A Methodology for the Automated Delineation of Crop Tree Crowns from UAV-Based Aerial Imagery by Means of Morphological Image Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Site
2.2. Image Acquisition Equipment
2.3. Flights Planning and Execution
2.4. Developed Methodology
2.4.1. Image Preprocessing
2.4.2. Image Processing
2.4.3. Image Postprocessing
2.5. Evaluation of the Developed Methodology
- True Positive (TP): that foreground pixel (white pixel) for which its analogous one in the ground-truth image was categorised as tree crown-belonging pixel.
- False Positive (FP): that foreground pixel which was labelled as a non-tree crown-belonging pixel in the ground-truth image.
- True Negative (TN): that background pixel (black pixel) such that the corresponding one in the ground-truth image was categorised as a non-tree crown-belonging pixel.
- False Negative (FN): that background pixel for which its analogous one was labelled as tree crown-belonging pixel in the ground-truth image.
- Precision (PR): this metric refers to the probability with which a given foreground pixel was correctly categorised. It can be formulated as follows:
- Recall (RC): it represents the ratio between the number of foreground pixels correctly classified and the whole set of instances of actual tree-belonging pixels in the image. Mathematically:
- F-score: as the harmonic mean of these two metrics just proposed:
- Overall Accuracy (OA): it proposes the percentage of pixels correctly classified.
- Intersection-over-Union (IoU): also known as the Jaccard index, this metric signifies the similarity between the resulting segmentation and its corresponding ground-truth image. It can be defined with the following expression:
- True Positive, at tree-level (TPt): that connected component in the final segmentation corresponding to an actual tree crown in the binary ground-truth image.
- False Positive, at tree-level (FPt): that connected component in the final segmentation for which it cannot be found an analogous component, representative of a tree crown, in the ground-truth image.
- False Negative, at tree-level (FNt): that actual tree crown in the ground-truth segmentation not represented in the final segmentation. In other words, those tree crowns are not detected by the algorithm.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision support systems for agriculture 4.0: Survey and challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- Srinivasan, A. Handbook of Precision Agriculture: Principles and Applications; CRC: New York, NY, USA, 2006; ISBN 9781482277968. [Google Scholar]
- Liaghat, S.; Balasundram, S.K. A review: The role of remote sensing in precision agriculture. Am. J. Agric. Biol. Sci. 2010, 5, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Wójtowicz, M.; Wójtowicz, A.; Piekarczyk, J. Application of remote sensing methods in agriculture. Commun. Biometry Crop Sci. 2016, 11, 31–50. [Google Scholar]
- Aquino, A.; Millan, B.; Diago, M.-P.; Tardaguila, J. Automated early yield prediction in vineyards from on-the-go image acquisition. Comput. Electron. Agric. 2018, 144, 26–36. [Google Scholar] [CrossRef]
- Aquino, A.; Ponce, J.M.; Andújar, J.M. Identification of olive fruit, in intensive olive orchards, by means of its morphological structure using convolutional neural networks. Comput. Electron. Agric. 2020, 176, 105616. [Google Scholar] [CrossRef]
- Noguera, M.; Millán, B.; Pérez-Paredes, J.J.; Ponce, J.M.; Aquino, A.; Andújar, J.M. A New Low-Cost Device Based on Thermal Infrared Sensors for Olive Tree Canopy Temperature Measurement and Water Status Monitoring. Remote Sens. 2020, 12, 723. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, W.S.; Payne, A.; Walsh, K.B.; Linker, R.; Cohen, O.; Dailey, M.N. Machine vision for counting fruit on mango tree canopies. Precis. Agric. 2017, 18, 224–244. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, H.; Wang, D.; Li, H.; Mouazen, A.M. A Novel Approach for Estimation of Above-Ground Biomass of Sugar Beet Based on Wavelength Selection and Optimized Support Vector Machine. Remote Sens. 2020, 12, 620. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Gong, L.; Zhou, B.; Huang, Y.; Liu, C. Detecting tomatoes in greenhouse scenes by combining AdaBoost classifier and colour analysis. Biosyst. Eng. 2016, 148, 127–137. [Google Scholar] [CrossRef]
- Colwell, R.N. Determining the prevalence of certain cereal crop diseases by means of aerial photography. Hilgardia 1956, 26, 223–286. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Cipra, J. Identification of Agricultural Crops by Computer Processing of ERTS MSS Data. LARS Tech. Rep. 1973, 20, 205–212. [Google Scholar]
- Hoffman, R.O.; Edwards, D.M.; Eucker, C.C. Identifying and Measuring Crop Type Using Satellite Imagery. Trans. ASAE 1976, 19, 1066–1070. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R.; Daughtry, C.S.T. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? Int. J. Remote Sens. 2018, 39, 5345–5376. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X.; et al. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives. Front. Plant Sci. 2017, 8, 1111. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Hassler, S.C.; Baysal-Gurel, F. Unmanned Aircraft System (UAS) Technology and Applications in Agriculture. Agronomy 2019, 9, 618. [Google Scholar] [CrossRef] [Green Version]
- Gevaert, C.M.; Tang, J.; García-Haro, F.J.; Suomalainen, J.; Kooistra, L. Combining hyperspectral UAV and multispectral Formosat-2 imagery for precision agriculture applications. In Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS); IEEE: Piscataway, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Xiong, W.; Habib, A. A Structure-from-Motion Approach Using UAV-based Imagery for Precision Agriculture Applications. In Proceedings of the 10th International Conference on Mobile Mapping Technology, Cairo, Egypt, 6–8 May 2017. [Google Scholar]
- Chapman, S.C.; Merz, T.; Chan, A.; Jackway, P.; Hrabar, S.; Dreccer, M.F.; Holland, E.; Zheng, B.; Ling, T.J.; Jimenez-Berni, J. Pheno-Copter: A Low-Altitude, Autonomous Remote-Sensing Robotic Helicopter for High-Throughput Field-Based Phenotyping. Agronomy 2014, 4, 279–301. [Google Scholar] [CrossRef] [Green Version]
- Marino, S.; Alvino, A. Detection of Spatial and Temporal Variability of Wheat Cultivars by High-Resolution Vegetation Indices. Agronomy 2019, 9, 226. [Google Scholar] [CrossRef] [Green Version]
- Zaman-Allah, M.; Vergara, O.; Araus, J.L.; Tarekegne, A.; Magorokosho, C.; Zarco-Tejada, P.J.; Hornero, A.; Albà, A.H.; Das, B.; Craufurd, P.; et al. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods 2015, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Roth, L.; Streit, B. Predicting cover crop biomass by lightweight UAS-based RGB and NIR photography: An applied photogrammetric approach. Precis. Agric. 2018, 19, 93–114. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Liu, S.; Baret, F.; Hemerlé, M.; Comar, A. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens. Environ. 2017, 198, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Aparna, P.; Ramachandra, H.; Sounder, H.; Harshita, M.P.; Nandkishore, K.; Vinod, P.V. CNN Based Technique for Automatic Tree Counting Using Very High Resolution Data. In Proceedings of the 2018 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C), Bangalore, India, 25–26 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 127–129. [Google Scholar]
- Rosell, J.R.; Sanz, R. A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Comput. Electron. Agric. 2012, 81, 124–141. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Su, Y.; Guo, Q. Comparison of Canopy Cover Estimations from Airborne LiDAR, Aerial Imagery, and Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4225–4236. [Google Scholar] [CrossRef]
- Zortea, M.; Macedo, M.M.G.; Mattos, A.B.; Ruga, B.C.; Gemignani, B.H. Automatic Citrus Tree Detection from UAV Images based on Convolutional Neural Networks. In Proceedings of the 31th Sibgrap/WIA—Conference on Graphics, Patterns and Images, Foz do Iguaçu, Brazil, 29 October–1 November 2018. [Google Scholar]
- Csillik, O.; Cherbini, J.; Johnson, R.; Lyons, A.; Kelly, M. Identification of citrus trees from unmanned aerial vehicle imagery using convolutional neural networks. Drones 2018, 2, 39. [Google Scholar] [CrossRef] [Green Version]
- Ampatzidis, Y.; Partel, V. UAV-Based High Throughput Phenotyping in Citrus Utilizing Multispectral Imaging and Artificial Intelligence. Remote Sens. 2019, 11, 410. [Google Scholar] [CrossRef] [Green Version]
- Recio, J.A.; Hermosilla, T.; Ruiz, L.A.; Palomar, J. Automated extraction of tree and plot-based parameters in citrus orchards from aerial images. Comput. Electron. Agric. 2013, 90, 24–34. [Google Scholar] [CrossRef]
- Ok, A.O.; Ozdarici-Ok, A. 2-D delineation of individual citrus trees from UAV-based dense photogrammetric surface models. Int. J. Digit. Earth 2017, 11, 583–608. [Google Scholar] [CrossRef]
- Modica, G.; De Luca, G.; Messina, G.; Praticò, S. Comparison and assessment of different object-based classifications using machine learning algorithms and UAVs multispectral imagery: A case study in a citrus orchard and an onion crop. Eur. J. Remote Sens. 2021, 54, 431–460. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, Z.; Yu, R.; Tian, Q.; Zhu, X. Extraction of Information about Individual Trees from High-Spatial-Resolution UAV-Acquired Images of an Orchard. Remote Sens. 2020, 12, 133. [Google Scholar] [CrossRef] [Green Version]
- Marques, P.; Pádua, L.; Adão, T.; Hruška, J.; Peres, E.; Sousa, A.; Sousa, J.J. UAV-Based Automatic Detection and Monitoring of Chestnut Trees. Remote Sens. 2019, 11, 855. [Google Scholar] [CrossRef] [Green Version]
- Salamí, E.; Gallardo, A.; Skorobogatov, G.; Barrado, C. On-the-Fly Olive Trees Counting Using a UAS and Cloud Services. Remote Sens. 2019, 11, 316. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Chen, S.; Li, D.; Wang, C.; Yang, J. Papaya Tree Detection with UAV Images Using a GPU-Accelerated Scale-Space Filtering Method. Remote Sens. 2017, 9, 721. [Google Scholar] [CrossRef] [Green Version]
- Johansen, K.; Raharjo, T.; McCabe, M. Using Multi-Spectral UAV Imagery to Extract Tree Crop Structural Properties and Assess Pruning Effects. Remote Sens. 2018, 10, 854. [Google Scholar] [CrossRef] [Green Version]
- Diez, C.M.; Moral, J.; Cabello, D.; Morello, P.; Rallo, L.; Barranco, D. Cultivar and tree density as key factors in the long-term performance of super high-density olive orchards. Front. Plant Sci. 2016, 7, 1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menzel, C.M.; Le Lagadec, M.D. Increasing the productivity of avocado orchards using high-density plantings: A review. Sci. Hortic. 2014, 177, 21–36. [Google Scholar] [CrossRef]
- Majid, I.; Khalil, A.K.; Nazir, N. Economic Analysis of High Density Orchards. Int. J. Adv. Res. Sci. Eng. 2018, 7, 821–829. [Google Scholar] [CrossRef]
- Sarabia, R.; Aquino, A.; Ponce, J.M.; López, G.; Andújar, J.M. Automated Identification of Crop Tree Crowns from UAV Multispectral Imagery by Means of Morphological Image Analysis. Remote Sens. 2020, 12, 748. [Google Scholar] [CrossRef] [Green Version]
- Instituto Geográfico Nacional. Available online: http://www.ign.es/web/ign/portal (accessed on 19 November 2021).
- Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM National Conference, New York, NY, USA, 27–29 August 1968; ACM Press: New York, NY, USA, 1968; pp. 517–524. [Google Scholar]
- Soille, P. Morphological Image Analysis: Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 9783662050880. [Google Scholar]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man. Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, A. Connectivity in Digital Pictures. J. ACM 1970, 17, 146–160. [Google Scholar] [CrossRef]
- Maurer, C.R.; Qi, R.; Raghavan, V. A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 265–270. [Google Scholar] [CrossRef]
- Beucher, S.; Lantuejoul, C. Use of watersheds in contour detection. In Proceedings of the International Workshop on Image Processing, Real-Time Edge and Motion Detection, Rennes, France, 17–21 September 1979; pp. 17–21. [Google Scholar]
- Beucher, S.; Meyer, F. The Morphological Approach to Segmentation: The Watershed Transformation. In Mathematical Morphology in Image Processing, 1st ed.; Dougherty, E., Ed.; CRC: New York, NY, USA, 1992; Volume I, pp. 433–481. ISBN 9780824787240. [Google Scholar]
- Meyer, F. Topographic distance and watershed lines. Signal Process. 1994, 38, 113–125. [Google Scholar] [CrossRef]
- Gies, V.; Bernard, T.M. Statistical solution to watershed over-segmentation. Proc. Int. Conf. Image Process. ICIP 2004, 3, 1863–1866. [Google Scholar] [CrossRef]
- Frucci, M. From Segmentation to Binarization of Gray-level Images. J. Pattern Recognit. Res. 2008, 1, 1–13. [Google Scholar] [CrossRef]
- Najman, L.; Schmitt, M. Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.K. Fundamentals of Digital Image Processing; Prentice Hall: Upper Saddle River, NJ, USA, 1989; ISBN 0133361659. [Google Scholar]
- Pérez, A.J.; López, F.; Benlloch, J.V.; Christensen, S. Colour and shape analysis techniques for weed detection in cereal fields. Comput. Electron. Agric. 2000, 25, 197–212. [Google Scholar] [CrossRef]
- Thorp, K.R.; Tian, L.F. A Review on Remote Sensing of Weeds in Agriculture. Precis. Agric. 2004, 5, 477–508. [Google Scholar] [CrossRef]
- López-Granados, F. Weed detection for site-specific weed management: Mapping and real-time approaches. Weed Res. 2011, 51, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Torres-Sánchez, J.; Peña-Barragán, J.M.; Gómez-Candón, D.; De Castro, A.I.; López-Granados, F. Imagery from unmanned aerial vehicles for early site specific weed management. Precis. Agric. 2013, 13, 193–199. [Google Scholar] [CrossRef]
- Serra, J. Image Analysis and Mathematical Morphology; Academic Press Inc.: Cambridge, MA, USA, 1982; Volume I, ISBN 9780126372427. [Google Scholar]
Spectral Bands | Centre Wavelength (nm) | Bandwidth (nm) |
---|---|---|
Blue | 475 | 20 |
Green | 560 | 20 |
Red | 668 | 10 |
Red-Edge | 717 | 10 |
NIR | 840 | 40 |
Ground Sample Distance (GSD) | 8 cm per pixel (per band) at 120 m AGL 1 | |
Max Capture Rate | 1 capture per second (all bands), 12-bit RAW | |
Field of View | 47.2° HFOV 2 | |
Imager Resolution | 1280 × 960 pixels |
DJITM Matrice 100 | DJITM Phantom 3 | |
---|---|---|
Diagonal Wheelbase | 650 mm | 350 mm |
Max Take-off Weight | 3600 g | 1280 g 1 |
Max Speed | 17 m/s (GPS mode, no payload, no wind) 22 m/s (ATTI mode, no payload, no wind) | 16 m/s (ATTI mode, no payload, no wind) |
Max Wind Resistance | 10 m/s | 10 m/s |
Operating Temperature | 10° to 40° | 0° to 40° |
Case Study | Filtering-Kernel Maximum Radius-Size, rβ (pixels/cm 1) | Relevant Maxima-Threshold, h (m) |
---|---|---|
Lemon-tree | 42.5/204 | 1.5 |
Orange-tree | 55/264 | 1.1 |
Olive | 70/336 | 1 |
Case Study | PR 1 | RC 2 | F-score 3 | OA 4 | IoU 5 |
---|---|---|---|---|---|
Lemon-tree | 0.91993 | 0.89750 | 0.90858 | 0.98986 | 0.83247 |
Orange-tree | 0.93169 | 0.94280 | 0.93721 | 0.98291 | 0.88185 |
Olive | 0.88918 | 0.98249 | 0.93351 | 0.98185 | 0.87530 |
Case Study | tpt 1 | fpt 2 | fnt 3 | PRt 4 | RCt 5 | F-scoret 6 |
---|---|---|---|---|---|---|
Lemon-tree | 548 | 0 | 4 | 1 | 0.99275 | 0.99636 |
Orange-tree | 758 | 2 | 23 | 0.99737 | 0.97055 | 0.98377 |
Olive | 3906 | 5 | 10 | 0.99872 | 0.99744 | 0.99808 |
Semantic Segmentation Accuracy | Individual Tree Detection | ||||||||
---|---|---|---|---|---|---|---|---|---|
Case Study | rβ (pixels) | PR 1 | RC 2 | F-score 3 | OA 4 | IoU 5 | PRt 6 | RCt 7 | F-scoret 8 |
Lemon-tree | 12.5 | 0.90357 | 0.30466 | 0.45567 | 0.95915 | 0.29506 | 0.64498 | 0.86232 | 0.73798 |
22.5 | 0.90498 | 0.56947 | 0.69905 | 0.97248 | 0.53734 | 0.75211 | 0.96739 | 0.84627 | |
32.5 | 0.92030 | 0.89636 | 0.90817 | 0.98983 | 0.83179 | 1 | 0.99275 | 0.99636 | |
42.5 | 0.91993 | 0.8975 | 0.90858 | 0.98986 | 0.83247 | 1 | 0.99275 | 0.99636 | |
52.5 | 0.91993 | 0.89751 | 0.90858 | 0.98986 | 0.83248 | 1 | 0.99275 | 0.99636 | |
62.5 | 0.91980 | 0.89767 | 0.90860 | 0.98986 | 0.83250 | 1 | 0.99275 | 0.99636 | |
72.5 | 0.91965 | 0.89775 | 0.90857 | 0.98986 | 0.83245 | 1 | 0.99275 | 0.99636 | |
Orange-tree | 25 | 0.89027 | 0.3977 | 0.54980 | 0.91187 | 0.37912 | 0.60945 | 0.94110 | 0.73981 |
35 | 0.91334 | 0.56325 | 0.69679 | 0.93367 | 0.53467 | 0.96741 | 0.95006 | 0.95866 | |
45 | 0.93170 | 0.92755 | 0.92962 | 0.98100 | 0.86850 | 0.99217 | 0.97311 | 0.98255 | |
55 | 0.93169 | 0.94280 | 0.93721 | 0.98291 | 0.88185 | 0.99737 | 0.97055 | 0.98378 | |
65 | 0.93167 | 0.94284 | 0.93722 | 0.98291 | 0.88186 | 0.99737 | 0.97055 | 0.98378 | |
75 | 0.93152 | 0.94335 | 0.93740 | 0.98295 | 0.88217 | 0.99737 | 0.97055 | 0.98378 | |
85 | 0.93245 | 0.94131 | 0.93686 | 0.98283 | 0.88121 | 0.99607 | 0.97311 | 0.98446 | |
Olive | 40 | 0.89326 | 0.92540 | 0.90905 | 0.97599 | 0.83326 | 0.96850 | 0.99719 | 0.98264 |
50 | 0.89090 | 0.98005 | 0.93335 | 0.98185 | 0.87503 | 0.99872 | 0.99719 | 0.99796 | |
60 | 0.88918 | 0.98249 | 0.93351 | 0.98185 | 0.87530 | 0.99847 | 0.99745 | 0.99796 | |
70 | 0.88918 | 0.98249 | 0.93351 | 0.98185 | 0.87530 | 0.99872 | 0.99745 | 0.99808 | |
80 | 0.88868 | 0.98274 | 0.93335 | 0.98180 | 0.87502 | 0.99872 | 0.99770 | 0.99821 | |
90 | 0.88810 | 0.98304 | 0.93316 | 0.98174 | 0.87470 | 0.99923 | 0.99796 | 0.99859 | |
100 | 0.88823 | 0.98296 | 0.93320 | 0.98175 | 0.87476 | 0.99923 | 0.99770 | 0.99847 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponce, J.M.; Aquino, A.; Tejada, D.; Al-Hadithi, B.M.; Andújar, J.M. A Methodology for the Automated Delineation of Crop Tree Crowns from UAV-Based Aerial Imagery by Means of Morphological Image Analysis. Agronomy 2022, 12, 43. https://doi.org/10.3390/agronomy12010043
Ponce JM, Aquino A, Tejada D, Al-Hadithi BM, Andújar JM. A Methodology for the Automated Delineation of Crop Tree Crowns from UAV-Based Aerial Imagery by Means of Morphological Image Analysis. Agronomy. 2022; 12(1):43. https://doi.org/10.3390/agronomy12010043
Chicago/Turabian StylePonce, Juan Manuel, Arturo Aquino, Diego Tejada, Basil Mohammed Al-Hadithi, and José Manuel Andújar. 2022. "A Methodology for the Automated Delineation of Crop Tree Crowns from UAV-Based Aerial Imagery by Means of Morphological Image Analysis" Agronomy 12, no. 1: 43. https://doi.org/10.3390/agronomy12010043
APA StylePonce, J. M., Aquino, A., Tejada, D., Al-Hadithi, B. M., & Andújar, J. M. (2022). A Methodology for the Automated Delineation of Crop Tree Crowns from UAV-Based Aerial Imagery by Means of Morphological Image Analysis. Agronomy, 12(1), 43. https://doi.org/10.3390/agronomy12010043