Commercial Cultivation of Australian Wild Oryza spp.: A Review and Conceptual Framework for Future Research Needs
Abstract
:1. Introduction
2. Factors Suggesting Commercial Cultivation of Australian Oryza Species
2.1. Environmental Stress Tolerance of Australian Wild Oryza
2.1.1. Heat Tolerance
2.1.2. Salinity Tolerance
2.1.3. Drought Tolerance
2.1.4. Disease Resistance
2.2. Grain Quality of Australian Wild Oryza
2.2.1. Grain Appearance
2.2.2. Grain Color
2.2.3. Cooking, Eating and Sensory Qualities
2.2.4. Grain Nutritional Quality
2.3. Grain Dormancy Breaking
2.4. Indigenous Interest towards a Wildlife-Based Enterprise
3. Challenges to Commercialization of Australian Wild Oryza
3.1. Management Issues
3.1.1. Lack of Agronomic Knowledge
3.1.2. Seed Storage
3.1.3. Disease Control
3.1.4. Weed and Pest Control
3.2. Post-Harvest Issues: Grain Processing
3.3. Undesirable Wild Characteristics: Shattering Behavior
3.4. Environmental Concern: Rainfall Variability
4. A Wild Rice Industry (Zizania): A Successful Case Study
5. Conceptual Framework
5.1. Step I: Recommended Agronomic Protocols
5.2. Step II: Processing and Milling Efficiency
5.3. Step III: Varietal Improvement
5.4. Step IV: Investment and Marketing
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henry, R. Australian wild rice populations: A key resource for global food security. Front. Plant Sci. 2019, 10, 1354. [Google Scholar] [CrossRef] [PubMed]
- Wurm, P.P.; Bellairs, S. North Australian Native Rice: Market Evaluation of a Potential New Wild Food Enterprise; Publication No. 18/032; AgriFutures: Wagga Wagga, NSW, Australia, 2018. [Google Scholar]
- Yu, H.; Lin, T.; Meng, X.; Du, H.; Zhang, J.; Liu, G.; Chen, M.; Jing, Y.; Kou, L.; Li, X. A route to de novo domestication of wild allotetraploid rice. Cell 2021, 184, 1156–1170.e14. [Google Scholar] [CrossRef] [PubMed]
- Henry, R.J.; Rice, N.; Waters, D.L.; Kasem, S.; Ishikawa, R.; Hao, Y.; Dillon, S.; Crayn, D.; Wing, R.; Vaughan, D. Australian Oryza: Utility and conservation. Rice 2010, 3, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.T.; Das Bhowmik, S.; Long, H.; Cheng, Y.; Mundree, S.; Hoang, L.T.M. Rapid Accumulation of Proline Enhances Salinity Tolerance in Australian Wild Rice Oryza australiensis Domin. Plants 2021, 10, 2044. [Google Scholar] [CrossRef]
- Tikapunya, T.; Fox, G.; Furtado, A.; Henry, R. Grain physical characteristic of the Australian wild rices. Plant Genet. Resour. 2017, 15, 409. [Google Scholar] [CrossRef]
- Tikapunya, T.; Zou, W.; Yu, W.; Powell, P.O.; Fox, G.P.; Furtado, A.; Henry, R.J.; Gilbert, R.G. Molecular structures and properties of starches of Australian wild rice. Carbohydr. Polym. 2017, 172, 213–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tikapunya, T.; Henry, R.J.; Smyth, H. Evaluating the sensory properties of unpolished Australian wild rice. Food Res. Int. 2018, 103, 406–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarvis, D.; Maclean, K.; Woodward, E. The Australian Indigenous-led bush products sector: Insights from the literature and recommendations for the future. Ambio 2021, 51, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Zander, K.K.; Austin, B.J.; Garnett, S.T. Indigenous peoples’ interest in wildlife-based enterprises in the Northern Territory, Australia. Human Ecol. 2014, 42, 115–126. [Google Scholar] [CrossRef]
- Jacquemin, J.; Bhatia, D.; Singh, K.; Wing, R.A. The International Oryza Map Alignment Project: Development of a genus-wide comparative genomics platform to help solve the 9 billion-people question. Curr. Opin. Plant Biol. 2013, 16, 147–156. [Google Scholar] [CrossRef]
- Vaughan, D.A. The Wild Relatives of Rice: A Genetic Resources Handbook; International Rice Research Institute: Manila, Philippines, 1994. [Google Scholar]
- Vaughan, D.A.; Morishima, H.; Kadowaki, K. Diversity in the Oryza genus. Curr. Opin. Plant Biol. 2003, 6, 139–146. [Google Scholar] [CrossRef]
- Atwell, B.J.; Wang, H.; Scafaro, A.P. Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa? Plant Sci. 2014, 215, 48–58. [Google Scholar] [CrossRef]
- Australia’s Virtual Herbarium, Council of Heads of Australasian Herbaria. Available online: http://www.chah.gov.au/avh (accessed on 12 December 2021).
- Ng, N.; Hawkes, J.; Williams, J.; Chang, T. The recognition of a new species of rice (Oryza) from Australia. Bot. J. Linn. Soc. 1981, 82, 327–330. [Google Scholar] [CrossRef]
- Lam, D.T.; Ichitani, K.; Henry, R.J.; Ishikawa, R. Molecular and Morphological Divergence of Australian Wild Rice. Plants 2020, 9, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotowa, M.; Ootsuka, K.; Kobayashi, Y.; Hao, Y.; Tanaka, K.; Ichitani, K.; Flowers, J.M.; Purugganan, M.D.; Nakamura, I.; Sato, Y.-I. Molecular relationships between Australian annual wild rice, Oryza meridionalis, and two related perennial forms. Rice 2013, 6, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brozynska, M.; Copetti, D.; Furtado, A.; Wing, R.A.; Crayn, D.; Fox, G.; Ishikawa, R.; Henry, R.J. Sequencing of Australian wild rice genomes reveals ancestral relationships with domesticated rice. Plant Biotechnol. J. 2017, 15, 765–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chivers, I.; Aldous, D. Reproductive and vegetative responses of different accessions of Microlaena stipoides (Labill.) R. Br. to nitrogen applications and supplementary irrigation in southern Australia. Rangel. J. 2005, 27, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Australian Plant Census. Available online: http://www.chah.gov.au/apc/index.html (accessed on 24 March 2021).
- Johnston, W.; Clifton, C.; Cole, I.; Koen, T.; Mitchell, M.; Waterhouse, D. Low input grasses useful in limiting environments (LIGULE). Aust. J. Agric. Res. 1999, 50, 29–54. [Google Scholar] [CrossRef]
- Meyer, R.S.; DuVal, A.E.; Jensen, H.R. Patterns and processes in crop domestication: An historical review and quantitative analysis of 203 global food crops. New Phytol. 2012, 196, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Shapter, F.M.; Cross, M.; Ablett, G.; Malory, S.; Chivers, I.H.; King, G.J.; Henry, R.J. High-throughput sequencing and mutagenesis to accelerate the domestication of Microlaena stipoides as a new food crop. PLoS ONE 2013, 8, e82641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, D.L.; Nock, C.J.; Ishikawa, R.; Rice, N.; Henry, R.J. Chloroplast genome sequence confirms distinctness of Australian and Asian wild rice. Ecol. Evol. 2012, 2, 211–217. [Google Scholar] [CrossRef]
- Moner, A.M.; Furtado, A.; Chivers, I.; Fox, G.; Crayn, D.; Henry, R.J. Diversity and evolution of rice progenitors in Australia. Ecol. Evol. 2018, 8, 4360–4366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouda, P.K.; Kumar Varma, C.M.; Saikumar, S.; Kiran, B.; Shenoy, V.; Shashidhar, H. Direct selection for grain yield under moisture stress in Oryza sativa cv. IR58025B× Oryza meridionalis population. Crop Sci. 2012, 52, 644–653. [Google Scholar] [CrossRef]
- Yichie, Y.; Brien, C.; Berger, B.; Roberts, T.H.; Atwell, B.J. Salinity tolerance in Australian wild Oryza species varies widely and matches that observed in O. sativa. Rice 2018, 11, 66. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Du, Y.; Liu, X.; Chu, M.; Shi, J.; Zhang, H.; Liu, Y.; Zhang, Z. A comparative UHPLC-QqQ-MS-based metabolomics approach for evaluating Chinese and North American wild rice. Food Chem. 2019, 275, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Oelke, E.A. Wild Rice: Domestication of a Native North American Genus: New crops. In New Crops; Janick, J., Simon, J., Eds.; Wiley: New York, NY, USA, 1993; pp. 235–243. [Google Scholar]
- Kasem, S.; Waters, D.L.; Rice, N.; Shapter, F.M.; Henry, R.J. Whole grain morphology of Australian rice species. Plant Genet. Resour. 2010, 8, 74–81. [Google Scholar] [CrossRef]
- Cole, I.; Johnston, W. Seed production of Australian native grass cultivars: An overview of current information and future research needs. Aust. J. Exp. Agric. 2006, 46, 361–373. [Google Scholar] [CrossRef]
- Bellairs, S.M.; Wurm, P.A.S.; Kernich, B. Temperature affects the dormancy and germination of sympatric annual (Oryza meridionalis) and perennial (O. rufipogon) native Australian rices (Poaceae) and influences their emergence in introduced para grass (Urochloa mutica) swards. Aust. J.Bot. 2015, 63, 687–695. [Google Scholar] [CrossRef]
- Scafaro, A.P.; Haynes, P.A.; Atwell, B.J. Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. J. Exp. Bot. 2010, 61, 191–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scafaro, A.P.; Gallé, A.; Van Rie, J.; Carmo-Silva, E.; Salvucci, M.E.; Atwell, B.J. Heat tolerance in a wild Oryza species is attributed to maintenance of Rubisco activation by a thermally stable Rubisco activase ortholog. New Phytol. 2016, 211, 899–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Australian Government Bureau of Meteorology. Available online: http://www.bom.gov.au/climate/averages/tables/cw_014015.shtml (accessed on 21 May 2021).
- Hoang, T.; Tran, T.; Nguyen, T.; Williams, B.; Wurm, P.; Bellairs, S.; Mundree, S. Improvement of Salinity Stress Tolerance in Rice: Challenges and Opportunities. Agronomy 2016, 6, 54. [Google Scholar] [CrossRef]
- Huang, D.; Qiu, Y.; Zhang, Y.; Huang, F.; Meng, J.; Wei, S.; Li, R.; Chen, B. Fine mapping and characterization of BPH27, a brown planthopper resistance gene from wild rice (Oryza rufipogon Griff.). Theor. Appl. Genet. 2013, 126, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Khemmuk, W.; Shivas, R.G.; Henry, R.J.; Geering, A.D. Fungi associated with foliar diseases of wild and cultivated rice (Oryza spp.) in northern Queensland. Australas. Plant Pathol. 2016, 45, 297–308. [Google Scholar] [CrossRef]
- Yoshida, K.; Miyashita, N.T. DNA polymorphism in the blast disease resistance gene Pita of the wild rice Oryza rufipogon and its related species. Genes Genet. Syst. 2009, 84, 121–136. [Google Scholar] [CrossRef] [Green Version]
- Brar, D.; Khush, G. Alien introgression in rice. In Oryza: From Molecule to Plant; Sasaki, T., Moore, G., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 35–47. [Google Scholar]
- Jena, K.; Jeung, J.; Lee, J.; Choi, H.; Brar, D. High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18 (t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.). Theor. Appl. Genet. 2006, 112, 288–297. [Google Scholar] [CrossRef]
- Ji, H.; Kim, S.-R.; Kim, Y.-H.; Suh, J.-P.; Park, H.-M.; Sreenivasulu, N.; Misra, G.; Kim, S.-M.; Hechanova, S.L.; Kim, H. Map-based cloning and characterization of the BPH18 gene from wild rice conferring resistance to brown planthopper (BPH) insect pest. Sci. Rep. 2016, 6, 34376. [Google Scholar] [CrossRef] [PubMed]
- Jeung, J.; Kim, B.; Cho, Y.; Han, S.; Moon, H.; Lee, Y.; Jena, K. A novel gene, Pi40 (t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor. Appl. Genet. 2007, 115, 1163–1177. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.; Roh, J.; Cho, Y.; Han, S.; Kim, Y.; Jena, K. The Pi40 gene for durable resistance to rice blast and molecular analysis of Pi40-advanced backcross breeding lines. Phytopathology 2009, 99, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Ishii, T.; Brar, D.; Multani, D.; Khush, G. Molecular tagging of genes for brown planthopper resistance and earliness introgressed from Oryza australiensis into cultivated rice, O. sativa. Genome 1994, 37, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Yi, D.; Maike, W.; Yi, S.; Xiaoli, S.; Dianxing, W.; Wenjian, S. Physiochemical Properties of Resistant Starch and Its Enhancement Approaches in Rice. Rice Sci. 2021, 28, 31–42. [Google Scholar] [CrossRef]
- Bao, J. Toward understanding the genetic and molecular bases of the eating and cooking qualities of rice. Cereal Foods World 2012, 57, 148–156. [Google Scholar] [CrossRef]
- Kasem, S.; Waters, D.L.; Ward, R.; Rice, N.; Henry, R.J. Wild Oryza grain physico-chemical properties. Trop. Plant Biol. 2014, 7, 13–18. [Google Scholar] [CrossRef]
- Lyon, B.G.; Champagne, E.T.; Vinyard, B.T.; Windham, W.R. Sensory and instrumental relationships of texture of cooked rice from selected cultivars and postharvest handling practices. Cereal Chem. 2000, 77, 64–69. [Google Scholar] [CrossRef]
- Cruz, N.D.; Khush, G. Rice grain quality evaluation procedures. In Aromatic Rices; Singh, R., Khush, G., Eds.; Oxford & IBH Publishing: New Delhi, India, 2000; Volume 3, pp. 15–28. [Google Scholar]
- Wrigley, C. Encyclopedia of grain science. In Encyclopedia of Grain Science; Wrigley, C., Croke, H., Walker, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 187–200. [Google Scholar]
- Itani, T. History and recent trends of red rice in Japan. Jpn. J. Crop Sci. 2004, 73, 137–147. [Google Scholar] [CrossRef]
- Patindol, J.; Flowers, A.; Kuo, M.-I.; Wang, Y.-J.; Gealy, D. Comparison of physicochemical properties and starch structure of red rice and cultivated rice. J. Agric. Food Chem. 2006, 54, 2712–2718. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aal, E.-S.M.; Young, J.C.; Rabalski, I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J. Agric. Food Chem. 2006, 54, 4696–4704. [Google Scholar] [CrossRef] [PubMed]
- Koide, T.; Kamei, H.; Hashimoto, Y.; Kojima, T.; Hasegawa, M. Antitumor effect of hydrolyzed anthocyanin from grape rinds and red rice. Cancer Biother. Radiopharm. 1996, 11, 273–277. [Google Scholar] [CrossRef]
- Fasahat, P.; Muhammad, K.; Abdullah, A.; Ratnam, W. Proximate nutritional composition and antioxidant properties of ‘Oryza rufipogon’, a wild rice collected from Malaysia compared to cultivated rice, MR219. Aust. J. Crop Sci. 2012, 6, 1502–1507. [Google Scholar]
- Zhu, D.; Zhang, H.; Guo, B.; Xu, K.; Dai, Q.; Wei, C.; Zhou, G.; Huo, Z. Physicochemical properties of indica-japonica hybrid rice starch from Chinese varieties. Food Hydrocoll. 2017, 63, 356–363. [Google Scholar] [CrossRef]
- Shapter, F.M.; Henry, R.; Lee, L. Endosperm and starch granule morphology in wild cereal relatives. Plant Genet. Resour. 2008, 6, 85. [Google Scholar] [CrossRef]
- Wani, A.A.; Singh, P.; Shah, M.A.; Schweiggert-Weisz, U.; Gul, K.; Wani, I.A. Rice starch diversity: Effects on structural, morphological, thermal, and physicochemical properties—A review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 417–436. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, Y.; Jia, B.; Wang, Y.; Wang, Y.; Xu, Q.; Li, R.; Wang, S.; Dou, F. Effects of cultivar, nitrogen rate, and planting density on rice-grain quality. Agronomy 2018, 8, 246. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, F.; Farooq, M. Application of micronutrients in rice-wheat cropping system of south Asia. Rice Sci. 2019, 26, 356–371. [Google Scholar] [CrossRef]
- Ishikawa, R.; Iwata, M.; Taniko, K.; Monden, G.; Miyazaki, N.; Orn, C.; Tsujimura, Y.; Yoshida, S.; Ma, J.F.; Ishii, T. Detection of quantitative trait loci controlling grain zinc concentration using Australian wild rice, Oryza meridionalis, a potential genetic resource for biofortification of rice. PLoS ONE 2017, 12, e0187224. [Google Scholar]
- Timple, S.E.; Hay, F.R.; Mercado, M.; Fatima, O.; Borromeo, T.H. Response of intact seeds of wild rice (Oryza) species to dry heat treatment and dormancy-breaking chemicals. Seed Sci. Technol. 2018, 46, 157–173. [Google Scholar] [CrossRef]
- Gorman, J.; Pearson, D.; Wurm, P. Old ways, new ways—Scaling up from customary use of plant products to commercial harvest taking a multifunctional, landscape approach. Land 2020, 9, 171. [Google Scholar] [CrossRef]
- Buck, M.; Hamilton, C. The Nagoya Protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the Convention on Biological Diversity. Rev. Eur. Community Int. Environ. Law 2011, 20, 47–61. [Google Scholar] [CrossRef]
- Gorman, J.T.; Wurm, P.A.; Vemuri, S.; Brady, C.; Sultanbawa, Y. Kakadu Plum (Terminalia ferdinandiana) as a Sustainable Indigenous Agribusiness. Econ. Bot. 2019, 74, 74–91. [Google Scholar] [CrossRef]
- Woodward, E.; Jarvis, D.; Maclean, K. The Traditional Owner-Led Bush Products Sector: An Overview; CSIRO: Canberra, Australia, 2019.
- Fujiwara, H. Logic Testing and Design for Testability; MIT Press: Cambridge, MA, USA, 1985; p. 29. [Google Scholar]
- Fujiwara, H.; Jones, R.; Brockwell, C.J. Plant opals (phytoliths) in Kakadu archaeological sites: A preliminary report. In Archaeological Research in Kakadu National Park; Jones, R., Ed.; Australian National Parks and Wildlife Service: Canberra, ACT, Australia, 1985; pp. 155–164. [Google Scholar]
- Russell-Smith, J.; Lucas, D.; Gapindi, M.; Gunbunuka, B.; Kapirigi, N.; Namingum, G.; Lucas, K.; Giuliani, P.; Chaloupka, G. Aboriginal resource utilization and fire management practice in western Arnhem Land, monsoonal northern Australia: Notes for prehistory, lessons for the future. Human Ecol. 1997, 25, 159–195. [Google Scholar] [CrossRef]
- Wurm, P.A. The Population Ecology of Oryza meridionalis Ng on the South Alligator River Floodplain, Kakadu National Park, Monsoonal Australia. Ph.D. Thesis, Northern Territory University, Darwin, NT, Australia, 1998. [Google Scholar]
- Silcock, R.; Williams, L.; Smith, F. Quality and storage characteristics of the seeds of important native pasture species in south-west Queensland. Rangel. J. 1990, 12, 14–20. [Google Scholar] [CrossRef]
- Befikadu, D. Factors affecting quality of grain stored in Ethiopian traditional storage structures and opportunities for improvement. Int. J. Sci. Basic. Appl. Res. 2014, 18, 235–257. [Google Scholar]
- Bellairs, S.M.; Caswell, M.J. Seed viability of native grasses is important when revegetating native wildlife habitat. North Territ. Nat. 2016, 27, 36. [Google Scholar]
- Bajwa, A.A.; Chauhan, B.S. Rice production in Australia. In Rice Production Worldwide; Mahajan, G., Chauhan, B.S., Jabran, K., Eds.; Springer: Cham, Switzerland, 2017; pp. 169–184. [Google Scholar]
- Aldrick, S.J.; Buddenhagen, I.; Reddy, A. The occurrence of bacterial leaf blight in wild and cultivated rice in Northern Australia. Austr. J. Agric. Res. 1973, 24, 219–227. [Google Scholar] [CrossRef]
- Nyvall, R.; Percich, J.; Porter, R.; Brantner, J. Comparison of fungal brown spot severity to incidence of seedborne Bipolaris oryzae, B. sorokiniana and infected floral sites on cultivated wild rice. In Minnesota Wild Rice Research; University of Minnesota: Minneapolis, MN, USA, 1995; pp. 68–70. [Google Scholar]
- Johnson, D.R.; Percich, J.A. Wild rice domestication, fungal brown spot disease, and the future of commercial production in Minnesota. Plant Dis. 1992, 76, 1193–1198. [Google Scholar] [CrossRef]
- Ferdinands, K.; Beggs, K.; Whitehead, P. Biodiversity and invasive grass species: Multiple-use or monoculture? Wildl. Res. 2005, 32, 447–457. [Google Scholar] [CrossRef]
- Boyden, J.; Wurm, P.; Joyce, K.E.; Boggs, G. A spatial vulnerability assessment of monsoonal wetland habitats to para grass invasion in Kakadu National Park, northern Australia. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 43–55. [Google Scholar] [CrossRef]
- Wurm, P.A. Suppression of germination and establishment of native annual rice by introduced para grass on an Australian monsoonal floodplain. Plant Prot. Q. 2007, 22, 106–112. [Google Scholar]
- Williams, P.R.; Collins, E.M.; Grice, A.; Mike Nicholas, D.; Perry, J.J. The role of fire in germinating wild rice (Oryza meridionalis), an annual grass of northern Australian wetlands threatened by exotic grass invasion. Ecol. Manag. Restor. 2011, 12, 74–76. [Google Scholar] [CrossRef]
- Wurm, P. A surplus of seeds: High rates of post-dispersal seed predation in a flooded grassland in monsoonal Australia. Austral. J. Ecol. 1998, 23, 385–392. [Google Scholar] [CrossRef]
- Bayliss, P.; Ligtermoet, E. Seasonal habitats, decadal trends in abundance and cultural values of magpie geese (Anseranus semipalmata) on coastal floodplains in the Kakadu Region, northern Australia. Mar. Freshw. Res. 2017, 69, 1079–1091. [Google Scholar] [CrossRef]
- Mollah, W.S. Humpty Doo: Rice in the Territory; The Australian National University, North Australia Research Unit (NARU): BBrinkin, NT, Australia, 1982; p. 48. [Google Scholar]
- Fuller, D.Q.; Qin, L. Water management and labour in the origins and dispersal of Asian rice. World Archaeol. 2009, 41, 88–111. [Google Scholar] [CrossRef]
- Purugganan, M.D.; Fuller, D.Q. The nature of selection during plant domestication. Nature 2009, 457, 843–848. [Google Scholar] [CrossRef]
- Winchell, E.; Dahl, R. Wild Rice: Production, Processing and Marketing; University of Minnesota, Agricultural Experiment Station: Minneapolis, MN, USA, 1984; Volume 29, p. 37. [Google Scholar]
- Arunrat, N.; Pumijumnong, N.; Sereenonchai, S.; Chareonwong, U.; Wang, C. Assessment of climate change impact on rice yield and water footprint of large-scale and individual farming in Thailand. Sci. Total Environ. 2020, 726, 137864. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, P.J.; Saalfeld, K. Nesting phenology of magpie geese (Anseranas semipalmata) in monsoonal northern Australia: Responses to antecedent rainfall. J. Zool. 2000, 251, 495–508. [Google Scholar] [CrossRef]
- Taylor, J.A.; Tulloch, D. Rainfall in the wet-dry tropics: Extreme events at Darwin and similarities between years during the period 1870–1983 inclusive. Aust. J. Ecol. 1985, 10, 281–295. [Google Scholar] [CrossRef]
- Pillsbury, R.W.; McGuire, M.A. Factors affecting the distribution of wild rice (Zizania palustris) and the associated macrophyte community. Wetlands 2009, 29, 724–734. [Google Scholar] [CrossRef]
- Shao, M.; Haas, M.; Kern, A.; Kimball, J. Identification of single nucleotide polymorphism markers for population genetic studies in Zizania palustris L. Conserv. Genet. Resour. 2019, 12, 451–455. [Google Scholar] [CrossRef]
- Porter, R. Wildrice (Zizania L.) in North America: Genetic resources, conservation, and use. In North American Crop Wild Relatives; Greene, S., Williams, K., Khoury, C., Kantar, M., Marek, L., Eds.; Springer: Cham, Switzerland, 2019; Volume 2, pp. 83–97. [Google Scholar]
- Yu, X.; Chu, M.; Chu, C.; Du, Y.; Shi, J.; Liu, X.; Liu, Y.; Zhang, H.; Zhang, Z.; Yan, N. Wild rice (Zizania spp.): A review of its nutritional constituents, phytochemicals, antioxidant activities, and health-promoting effects. Food Chem. 2020, 331, 127293. [Google Scholar] [CrossRef] [PubMed]
- Atkins, T.; Lee, P.; Stewart, J. Growth of wild rice (Z. palustris L.) in fertilized flocculent sediments. J. Environ. Manag. 1992, 35, 217–228. [Google Scholar] [CrossRef]
- Zhai, C.; Lu, C.; Zhang, X.; Sun, G.; Lorenz, K. Comparative study on nutritional value of Chinese and North American wild rice. J. Food Compos. Anal. 2001, 14, 371–382. [Google Scholar] [CrossRef]
- Przybylski, R.; Klensporf-Pawlik, D.; Anwar, F.; Rudzinska, M. Lipid components of North American wild rice (Zizania palustris). J. Am. Oil Chem. Soc. 2009, 86, 553–559. [Google Scholar] [CrossRef]
- Oelke, E.A.; Grava, J.; Noetzel, D.; Barron, D.; Percich, J.; Schertz, C.; Strait, J.; Stucker, R. Wild Rice Production in Minnesota; University of Minnesota: Minneapolis, MN, USA, 1982; p. 40. [Google Scholar]
- Cho, S.; Kays, S.J. Aroma-active compounds of wild rice (Zizania palustris L.). Food Res. Int. 2013, 54, 1463–1470. [Google Scholar] [CrossRef]
- Lu, B.-R.; Naredo, M.E.B.; Juliano, A.B.; Jackson, M.T. Hybridization of AA genome rice species from Asia and Australia II. Meiotic analysis of Oryza meridionalis and its hybrids. Genet. Resour. Crop Evol. 1997, 44, 25–31. [Google Scholar] [CrossRef]
- Lu, B.-R.; Naredo, M.E.B.; Juliano, A.B.; Jackson, M.T. Taxonomic status of Oryza glumaepatula Steud. III. Assessment of genomic affinity among AA genome species from the New World, Asia, and Australia. Genet. Resour. Crop Evol. 1998, 45, 215–223. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelghany, G.; Wurm, P.; Hoang, L.T.M.; Bellairs, S.M. Commercial Cultivation of Australian Wild Oryza spp.: A Review and Conceptual Framework for Future Research Needs. Agronomy 2022, 12, 42. https://doi.org/10.3390/agronomy12010042
Abdelghany G, Wurm P, Hoang LTM, Bellairs SM. Commercial Cultivation of Australian Wild Oryza spp.: A Review and Conceptual Framework for Future Research Needs. Agronomy. 2022; 12(1):42. https://doi.org/10.3390/agronomy12010042
Chicago/Turabian StyleAbdelghany, Gehan, Penelope Wurm, Linh Thi My Hoang, and Sean Mark Bellairs. 2022. "Commercial Cultivation of Australian Wild Oryza spp.: A Review and Conceptual Framework for Future Research Needs" Agronomy 12, no. 1: 42. https://doi.org/10.3390/agronomy12010042
APA StyleAbdelghany, G., Wurm, P., Hoang, L. T. M., & Bellairs, S. M. (2022). Commercial Cultivation of Australian Wild Oryza spp.: A Review and Conceptual Framework for Future Research Needs. Agronomy, 12(1), 42. https://doi.org/10.3390/agronomy12010042