Sediments 2017, 18, 2727–2737. [Google Scholar] [CrossRef]
- Dannehl, T.; Leithold, G.; Brock, C. The effect of C:N ratios on the fate of carbon from straw and green manure in soil. Eur. J. Soil Sci. 2017, 68, 988–998. [Google Scholar] [CrossRef]
- Bengtsson, G.; Bengtson, P.; Månsson, K.F. Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity. Soil Biol. Biochem. 2003, 35, 143–154. [Google Scholar] [CrossRef]
- Qi, J.-Y.; Zhang, X.-Z.; Li, S.S.; Virk, A.L.; Wang, X.; Kan, Z.-R.; Zhao, X.; Xiao, X.-P.; Zhang, H.-L. Effects of different tillage practices on the distribution of soil total nitrogen and carbon/nitrogen ratio at different soil depths in a double rice cropping system. Arch. Agron. Soil Sci. 2021, 67, 714–725. [Google Scholar] [CrossRef]
- Yuan, B.; Yue, D. Soil Microbial and Enzymatic Activities across a Chronosequence of Chinese Pine Plantation Development on the Loess Plateau of China. Pedosphere 2012, 22, 112. [Google Scholar] [CrossRef]
- Yang, L.; Li, T.; Li, F.; Lemcoff, J.H.; Cohen, S. Fertilization regulates soil enzymatic activity and fertility dynamics in a cucumber field. Sci. Hortic. 2008, 116, 21–26. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Waldrip, H.M. Soil Enzyme Activities as Affected by Manure Types, Application Rates, and Management Practices. In Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment; He, Z., Zhang, H., Eds.; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Beare, M.H.; McKim, U.F.; Skjemstad, J.O. Chemical and Biological Characteristics of Physically Uncomplexed Organic Matter. Soil Sci. Soc. Am. J. 2006, 70, 975–985. [Google Scholar] [CrossRef]
Tillage System | Year | Cultivated Plants | Types of Fertilisers | Soil Fertilisation per Year (kg ha−1) | Cultivation Treatments and Tillage Depth (cm) | ||
---|---|---|---|---|---|---|---|
N | P | K | |||||
C_Ts | 2016 | winter wheat | inorganic | 146–150 | 20–26 | 60–75 | Pre-sow ploughing (18–22 cm) Cultivating and sowing unit (10–15 cm) |
winter rapeseed | 150–190 | 26 | 80 | ||||
soybean | 15 | 22 | 63 | ||||
winter barley | 130 | 26 | 75 | ||||
2017 | maize | inorganic | 165 | 30 | 150 | Disc harrow (12–18 cm) Pre-winter ploughing (25 cm) Cultivating and sowing unit (10–15 cm) | |
winter wheat | 138–155 | 26 | 75 | Pre-sow ploughing (18–22 cm) Cultivating and sowing unit (10–15 cm) | |||
winter rapeseed | 160–220 | 31 | 87 | ||||
2018 | maize | inorganic | 155 | 22 | 212 | Disc harrow (12–18 cm) Pre-winter ploughing (25–30 cm) Cultivating and sowing unit (10–15 cm) | |
winter wheat | 115–190 | 22–31 | 63–87 | Pre-sow ploughing (18–22 cm) Cultivating and sowing unit (10–15 cm) | |||
winter rapeseed | 155 | 31 | 58 | Pre-sow ploughing (18–22 cm) Cultivating and sowing unit (10–15 cm) | |||
S_Ts | 2016 | winter wheat | inorganic | 200 | 31 | 60 | |
winter rapeseed | 195 | 31 | 60 | ||||
sugar beets | 125–194 | 31 | 60 | Disc harrow (12–18 cm) Cultivating and sowing unit (10–15 cm) | |||
2017 | maize | inorganic | 162 | 31 | 60 | ||
winter wheat | 210 | 31 | 60 | ||||
winter rapeseed | 200 | 42 | 80 | ||||
2018 | winter wheat | inorganic | 168–246 | 31 | 75 | ||
winter rapeseed | 210 | 31 | 87 | ||||
O_Fs | 2016 | potatoes | organic | 94 | 25 | 95 | Pre-winter ploughing (25–30 cm) Cultivation unit (10–15 cm) |
winter wheat | 94–118 | 24–31 | 108–135 | ||||
winter rapeseed | 160 | 44 | 166 | Pre-sow ploughing (18–22 cm) Cultivating and sowing unit (10–15 cm) | |||
2017 | winter wheat | organic | 118 | 31 | 135 | ||
winter rapeseed | 160 | 44 | 166 | ||||
2018 | potatoes | organic | 71–118 | 18–31 | 81–135 | Disc harrow (12–18 cm) Pre-winter ploughing (25–30 cm) Cultivation unit (10–15 cm) | |
winter wheat | 141 | 37 | 162 | Pre-sow ploughing (18–22 cm) Cultivating and sowing unit (10–15 cm) |
Object | Granulometric Composition of Soil (%) | pHH2O | EC (µS) | |||
---|---|---|---|---|---|---|
Sand (2.0–0.05 mm) | Silt (0.05–0.002 mm) | Clay (<0.002 mm) | Granulometric Fraction (USDA) | |||
1 C_Ts | 1 | 87 | 12 | Si | 7.58 bc ± 0.03 | 282 b–d ± 34 |
2 C_Ts | 1 | 89 | 10 | Si | 7.20 a–c ± 0.56 | 174 ab ± 62 |
3 C_Ts | 1 | 91 | 8 | Si | 7.58 bc ± 0.09 | 354 d ± 40 |
4 C_Ts | 1 | 90 | 9 | Si | 7.7 c ± 0.08 | 248 a–d ± 37 |
5 C_Ts | 31 | 63 | 6 | SiL | 7.02 a–c ± 0.74 | 256 a–d ± 67 |
6 C_Ts | 2 | 81 | 17 | Si | 7.24 a–c ± 0.58 | 233 a–d ± 63 |
Mean ± SE C_Ts | 6.2 | 83.5 | 10.3 | - | 7.39 a ± 0.11 | 257.8 a ± 16.8 |
1 S_Ts | 2 | 81 | 17 | SiL | 6.79 a–c ± 0.45 | 210 a–c ± 33 |
2 S_Ts | 1 | 83 | 16 | SiL | 6.89 ab ± 0.30 | 260 ab ± 46 |
3 S_Ts | 1 | 82 | 17 | SiL | 6.71 ab ± 0.22 | 327 ab ± 59 |
4 S_Ts | 1 | 80 | 19 | SiL | 6.53 a ± 0.09 | 169 ab ± 42 |
5 S_Ts | 4 | 83 | 13 | SiL | 6.49 a–c ± 0.61 | 179 a–d ± 23 |
6 S_Ts | 27 | 66 | 7 | SiL | 6.26 ab ± 0.35 | 167 a ± 29 |
Mean ± SE S_Ts | 6.0 | 79.2 | 14.8 | - | 6.56 c ± 0.09 | 218.8 ab ± 16.2 |
1 O_Ts | 1 | 89 | 10 | Si | 6.86 a–c ± 0.08 | 254 d ± 72 |
2 O_Ts | 1 | 85 | 14 | Si | 6.58 a–c ± 0.27 | 143 ab ± 29 |
3 O_Ts | 1 | 86 | 13 | Si | 7.31 a–c ± 0.13 | 365 a ± 44 |
4 O_Ts | 1 | 89 | 10 | Si | 7.22 a–c ± 0.24 | 152 a ± 28 |
5 O_Ts | 2 | 84 | 14 | Si | 6.92 a–c ± 0.35 | 133 ± 16 |
6 O_Ts | 3 | 85 | 12 | Si | 7.00 a–c ± 0.09 | 126 ± 28 |
Mean ± SE O_Fs | 1.5 | 86.3 | 12.2 | - | 6.98 b ± 0.07 | 195.5 c ± 22.6 |
Tillage System | Parameters | Soil Organic Matter Fraction (g kg−1) | ||||
---|---|---|---|---|---|---|
Cext | CHAs | CFAs | CHAs/CFAs | CH | ||
C_Ts | Mean | 8.89 b | 4.16 ab | 4.88 b | 0.91 a | 11.04 b |
Min | 5.30 | 1.44 | 3.03 | 0.37 | 5.20 | |
Max | 14.13 | 8.66 | 9.71 | 2.08 | 19.00 | |
SE | 0.59 | 0.39 | 0.37 | 0.11 | 0.92 | |
S_Ts | Mean | 16.49 a | 5.41 a | 6.49 a | 0.91 a | 14.68 a |
Min | 7.37 | 2.93 | 3.62 | 0.37 | 5.00 | |
Max | 23.77 | 11.12 | 12.65 | 2.08 | 22.60 | |
SE | 0.83 | 0.48 | 0.52 | 0.11 | 0.89 | |
O_Fs | Mean | 5.82 c | 2.99 c | 2.83 c | 1.22 a | 6.20 c |
Min | 4.38 | 1.19 | 1.42 | 0.37 | 3.00 | |
Max | 8.32 | 4.37 | 4.93 | 2.51 | 11.10 | |
SE | 0.27 | 0.21 | 0.24 | 0.15 | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szostek, M.; Szpunar-Krok, E.; Pawlak, R.; Stanek-Tarkowska, J.; Ilek, A. Effect of Different Tillage Systems on Soil Organic Carbon and Enzymatic Activity. Agronomy 2022, 12, 208. https://doi.org/10.3390/agronomy12010208
Szostek M, Szpunar-Krok E, Pawlak R, Stanek-Tarkowska J, Ilek A. Effect of Different Tillage Systems on Soil Organic Carbon and Enzymatic Activity. Agronomy. 2022; 12(1):208. https://doi.org/10.3390/agronomy12010208
Chicago/Turabian StyleSzostek, Małgorzata, Ewa Szpunar-Krok, Renata Pawlak, Jadwiga Stanek-Tarkowska, and Anna Ilek. 2022. "Effect of Different Tillage Systems on Soil Organic Carbon and Enzymatic Activity" Agronomy 12, no. 1: 208. https://doi.org/10.3390/agronomy12010208
APA StyleSzostek, M., Szpunar-Krok, E., Pawlak, R., Stanek-Tarkowska, J., & Ilek, A. (2022). Effect of Different Tillage Systems on Soil Organic Carbon and Enzymatic Activity. Agronomy, 12(1), 208. https://doi.org/10.3390/agronomy12010208