Remediation of Agricultural Soils with Long-Term Contamination of Arsenic and Copper in Two Chilean Mediterranean Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Study Areas
2.2. Design of the Experiment
2.3. Soil and Vegetable Sampling at the End of the Experiment and Sample Preparation
2.4. Laboratory Analyses
2.5. Statistical Analysis
2.6. Contamination and Food Safety Assessment
3. Results
3.1. Characterization of Soils at the Beginning of the Experiment
3.2. Food Safety Assessment: As Concentration in Lettuces
3.3. Phytotoxicity Assessment: Yield and Cu Concentration in Lettuces
3.4. Soil Parameters after Amendments Application
4. Discussion
4.1. Comparison of the Studied Soils before the Application of Amendments
4.2. Effect of the Amendments on as Concentration in Lettuces and the Implications on Food Safety
4.3. Effect of the Amendments on Yield. Is There Phytotoxicity in Field Conditions?
4.4. Side-Effects of the Amendments Application
4.5. Towards a Holistic Remediation Approach
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez-Eugenio, N.; McLaughlin, M.; Pennock, D. Soil Pollution: A Hidden Reality; FAO: Rome, Italy, 2018; p. 142. [Google Scholar]
- Hite, A.H. Arsenic and rice: A call for regulation. Nutrition 2013, 29, 353–354. [Google Scholar] [CrossRef] [PubMed]
- Kumpiene, J.; Antelo, J.; Brännvall, E.; Carabante, I.; Ek, K.; Komárek, M.; Söderberg, C.; Wårell, L. In situ chemical stabilization of trace element-contaminated soil—Field demonstrations and barriers to transition from laboratory to the field—A review. J. Appl. Geochem. 2019, 100, 335–351. [Google Scholar] [CrossRef]
- Vargas, C.; Quiroz, W.; Bravo, M.; Neaman, A. Stability of arsenic during soil treatment and storage. J. Chil. Chem. Soc. 2015, 60, 3045–3048. [Google Scholar] [CrossRef] [Green Version]
- Comisión Chilena del Cobre (COCHILCO). Yearbook: Copper and other Mineral Statistics 2000–2019; COCHILCO: Santiago, Chile, 2020. [Google Scholar]
- Berasaluce, M.; Díaz-Siefer, P.; Rodríguez-Díaz, P.; Mena-Carrasco, M.; Ibarra, J.T.; Celis-Diez, J.L.; Mondaca, P. Social-Environmental Conflicts in Chile: Is There Any Potential for an Ecological Constitution? Sustainability 2021, 13, 12701. [Google Scholar] [CrossRef]
- Folchi, M. Las grandes fundiciones y la contaminación atmosférica: Chagres y Ventanas, 1959–2006. In Historia Ambiental de las Labores de Beneficio en la Minería del Cobre en Chile, Siglox XIX y XX; Folchi, M., Ed.; Barcelona: Catalonia, Spain, 2006. [Google Scholar]
- Aguilar, R.; Hormazábal, C.; Gaete, H.; Neaman, A. Spatial distribution of copper, organic matter and pH in agricultural soils affected by mining activities. J. Soil Sci. Plant Nutr. 2011, 11, 125–145. [Google Scholar]
- PGS. Muestreo de Suelos Para las Comunas de Quintero y Puchuncaví, Región de Valparaíso; PGS: Santiago, Chile, 2015. [Google Scholar]
- Aguilar, M.; Mondaca, P.; Ginocchio, R.; Vidal, K.; Sauve, S.; Neaman, A. Comparison of exposure to trace elements through vegetable consumption between a mining area and an agricultural area in central Chile. Environ. Sci. Pollut. Res. 2018, 25, 19114–19121. [Google Scholar] [CrossRef]
- Alekseev, I.; Neaman, A.; Lizardi, N.; Mondaca, P.; Aguilar, M. Assessment of potential health risk due to consumption of vegetables grown near a copper smelter in central Chile. Taurida Her. Agrar. Sci. 2018, 2, 9–14. [Google Scholar] [CrossRef]
- Lizardi, N.; Aguilar, M.; Bravo, M.; Fedorova, T.A.; Neaman, A. Human health risk assessment from the consumption of vegetables grown near a copper smelter in central Chile. J. Soil Sci. Plant Nutr. 2020, 20, 1472–1479. [Google Scholar] [CrossRef]
- Manjon, I.; Ramirez-Andreotta, M. A dietary assessment tool to estimate arsenic and cadmium exposures from locally grown foods. Environ. Geochem. Health 2020, 42, 2121–2135. [Google Scholar] [CrossRef]
- Küpper, H.; Andresen, E. Mechanisms of metal toxicity in plants. Metallomics 2016, 8, 269–285. [Google Scholar] [CrossRef] [PubMed]
- Mondaca, P.; Catrin, J.; Verdejo, J.; Sauvé, S.; Neaman, A. Advances on the determination of thresholds of Cu phytotoxicity in field-contaminated soils in central Chile. Environ. Pollut. 2017, 223, 146–152. [Google Scholar] [CrossRef]
- Adriano, D.C. (Ed.) Arsenic. In Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals, 2nd ed.; Springer: New York, NY, USA, 2001; pp. 219–261. [Google Scholar]
- Wang, J.; Zhao, F.J.; Meharg, A.A.; Raab, A.; Feldmann, J.; McGrath, S.P. Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol. 2002, 130, 1552–1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karczewska, A.; Lewinska, K.; Galka, B. Arsenic extractability and uptake by velvetgrass Holcus lanatus and ryegrass Lolium perenne in variously treated soils polluted by tailing spills. J. Hazard. Mater. 2013, 262, 1014–1021. [Google Scholar] [CrossRef]
- Moreno-Jiménez, E.; Esteban, E.; Penalosa, J.M. The fate of arsenic in soil-plant systems. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2012; Volume 215, pp. 1–37. [Google Scholar]
- Komárek, M.; Vaněk, A.; Ettler, V. Chemical stabilization of metals and arsenic in contaminated soils using oxides—A review. Environ. Pollut. 2013, 172, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Baragaño, D.; Gallego, J.L.R.; Baleriola, G.; Forján, R. Effects of different in situ remediation strategies for an As-polluted soil on human health risk, soil properties, and vegetation. Agronomy 2020, 10, 759. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.B.; Kwon, E.E.; Baek, K. Mitigating translocation of arsenic from rice field to soil pore solution by manipulating the redox conditions. Sci. Total Environ. 2021, 762, 143124. [Google Scholar] [CrossRef] [PubMed]
- Arco-Lazaro, E.; Agudo, I.; Clemente, R.; Bernal, M.P. Arsenic(V) adsorption-desorption in agricultural and mine soils: Effects of organic matter addition and phosphate competition. Environ. Pollut. 2016, 216, 71–79. [Google Scholar] [CrossRef]
- Mehmood, T.; Bibi, I.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Wang, H.; Ok, Y.S.; Sarkar, B.; Javed, M.T.; Murtaza, G. Effect of compost addition on arsenic uptake, morphological and physiological attributes of maize plants grown in contrasting soils. J. Geochem. Explor. 2017, 178, 83–91. [Google Scholar] [CrossRef]
- Wan, X.; Lei, M.; Chen, T. Review on remediation technologies for arsenic-contaminated soil. Front. Environ. Sci. Eng. 2020, 14, 24. [Google Scholar] [CrossRef]
- Servicio Agrícola y Ganadero (SAG). Programa de Recuperación de Suelos Degradados. Available online: http://www.sag.cl/ambitos-de-accion/programa-de-recuperacion-de-suelos-degradados (accessed on 16 July 2021).
- Abbasi, S.; Lamb, D.T.; Kader, M.; Naidu, R.; Megharaj, M. The influence of long-term ageing on arsenic ecotoxicity in soil. J. Hazard. Mater. 2021, 407, 124819–124825. [Google Scholar] [CrossRef] [PubMed]
- Santibáñez, F.; Santibáñez, P.; Caroca, C.; González, P. Atlas Agroclimático de Chile. Estado Actual y Tendencias del Clima. Tomo III: Regiones de Valparaíso, Metropolitana, O’Higgins y Maule; Universidad de Chile: Santiago, Chile, 2017. [Google Scholar]
- Parra, S.; Bravo, M.A.; Quiroz, W.; Moreno, T.; Karanasiou, A.; Font, O.; Vidal, V.; Cereceda, F. Distribution of trace elements in particle size fractions for contaminated soils by a copper smelting from different zones of the Puchuncaví Valley (Chile). Chemosphere 2014, 111, 513–521. [Google Scholar] [CrossRef] [PubMed]
- US EPA. The Use of Soil Amendments for Remediation, Revitalization, and Reuse; Environmental Protection Agency/National Service Center for Environmental Publications: Cincinnati, OH, USA, 2007; p. 52.
- Pardo, J.; Mondaca, P.; Celis-Diez, J.L.; Ginocchio, R.; Navarro-Villarroel, C.; Neaman, A. Assessment of revegetation of an acidic metal(loid)-polluted soils six years after the incorporation of lime with and without compost. Geoderma 2018, 331, 81–86. [Google Scholar] [CrossRef]
- Rosado, R.; Del Campillo, M.C.; Barrón, V.; Torrent, J. Inyección de vivianita al suelo para corregir la clorosis férrica en olivo. Edafología 2000, 7, 57–66. [Google Scholar]
- Steubing, L. Problems of bioindication and the necessity of standardization. In Monitoring Air Pollutants by Plants; Steubing, L., Jäger, H., Eds.; Dr. Junk Publishers: Amsterdam, The Netherlands, 1982; pp. 19–27. [Google Scholar]
- Sadzawka, A.; Flores, H.; Grez, R.; Carrasco, M.; Mora, M.; Neaman, A.; Demanet, R. Métodos de Análisis de Lodos y Suelos; Instituto de Investigaciones Agropecuarias: Santiago, Chile, 2007. [Google Scholar]
- Houba, V.J.G.; Temminghoff, E.J.M.; Gaikhorst, G.A.; van Vark, W. Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun. Soil Sci. Plant Anal. 2000, 31, 1299–1396. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnson, C.T.; Sumner, M.E. Methods of Soil Analysis. Part III: Chemical Methods; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar]
- US EPA. Method 6200: Field Portable X-ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment; US EPA: Washington, DC, USA, 2007. [Google Scholar]
- Kalra, Y. Handbook of Reference Methods for Plant Analysis; CRC Press: Boca Raton, FL, USA, 1997; p. 320. [Google Scholar]
- Maxwell, J.A. Rock and Mineral Analysis; Interscience Publishers: New York, NY, USA, 1968. [Google Scholar]
- Verlinden, M. On the acid decomposition of human blood and plasma for the determination of selenium. Talanta 1982, 29, 875–882. [Google Scholar] [CrossRef]
- US EPA. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual (Part A); US EPA: Washington, DC, USA, 1989; Volume 1. [Google Scholar]
- US EPA. Arsenic, Inorganic; CASRN 7440-38-2; US EPA: Washington, DC, USA, 1991. [Google Scholar]
- Verdejo, J.; Ginocchio, R.; Sauvé, S.; Mondaca, P.; Neaman, A. Thresholds of copper toxicity to lettuce in field-collected agricultural soils exposed to copper mining activities in Chile. J. Soil Sci. Plant Nutr. 2015, 15, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Osman, K.T. Management of Soil Problems; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- SOQUIMICH. Agenda del Salitre; SOQUIMICH Comercial: Santiago, Chile, 2001. [Google Scholar]
- Wang, J.; Zeng, X.; Zhang, H.; Li, Y.; Zhao, S.; Su, S.; Bai, L.; Wang, Y.; Zhang, T. Effect of exogenous phosphate on the lability and phytoavailability of arsenic in soils. Chemosphere 2018, 196, 540–547. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.D.; Ma, L.Q. Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood. Environ. Pollut. 2004, 132, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.; Mahimairaja, S.; Kunhikrishnan, A.; Choppala, G. Phosphorus-arsenic interactions in variable-charge soils in relation to arsenic mobility and bioavailability. Sci. Total Environ. 2013, 463–464, 1154–1162. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Liu, R.L.; Zeng, X.B.; Lin, Q.M.; Bai, L.Y.; Li, L.F.; Su, S.M.; Wang, Y.N. Reduction of arsenic bioavailability by amending seven inorganic materials in arsenic contaminated soil. J. Integr. Agric. 2015, 14, 1414–1422. [Google Scholar] [CrossRef]
- Roberts, L.C.; Hug, S.J.; Ruettimann, T.; Billah, M.; Khan, A.W.; Rahman, M.T. Arsenic removal with iron(II) and iron(III) in waters with high silicate and phosphate concentrations. Environ. Sci. Technol. 2004, 38, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Hug, S.J.; Leupin, O. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ. Sci. Technol. 2003, 37, 2734–2742. [Google Scholar] [CrossRef]
- Moon, D.H.; Dermatas, D.; Menounou, N. Arsenic immobilization by calcium-arsenic precipitates in lime treated soils. Sci. Total Environ. 2004, 330, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Chou, M.L.; Jean, J.S.; Yang, C.M.; Hseu, Z.Y.; Chen, Y.H.; Wang, H.L.; Das, S.; Chou, L.S. Inhibition of ethylenediaminetetraacetic acid ferric sodium salt (EDTA-Fe) and calcium peroxide (CaO2) on arsenic uptake by vegetables in arsenic-rich agricultural soil. J. Geochem. Explor. 2016, 163, 19–27. [Google Scholar] [CrossRef]
- Deng, Y.; Li, Y.; Li, X.; Sun, Y.; Ma, J.; Lei, M.; Weng, L. Influence of calcium and phosphate on pH dependency of arsenite and arsenate adsorption to goethite. Chemosphere 2018, 199, 617–624. [Google Scholar] [CrossRef]
- Husson, O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 2012, 362, 389–417. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Blodau, C. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Sci. Total Environ. 2006, 354, 179–190. [Google Scholar] [CrossRef]
- EFSA. Dietary exposure to inorganic arsenic in the European population. EFSA J. 2014, 12, 3597–3664. [Google Scholar] [CrossRef]
- Bacigalupo, C.; Hale, B. Human health risks of Pb and As exposure via consumption of home garden vegetables and incidental soil and dust ingestion: A probabilistic screening tool. Sci. Total Environ. 2012, 423, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Berasaluce, M.; Mondaca, P.; Schuhmacher, M.; Bravo, M.; Sauvé, S.; Navarro-Villarroel, C.; Dovletyarova, E.A.; Neaman, A. Soil and indoor dust as environmental media of human exposure to As, Cd, Cu, and Pb near a copper smelter in central Chile. J. Trace Elem. Med. Biol. 2019, 54, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Mondaca, P.; Neaman, A.; Sauvé, S.; Salgado, E.; Bravo, M. Solubility, partitioning, and activity of copper-contaminated soils in a semiarid region. J. Soil Sci. Plant Nutr. 2015, 178, 452–459. [Google Scholar] [CrossRef]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of nutrients: Micronutrients. In Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Gautam, S.; Anjani, K.; Srivastava, N. In vitro evaluation of excess copper affecting seedlings and their biochemical characteristics in Carthamus tinctorius L. (variety PBNS-12). Physiol. Mol. Biol. Plants 2016, 22, 121–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Punshon, T.; Jackson, B.P.; Meharg, A.A.; Warczack, T.; Scheckel, K.; Guerinot, M.L. Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci. Total Environ. 2017, 581–582, 209–220. [Google Scholar] [CrossRef]
- Wallace, A. Soil acidification from use of too much fertilizer. Commun. Soil Sci. Plant Anal. 2008, 25, 87–92. [Google Scholar] [CrossRef]
- Behera, S.N.; Sharma, M.; Aneja, V.P.; Balasubramanian, R. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. 2013, 20, 8092–8131. [Google Scholar] [CrossRef]
- Moreira, H.; Pereira, S.I.A.; Mench, M.; Garbisu, C.; Kidd, P.; Castro, P.M.L. Phytomanagement of metal(loid)-contaminated soils: Options, efficiency and value. Front. Environ. Sci. 2021, 9, 1–48. [Google Scholar] [CrossRef]
- Thakare, M.; Sarma, H.; Datar, S.; Roy, A.; Pawar, P.; Gupta, K.; Pandit, S.; Prasad, R. Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Curr. Biotechnol. 2021, 3, 84–98. [Google Scholar] [CrossRef]
- Gu, B.; Chen, D.; Yang, Y.; Vitousek, P.; Zhu, Y.G. Soil-food-environment-health nexus for sustainable development. Research 2021, 2021, 9804807. [Google Scholar] [CrossRef] [PubMed]
- Giagnoni, L.; dos Anjos Borges, L.G.; Giongo, A.; de Oliveira Silveira, A.; Ardissone, A.N.; Triplett, E.W.; Mench, M.; Renella, G. Dolomite and compost amendments enhance Cu phytostabilization and Increase microbiota of the leachates from a Cu-contaminated soil. Agronomy 2020, 10, 719. [Google Scholar] [CrossRef]
- Beerling, D.J.; Kantzas, E.P.; Lomas, M.R.; Wade, P.; Eufrasio, R.M.; Renforth, P.; Sarkar, B.; Andrews, M.G.; James, R.H.; Pearce, C.R.; et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 2020, 583, 242–248. [Google Scholar] [CrossRef]
Average ± SD | |||||||
---|---|---|---|---|---|---|---|
Soil | Unit | Sandy Soil Plots | Loamy Soil Plots | ||||
Parameter | U-SS | C-SS | U-LS | C-LS | |||
Clay | % | 9.00 ± 0.47 a | 8.67 ± 0.47 a | B | 16.67 ± 0.94 b | 20.33 ± 0.94 a | A |
pH | - | 6.54 ± 0.07 a | 6.49 ± 0.08 a | B | 7.85 ± 0.11 b | 8.12 ± 0.06 a | A |
EC | dS m−1 | 1.15 ± 0.06 a | 1.24 ± 0.03 b | B | 1.64 ± 0.09 a | 1.73 ± 0.12 a | A |
SOM | % | 3.50 ± 0.03 b | 4.39 ± 0.01 a | A | 3.15 ± 0.04 b | 3.76 ± 0.08 a | B |
Macro-nutrients | |||||||
Nav | mg kg−1 | 8.21 ± 0.7 b | 54.53 ± 1.24 a | A | 7.91 ± 0.45 a | 10.08 ± 0.98 a | B |
Pav | mg kg−1 | 105.08 ± 0.94 b | 206.61 ± 5.31 a | A | 74.34 ± 2.03 a | 40.37 ± 0.50 b | B |
Kav | cmol+ kg−1 | 0.73 ± 0.02 b | 4.01 ± 0.03 a | A | 0.88 ± 0.05 a | 0.32 ± 0.01 b | B |
Caex | mg L−1 | 15.60 ± 0.28 a | 14.86 ± 0.57 a | B | 17.74 ± 0.29 b | 30.30 ± 0.12 a | A |
Mgex | mg L−1 | 2.65 ± 0.04 b | 3.55 ± 0.16 a | A | 3.91 ± 0.06 a | 3.04 ± 0.05 b | B |
Trace elements | |||||||
CuT | mg kg−1 | 61.65 ± 1.46 b | 244.64 ± 3.36 a | B | 75.50 ± 2.49 a | 609.58 ± 9.11 a | A |
AsT | mg kg−1 | 11.14 ± 0.78 b | 20.70 ± 0.60 a | B | 13.46 ± 0.56 b | 29.55 ± 1.03 a | A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondaca, P.; Valenzuela, P.; Roldán, N.; Quiroz, W.; Valdenegro, M.; Celis-Diez, J.L. Remediation of Agricultural Soils with Long-Term Contamination of Arsenic and Copper in Two Chilean Mediterranean Areas. Agronomy 2022, 12, 221. https://doi.org/10.3390/agronomy12010221
Mondaca P, Valenzuela P, Roldán N, Quiroz W, Valdenegro M, Celis-Diez JL. Remediation of Agricultural Soils with Long-Term Contamination of Arsenic and Copper in Two Chilean Mediterranean Areas. Agronomy. 2022; 12(1):221. https://doi.org/10.3390/agronomy12010221
Chicago/Turabian StyleMondaca, Pedro, Patricio Valenzuela, Nicole Roldán, Waldo Quiroz, Mónika Valdenegro, and Juan L. Celis-Diez. 2022. "Remediation of Agricultural Soils with Long-Term Contamination of Arsenic and Copper in Two Chilean Mediterranean Areas" Agronomy 12, no. 1: 221. https://doi.org/10.3390/agronomy12010221
APA StyleMondaca, P., Valenzuela, P., Roldán, N., Quiroz, W., Valdenegro, M., & Celis-Diez, J. L. (2022). Remediation of Agricultural Soils with Long-Term Contamination of Arsenic and Copper in Two Chilean Mediterranean Areas. Agronomy, 12(1), 221. https://doi.org/10.3390/agronomy12010221