Interactive Effects of Nitrogen and Potassium Fertilizers on Quantitative-Qualitative Traits and Drought Tolerance Indices of Rainfed Wheat Cultivar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Measurements
2.3. Grain Yield and Grain Protein Content Stability
2.4. Drought Tolerance Assessment
2.5. Statistical Analysis
3. Results and Discussions
3.1. Effect of the Mineral Content of the Soil on Morphological and Qualitative Parameters of the Azar-2 Wheat Cultivar
3.2. Main and Interactive Effects of N and K Fertilizers on Quantitative Properties of Wheat under Non-Stress and Drought Stress Conditions
3.3. Main and Interactive Effects of N and K Nutrients on Qualitative Properties of Wheat under Non-Stress and Drought Stress Conditions
3.4. Main and Interactive Effects of N and K Nutrients on Yield-Based Drought Tolerance Indices of Wheat
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, D.; Sun, D.; Wang, C.; Ding, H.; Qin, H.; Hou, J.; Huang, X.; Xie, Y.; Guo, T. Physiological Responses and Yield of Wheat Plants in Zinc-Mediated Alleviation of Drought Stress. Front. Plant Sci. 2017, 8, 860. [Google Scholar] [CrossRef] [Green Version]
- Niedbała, G.; Nowakowski, K.; Rudowicz-Nawrocka, J.; Piekutowska, M.; Weres, J.; Tomczak, R.J.; Tyksiński, T.; Pinto, A.Á. Multicriteria prediction and simulation of winter wheat yield using extended qualitative and quantitative data based on artificial neural networks. Appl. Sci. 2019, 9, 2773. [Google Scholar] [CrossRef] [Green Version]
- Sedri, M.H.; Amini, A.; Golchin, A. Evaluation of Nitrogen Effects on Yield and Drought Tolerance of Rainfed Wheat using Drought Stress Indices. J. Crop Sci. Biotechnol. 2019, 22, 235–242. [Google Scholar] [CrossRef]
- Wasaya, A.; Manzoor, S.; Yasir, T.A.; Sarwar, N.; Mubeen, K.; Ismail, I.A.; Raza, A.; Rehman, A.; Hossain, A.; EL Sabagh, A. Evaluation of Fourteen Bread Wheat (Triticum aestivum L.) Genotypes by Observing Gas Exchange Parameters, Relative Water and Chlorophyll Content, and Yield Attributes under Drought Stress. Sustainability 2021, 13, 4799. [Google Scholar] [CrossRef]
- Bukhari, S.A.B.H.; Lalarukh, I.; Amjad, S.F.; Mansoora, N.; Naz, M.; Naeem, M.; Bukhari, S.A.; Shahbaz, M.; Ali, S.A.; Marfo, T.D.; et al. Drought Stress Alleviation by Potassium-Nitrate-Containing Chitosan/Montmorillonite Microparticles Confers Changes in Spinacia oleracea L. Sustainability 2021, 13, 9903. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant Drought Stress: Effects, Mechanisms and Management. In Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 2009; pp. 153–188. [Google Scholar]
- Niazian, M.; Sadat-Noori, S.A.; Tohidfar, M.; Galuszka, P.; Mortazavian, S.M.M. Agrobacterium-mediated genetic transformation of ajowan (Trachyspermum ammi (L.) Sprague): An important industrial medicinal plant. Ind. Crops Prod. 2019, 132, 29–40. [Google Scholar] [CrossRef]
- Arafa, S.A.; Attia, K.A.; Niedbała, G.; Piekutowska, M.; Alamery, S.; Abdelaal, K.; Alateeq, T.K.; Ali, M.A.M.; Elkelish, A.; Attallah, S.Y. Seed Priming Boost Adaptation in Pea Plants under Drought Stress. Plants 2021, 10, 2201. [Google Scholar] [CrossRef]
- Anwaar, H.A.; Perveen, R.; Mansha, M.Z.; Abid, M.; Sarwar, Z.M.; Aatif, H.M.; ud din Umar, U.; Sajid, M.; Aslam, H.M.U.; Alam, M.M.; et al. Assessment of grain yield indices in response to drought stress in wheat (Triticum aestivum L.). Saudi J. Biol. Sci. 2020, 27, 1818–1823. [Google Scholar] [CrossRef]
- Noori, S.A.S. Assessment for salinity tolerance through intergeneric hybridisation: Triticum durum × Aegilops speltoides. Euphytica 2005, 146, 149–155. [Google Scholar] [CrossRef]
- Rosielle, A.A.; Hamblin, J. Theoretical Aspects of Selection for Yield in Stress and Non-Stress Environment. Crop Sci. 1981, 21, 943–946. [Google Scholar] [CrossRef]
- Fischer, R.; Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res. 1978, 29, 897. [Google Scholar] [CrossRef]
- Fernandez, G.C.J. Effective selection criteria for assessing stress tolerance. In Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress, Taibei, Taiwan, 13–16 August 1992; Kuo, C.G., Ed.; AVRDC Publication: Tainan, Taiwan, 1992; pp. 257–270. [Google Scholar]
- Schneider, K.A.; Rosales-Serna, R.; Ibarra-Perez, F.; Cazares-Enriquez, B.; Acosta-Gallegos, J.A.; Ramirez-Vallejo, P.; Wassimi, N.; Kelly, J.D. Improving Common Bean Performance under Drought Stress. Crop Sci. 1997, 37, 43–50. [Google Scholar] [CrossRef]
- Fischer, R.; Wood, J. Drought resistance in spring wheat cultivars. III.* Yield associations with morpho-physiological traits. Aust. J. Agric. Res. 1979, 30, 1001. [Google Scholar] [CrossRef]
- Gavuzzi, P.; Rizza, F.; Palumbo, M.; Campanile, R.G.; Ricciardi, G.L.; Borghi, B. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Can. J. Plant Sci. 1997, 77, 523–531. [Google Scholar] [CrossRef]
- Bouslama, M.; Schapaugh, W.T. Stress Tolerance in Soybeans. I. Evaluation of Three Screening Techniques for Heat and Drought Tolerance. Crop Sci. 1984, 24, 933–937. [Google Scholar] [CrossRef]
- Mitra, J. Genetics and genetic improvement of drought resistance in crop plants. Curr. Sci. 2001, 80, 758–763. [Google Scholar]
- REZA RAMAZANI, S.H.; KALANTARI, R.T. Evaluating the effect of sowing date and drought stress on morphological and functional characteristics of three genotypes of winter oilseed rape (Brassica napus L.). Acta Agric. Slov. 2019, 113, 63. [Google Scholar] [CrossRef] [Green Version]
- Ferede, B.; Mekbib, F.; Assefa, K.; Chanyalew, S.; Abraha, E.; Tadele, Z. Evaluation of Drought Tolerance in Tef [Eragrostis Tef (Zucc.) Trotter] Genotypes Using Drought Tolerance Indices. J. Crop Sci. Biotechnol. 2020, 23, 107–115. [Google Scholar] [CrossRef]
- Singh, C.; Kumar, V.; Prasad, I.; Patil, V.R.; Rajkumar, B.K. Response of upland cotton (G.hirsutum L.) genotypes to drought stress using drought tolerance indices. J. Crop Sci. Biotechnol. 2016, 19, 53–59. [Google Scholar] [CrossRef]
- Boussakouran, A.; Sakar, E.H.; El Yamani, M.; Rharrabti, Y. Morphological Traits Associated with Drought Stress Tolerance in Six Moroccan Durum Wheat Varieties Released Between 1984 and 2007. J. Crop Sci. Biotechnol. 2019, 22, 345–353. [Google Scholar] [CrossRef]
- Mickky, B.; Aldesuquy, H.; Elnajar, M. Uni- and Multi-Variate Assessment of Drought Response Yield Indices in 10 Wheat Cultivars. J. Crop Sci. Biotechnol. 2019, 22, 21–29. [Google Scholar] [CrossRef]
- Elkelish, A.; El-Mogy, M.M.; Niedbała, G.; Piekutowska, M.; Atia, M.A.M.; Hamada, M.M.A.; Shahin, M.; Mukherjee, S.; El-Yazied, A.A.; Shebl, M.; et al. Roles of Exogenous α-Lipoic Acid and Cysteine in Mitigation of Drought Stress and Restoration of Grain Quality in Wheat. Plants 2021, 10, 2318. [Google Scholar] [CrossRef]
- El-Saadony, F.M.A.; Mazrou, Y.S.A.; Khalaf, A.E.A.; El-Sherif, A.M.A.; Osman, H.S.; Hafez, E.M.; Eid, M.A.M. Utilization Efficiency of Growth Regulators in Wheat under Drought Stress and Sandy Soil Conditions. Agronomy 2021, 11, 1760. [Google Scholar] [CrossRef]
- Shabbir, R.N.; Waraich, E.A.; Ali, H.; Nawaz, F.; Ashraf, M.Y.; Ahmad, R.; Awan, M.I.; Ahmad, S.; Irfan, M.; Hussain, S.; et al. Supplemental exogenous NPK application alters biochemical processes to improve yield and drought tolerance in wheat (Triticum aestivum L.). Environ. Sci. Pollut. Res. 2016, 23, 2651–2662. [Google Scholar] [CrossRef] [PubMed]
- Macholdt, J.; Honermeier, B. Stability analysis for grain yield of winter wheat in a long-term field experiment. Arch. Agron. Soil Sci. 2019, 65, 686–699. [Google Scholar] [CrossRef]
- Abid, M.; Tian, Z.; Ata-Ul-Karim, S.T.; Cui, Y.; Liu, Y.; Zahoor, R.; Jiang, D.; Dai, T. Nitrogen Nutrition Improves the Potential of Wheat (Triticum aestivum L.) to Alleviate the Effects of Drought Stress during Vegetative Growth Periods. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Wang, L.; Shangguan, Z. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply. PLoS ONE 2016, 11, e0165733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agami, R.A.; Alamri, S.A.M.; Abd El-Mageed, T.A.; Abousekken, M.S.M.; Hashem, M. Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants. Agric. Water Manag. 2018, 210, 261–270. [Google Scholar] [CrossRef]
- Wani, J.A.; Malik, M.A.; Dar, M.A.; Akhter, F.; Raina, S.K. Impact of method of application and concentration of potassium on yield of wheat. J. Environ. Biol. 2014, 35, 623–626. [Google Scholar]
- Lv, X.; Li, T.; Wen, X.; Liao, Y.; Liu, Y. Effect of potassium foliage application post-anthesis on grain filling of wheat under drought stress. Field Crop. Res. 2017, 206, 95–105. [Google Scholar] [CrossRef]
- Damon, P.M.; Ma, Q.F.; Rengel, Z. Wheat genotypes differ in potassium accumulation and osmotic adjustment under drought stress. Crop Pasture Sci. 2011, 62, 550. [Google Scholar] [CrossRef]
- Jeer, M.; Yele, Y.; Sharma, K.C.; Prakash, N.B. Exogenous Application of Different Silicon Sources and Potassium Reduces Pink Stem Borer Damage and Improves Photosynthesis, Yield and Related Parameters in Wheat. Silicon 2021, 13, 901–910. [Google Scholar] [CrossRef]
- Hu, W.; Jiao, Z.; Wu, F.; Liu, Y.; Dong, M.; Ma, X.; Fan, T.; An, L.; Feng, H. Long-term effects of fertilizer on soil enzymatic activity of wheat field soil in Loess Plateau, China. Ecotoxicology 2014, 23, 2069–2080. [Google Scholar] [CrossRef]
- Raza, M.A.; Saleem, M.; Shah, G.; Khan, I.; Raza, A. Exogenous application of glycinebetaine and potassium for improving water relations and grain yield of wheat under drought. J. Soil Sci. Plant Nutr. 2014, 14, 348–364. [Google Scholar] [CrossRef] [Green Version]
- Kant, S.; Kafkafi, U.; Pasricha, N.; Bansal, S. Potassium and abiotic stresses in plants. Potassium Sustain. Crop Prod. Gurgaon 2002, 233, 251. [Google Scholar]
- Luo, L.; Wang, Z.; Huang, M.; Hui, X.; Wang, S.; Zhao, Y.; He, H.; Zhang, X.; Diao, C.; Cao, H.; et al. Plastic film mulch increased winter wheat grain yield but reduced its protein content in dryland of northwest China. Field Crop. Res. 2018, 218, 69–77. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Tao, Z.; Chang, X.; Wang, D.; Wang, Y.; Ma, S.; Yang, Y.; Zhao, G. Effects of sulfur fertilization and short-term high temperature on wheat grain production and wheat flour proteins. Crop J. 2018, 6, 413–425. [Google Scholar] [CrossRef]
- Zahra, N.; Wahid, A.; Hafeez, M.B.; Ullah, A.; Siddique, K.H.M.; Farooq, M. Grain development in wheat under combined heat and drought stress: Plant responses and management. Environ. Exp. Bot. 2021, 188, 104517. [Google Scholar] [CrossRef]
- Duncan, E.G.; O’Sullivan, C.A.; Roper, M.M.; Biggs, J.S.; Peoples, M.B. Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertiliser use, grain yield and protein content of wheat: Review. Field Crop. Res. 2018, 226, 56–65. [Google Scholar] [CrossRef]
- Hesami, A.; Amini, A. Changes in irrigated land and agricultural water use in the Lake Urmia basin. Lake Reserv. Manag. 2016, 32, 288–296. [Google Scholar] [CrossRef]
- Yoshida, S.; Forno, D.A.; Cock, J.H. Laboratory Manual for Physiological Studies of Rice; CAB International: Los Banos, Philippines, 1971. [Google Scholar]
- Han, X.; Hu, C.; Chen, Y.; Qiao, Y.; Liu, D.; Fan, J.; Li, S.; Zhang, Z. Crop yield stability and sustainability in a rice-wheat cropping system based on 34-year field experiment. Eur. J. Agron. 2020, 113, 125965. [Google Scholar] [CrossRef]
- Farshadfar, E.; Sutka, J. Screening drought tolerance criteria in maize. Acta Agron. Hungarica 2002, 50, 411–416. [Google Scholar] [CrossRef]
- HAO, M.-D.; FAN, J.; WANG, Q.-J.; DANG, T.-H.; GUO, S.-L.; WANG, J.-J. Wheat Grain Yield and Yield Stability in a Long-Term Fertilization Experiment on the Loess Plateau. Pedosphere 2007, 17, 257–264. [Google Scholar] [CrossRef]
- Müller, C.; Elliott, J.; Pugh, T.A.M.; Ruane, A.C.; Ciais, P.; Balkovic, J.; Deryng, D.; Folberth, C.; Izaurralde, R.C.; Jones, C.D.; et al. Global patterns of crop yield stability under additional nutrient and water inputs. PLoS ONE 2018, 13, e0198748. [Google Scholar] [CrossRef]
- Miranzadeh, H.; Emam, Y.; Pilesjö, P.; Seyyedi, H. Water Use Efficiency of Four Dryland Wheat Cultivars under Different Levels of Nitrogen Fertilization. J. Agric. Sci. Technol. 2011, 13, 843–854. [Google Scholar]
- Fateh, H.; Toube, A.; Gholipuri, A.Q. The feasibility of reducing yield gap by improving crop management. Ukr. J. Ecol. 2019, 9, 21–30. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, K.; Liu, W.; Gao, T.; Li, G.; Han, H.; Li, Z.; Ning, T. Responses of soil carbon, nitrogen, and wheat and maize productivity to 10 years of decreased nitrogen fertilizer under contrasting tillage systems. Soil Tillage Res. 2020, 196, 104444. [Google Scholar] [CrossRef]
- Macholdt, J.; Piepho, H.-P.; Honermeier, B. Mineral NPK and manure fertilisation affecting the yield stability of winter wheat: Results from a long-term field experiment. Eur. J. Agron. 2019, 102, 14–22. [Google Scholar] [CrossRef]
- Chen, H.; Deng, A.; Zhang, W.; Li, W.; Qiao, Y.; Yang, T.; Zheng, C.; Cao, C.; Chen, F. Long-term inorganic plus organic fertilization increases yield and yield stability of winter wheat. Crop J. 2018, 6, 589–599. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, G.; Wang, C.; Lu, H.; Li, S.; Xie, Y.; Ma, D.; Zhu, Y.; Guo, T. Effect of irrigation and nitrogen application on grain amino acid composition and protein quality in winter wheat. PLoS ONE 2017, 12, e0178494. [Google Scholar] [CrossRef]
- Seddaiu, G.; Iocola, I.; Farina, R.; Orsini, R.; Iezzi, G.; Roggero, P.P. Long term effects of tillage practices and N fertilization in rainfed Mediterranean cropping systems: Durum wheat, sunflower and maize grain yield. Eur. J. Agron. 2016, 77, 166–178. [Google Scholar] [CrossRef]
- Zörb, C.; Ludewig, U.; Hawkesford, M.J. Perspective on Wheat Yield and Quality with Reduced Nitrogen Supply. Trends Plant Sci. 2018, 23, 1029–1037. [Google Scholar] [CrossRef] [Green Version]
- Pettigrew, W.T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 2008, 133, 670–681. [Google Scholar] [CrossRef]
- Fang, P.; Yan, M.; Chi, C.; Wang, M.; Zhou, Y.; Zhou, J.; Shi, K.; Xia, X.; Foyer, C.H.; Yu, J. Brassinosteroids Act as a Positive Regulator of Photoprotection in Response to Chilling Stress. Plant Physiol. 2019, 180, 2061–2076. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, D.; Berger, A.; Prieto-Linde, M.L.; Johansson, E. Can nitrogen fertilization be used to modulate yield, protein content and bread-making quality in Uruguayan wheat? J. Cereal Sci. 2019, 85, 153–161. [Google Scholar] [CrossRef]
- Giunta, F.; Pruneddu, G.; Motzo, R. Grain yield and grain protein of old and modern durum wheat cultivars grown under different cropping systems. Field Crops Res. 2019, 230, 107–120. [Google Scholar] [CrossRef]
- Barneix, A.; Guitman, M.R. Leaf regulation of the nitrogen concentration in the grain of wheat plants. J. Exp. Bot. 1993, 44, 1607–1612. [Google Scholar] [CrossRef]
- Yan, S.; Wu, Y.; Fan, J.; Zhang, F.; Zheng, J.; Qiang, S.; Guo, J.; Xiang, Y.; Zou, H.; Wu, L. Dynamic change and accumulation of grain macronutrient (N, P and K) concentrations in winter wheat under different drip fertigation regimes. Field Crop. Res. 2020, 250, 107767. [Google Scholar] [CrossRef]
- Vrignon-Brenas, S.; Celette, F.; Amossé, C.; David, C. Effect of spring fertilization on ecosystem services of organic wheat and clover relay intercrops. Eur. J. Agron. 2016, 73, 73–82. [Google Scholar] [CrossRef]
- Lollato, R.P.; Figueiredo, B.M.; Dhillon, J.S.; Arnall, D.B.; Raun, W.R. Wheat grain yield and grain-nitrogen relationships as affected by N, P, and K fertilization: A synthesis of long-term experiments. Field Crop. Res. 2019, 236, 42–57. [Google Scholar] [CrossRef]
- Xue, C.; auf’m Erley, G.S.; Rossmann, A.; Schuster, R.; Koehler, P.; Mühling, K.-H. Split Nitrogen Application Improves Wheat Baking Quality by Influencing Protein Composition Rather Than Concentration. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Ma, D.; Ma, G.; Wang, C.; Xie, X.; Kang, G. Responses of glutamine synthetase activity and gene expression to nitrogen levels in winter wheat cultivars with different grain protein content. J. Cereal Sci. 2017, 74, 187–193. [Google Scholar] [CrossRef]
- Naghavi, M.; Pour-Aboughadareh, A.; Marouf, K. Evaluation of Drought Tolerance Indices for Screening Some of Corn (Zea mays L.) Cultivars under Environmental Conditions. Not. Sci. Biol. 2013, 5, 388–393. [Google Scholar] [CrossRef] [Green Version]
- Batra, N.G.; Sharma, V.; Kumari, N. Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. J. Plant Interact. 2014, 9, 712–721. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Hao, H.; Han, C.; Wang, H.; Wang, Q.; Chen, M.; Juan, J.; Feng, Z.; Zhang, J. Exogenous l-ascorbic acid regulates the antioxidant system to increase the regeneration of damaged mycelia and induce the development of fruiting bodies in Hypsizygus marmoreus. Fungal Biol. 2020, 124, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.U.; Mohammad, F. Application of stress selection indices for assessment of nitrogen tolerance in wheat (Triticum aestivum L.). J. Anim. Plant Sci. 2016, 26, 201–210. [Google Scholar]
- Mohammadi, R. Efficiency of yield-based drought tolerance indices to identify tolerant genotypes in durum wheat. Euphytica 2016, 211, 71–89. [Google Scholar] [CrossRef]
Environment | SP (%) | Ec × 10−3 (ds/m) | pH | T.N.V (%) | OC (%) | Total.N (%) | P.ava (mg/kg) | K.ava (mg/kg) | Texture |
---|---|---|---|---|---|---|---|---|---|
Drought stress | 37.820 | 0.590 | 7.900 | 14.380 | 0.700 | 0.080 | 15.900 | 210.000 | Clay |
37.930 | 0.570 | 7.900 | 25.140 | 0.650 | 0.080 | 16.700 | 200.000 | Clay | |
39.760 | 0.620 | 7.950 | 15.000 | 0.670 | 0.070 | 16.400 | 180.000 | Clay | |
Non-stress | 39.190 | 0.600 | 7.900 | 15.250 | 0.670 | 0.080 | 16.100 | 160.000 | Clay |
38.320 | 0.580 | 7.900 | 14.880 | 0.680 | 0.070 | 14.700 | 170.000 | Clay | |
39.080 | 0.590 | 7.900 | 15.250 | 0.690 | 0.080 | 14.700 | 160.000 | Clay |
Plant Characteristics | Soil Mineral Contents | |||
---|---|---|---|---|
Total.N (%) | P.ava (mg/kg) | K.ava (mg/kg) | Total Neutralizing Value (T.N.V) | |
Grain yield | 0.745 ** | 0.591 ** | 0.432 * | 0.081 ns |
Straw yield | 0.230 ns | 0.415 * | 0.123 ns | 0.341 ns |
1000-seed weight | 0.653 ** | 0.471 * | 0.215 ns | 0.182 ns |
Grain N content | 0.823 ** | 0.302 ns | 0.243 ns | 0.214 ns |
Grain K content | 0.146 ns | 0.214 ns | 0.732 ** | 0.124 ns |
Grain protein content | 0.516 ** | 0.504 ** | 0.361 ns | 0.632 ** |
Source of Variation | df a | Mean Squares | |||||
---|---|---|---|---|---|---|---|
Drought Stress | Non-Stress | ||||||
Grain Yield | Straw Yield | 1000-Seed Weight | Grain Yield | Straw Yield | 1000-Seed Weight | ||
Year (Y) | 1 | 25,043,094.000 ** | 463,457,153.760 ** | 0.076ns | 6,043,077.042 ** | 306,159,695.010 ** | 283.800 ** |
Year × Block | 4 | 235,071.146 * | 753,715.948 ns | 11.898* | 1,941,093.104 ** | 4,435,583.292 ** | 25.351 ** |
Nitrogen (N) | 3 | 1,570,010.069 ** | 186,390.955 ns | 63.570** | 4,827,021.917 ** | 945,981.038 ns | 14.306 * |
Y × N | 3 | 171,841.917 ns | 328,267.622 ns | 4.778 ns | 642,481.125 ** | 503,941.872 ns | 4.887 ns |
Potassium (K) | 3 | 20,432.819 ns | 547,642.955 ns | 2.226 ns | 5886.944 ns | 1,035,804.233 ns | 17.604 ns |
Y × K | 3 | 143,145.944 ns | 1,253,567.399 ns | 5.846 ns | 31,186.819 ns | 2,319,904.622 ns | 0.608 ns |
N × K | 9 | 79,243.440 ns | 163,752.890 ns | 5.099 ns | 55,293.694 ns | 1,114,630.612 ns | 5.808 ns |
Y × N × K | 9 | 111,048.639 ns | 808,701.927 ns | 1.765 ns | 125,138.421 ns | 2,078,221.446 ns | 5.968 ns |
Error | 60 | 80,213.690 | 1,003,141.292 | 4.206 | 66,966.582 | 1,063,045.258 | 4.356 |
CV (%) | 15.590 | 22.600 | 5.170 | 10.750 | 23.250 | 4.380 |
Nitrogen (kg/ha) | Drought Stress | Non-Stress | ||
---|---|---|---|---|
Grain Yield (kg/ha) | 1000-Seed Weight (g) | Grain Yield (kg/ha) | 1000-Seed Weight (g) | |
N0 | 1473.000 | 41.580 | 1893.000 | 48.820 |
N30 | 1788.000 | 40.320 | 2279.000 | 47.500 |
N60 | 1941.000 | 39.000 | 2657.000 | 27.250 |
N90 | 2066.000 | 37.820 | 2857.000 | 47.160 |
LSD (5%) | 163.500 | 1.184 | 149.400 | 1.205 |
LSD (5%) | 217.500 | 1.575 | 198.700 | 1.603 |
Source of Variation | df a | Mean Squares | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Drought Stress | Non-Stress | ||||||||||
Flag Leaves | Grain | Flag Leaves | Grain | ||||||||
N | K | N | K | Protein | N | K | N | K | Protein | ||
Year (Y) | 1 | 0.013 ns | 4.263 ** | 4.438 ** | 0.001 ns | 144.158 ** | 3.323 ** | 0.672 ** | 3.046 ** | 0.015 ns | 105.169 ** |
Year × Block | 4 | 0.957 ** | 0.090 ns | 1.475 ** | 0.045 ** | 47.927 ** | 1.042 ** | 0.336 ** | 3.674 ** | 0.012 ns | 120.638 ** |
Nitrogen (N) | 3 | 0.068 ns | 0.058 ns | 0.093 ns | 0.003 ns | 3.073 ns | 0.436 ns | 0.280 * | 0.092 ns | 0.006 ns | 2.435 ns |
Y × N | 3 | 0.098 ns | 0.140 * | 0.029 ns | 0.012 ns | 0.932 ns | 0.303 ns | 0.064 ns | 0.187 ns | 0.008 ns | 7.067 ns |
Potassium (K) | 3 | 0.113 ns | 0.047 ns | 0.084 ns | 0.002 ns | 2.722 ns | 0.184 ns | 0.044 ns | 0.057 ns | 0.001 ns | 2.584 ns |
Y × K | 3 | 0.070 ns | 0.021 ns | 0.003 ns | 0.003 ns | 0.083 ns | 0.222 ns | 0.073 ns | 0.280 ns | 0.003 ns | 10.751 ns |
N × K | 9 | 0.131 ns | 0.039 ns | 0.271 ** | 0.006 ns | 8.820 ** | 0.271 ns | 0.070 ns | 0.126 ns | 0.003 ns | 3.992 ns |
Y × N × K | 9 | 0.199 ns | 0.082 ns | 0.206 * | 0.007 ns | 6.638 * | 0.151 ns | 0.050 ns | 0.205 ns | 0.004 ns | 7.533 ns |
Error | 60 | 0.196 | 0.044 | 0.099 | 0.005 | 3.199 | 0.208 | 0.091 | 0.197 | 0.006 | 6.405 |
CV (%) | 15.40 | 16.61 | 16.360 | 24.320 | 16.350 | 14.090 | 23.170 | 20.350 | 20.740 | 20.420 |
Nitrogen (kg/ha) | Potassium (kg/ha) | Ys (kg/ha) | Yp (kg/ha) | MP | GMP | TOL | SSI | STI | K2STI | K1STI |
---|---|---|---|---|---|---|---|---|---|---|
N0 | K0 | 1483 | 1881 | 1682 | 1670 | 398 | 0.86 | 0.48 | 0.31 | 0.29 |
K30 | 1537 | 1853 | 1695 | 1688 | 317 | 0.70 | 0.49 | 0.35 | 0.28 | |
K60 | 1411 | 1924 | 1667 | 1648 | 512 | 1.08 | 0.47 | 0.28 | 0.29 | |
K90 | 1461 | 1700 | 1580 | 1576 | 238 | 0.57 | 0.43 | 0.27 | 0.21 | |
N30 | K0 | 1898 | 2356 | 2127 | 2114 | 458 | 0.79 | 0.77 | 0.83 | 0.72 |
K30 | 1885 | 2254 | 2070 | 2061 | 369 | 0.67 | 0.73 | 0.78 | 0.63 | |
K60 | 1638 | 2230 | 1934 | 1911 | 592 | 1.08 | 0.63 | 0.50 | 0.53 | |
K90 | 1731 | 2278 | 2005 | 1986 | 547 | 0.98 | 0.68 | 0.61 | 0.59 | |
N60 | K0 | 1835 | 2731 | 2283 | 2238 | 896 | 1.34 | 0.86 | 0.87 | 1.08 |
K30 | 2060 | 2646 | 2353 | 2335 | 585 | 0.90 | 0.94 | 1.19 | 1.10 | |
K60 | 1906 | 2514 | 2210 | 2189 | 609 | 0.99 | 0.83 | 0.89 | 0.88 | |
K90 | 1962 | 2737 | 2350 | 2317 | 775 | 1.15 | 0.93 | 1.06 | 1.17 | |
N90 | K0 | 2110 | 2748 | 2429 | 2408 | 638 | 0.95 | 1.00 | 1.33 | 1.27 |
K30 | 1880 | 2880 | 2380 | 2327 | 1000 | 1.41 | 0.93 | 0.98 | 1.30 | |
K60 | 2142 | 2896 | 2519 | 2491 | 754 | 1.06 | 1.07 | 1.46 | 1.51 | |
K90 | 2129 | 2903 | 2516 | 2486 | 774 | 1.09 | 1.07 | 1.44 | 1.51 | |
Mean | 1817 | 2408 | 2112 | 2090 | 591 | 0.98 | 0.77 | 0.82 | 0.83 |
Ys | Yp | MP | GMP | TOL | SSI | STI | K2STI | K1STI | |
---|---|---|---|---|---|---|---|---|---|
Ys | 1 | ||||||||
Yp | 0.85 ** | 1 | |||||||
MP | 0.92 ** | 0.97 ** | 1 | ||||||
GMP | 0.94 ** | 0.95 ** | 0.99 ** | 1 | |||||
TOL | 0.56 * | 0.86 ** | 0.77 ** | 0.75 ** | 1 | ||||
SSI | 0.23 ns | 0.63 ** | 0.48 ns | 0.45 ns | 0.90 ** | 1 | |||
STI | 0.94 ** | 0.95 ** | 0.99 ** | 0.99 ** | 0.75 ** | 0.45 ns | 1 | ||
K2STI | 0.96 ** | 0.94 ** | 0.98 ** | 0.99 ** | 0.73 ** | 0.43 ns | 0.99 ** | 1 | |
K1STI | 0.89 ** | 0.99 ** | 0.98 ** | 0.97 ** | 0.83 ** | 0.57 * | 0.97 ** | 0.96 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sedri, M.H.; Roohi, E.; Niazian, M.; Niedbała, G. Interactive Effects of Nitrogen and Potassium Fertilizers on Quantitative-Qualitative Traits and Drought Tolerance Indices of Rainfed Wheat Cultivar. Agronomy 2022, 12, 30. https://doi.org/10.3390/agronomy12010030
Sedri MH, Roohi E, Niazian M, Niedbała G. Interactive Effects of Nitrogen and Potassium Fertilizers on Quantitative-Qualitative Traits and Drought Tolerance Indices of Rainfed Wheat Cultivar. Agronomy. 2022; 12(1):30. https://doi.org/10.3390/agronomy12010030
Chicago/Turabian StyleSedri, Mohammad Hossein, Ebrahim Roohi, Mohsen Niazian, and Gniewko Niedbała. 2022. "Interactive Effects of Nitrogen and Potassium Fertilizers on Quantitative-Qualitative Traits and Drought Tolerance Indices of Rainfed Wheat Cultivar" Agronomy 12, no. 1: 30. https://doi.org/10.3390/agronomy12010030
APA StyleSedri, M. H., Roohi, E., Niazian, M., & Niedbała, G. (2022). Interactive Effects of Nitrogen and Potassium Fertilizers on Quantitative-Qualitative Traits and Drought Tolerance Indices of Rainfed Wheat Cultivar. Agronomy, 12(1), 30. https://doi.org/10.3390/agronomy12010030