Photovoltaics and Electrification in Agriculture
1. Introduction: The Importance of Electricity for Agriculture
2. Special Issue Overview: General Topics
2.1. The Use of Photovoltaics in Greenhouses
2.2. Viability of Photovoltaics Coexisting with Traditional Agriculture
2.3. Precision Agriculture and Photovoltaics
2.4. Research in Electrification Applied to Rural Areas
3. Conclusions
- -
- Photovoltaic energy is the most competitive electrical energy option for the agricultural sector at the present time due to the drastic drop in component prices.
- -
- The cultivation can be developed under photovoltaic panels coexisting in the so-called “agrovoltaics” with an increase in profitability or land use.
- -
- Precision agriculture or agriculture 4.0, based on the Internet of Things (IoT), benefits from the use of photovoltaic solar energy for its purposes.
- -
- Greenhouses are an ideal agricultural production system for the integration of photovoltaic panels of different technologies, such as organic, semi-transparent, or amorphous silicon panels.
Funding
Informed Consent Statement
Conflicts of Interest
References
- EuroStat. Share of Energy Consumption by Agriculture in Final Energy Consumption, EU, 2009 and 2019. 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_energy_use (accessed on 29 October 2021).
- IEA. Global Share of Total Final Consumption by Source; IEA: Paris, France, 2018; Available online: https://www.iea.org/data-and-statistics/charts/global-share-of-total-final-consumption-by-source-2018 (accessed on 29 October 2021).
- Aira, J.-R.; Gallardo-Saavedra, S.; Eugenio-Gozalbo, M.; Alonso-Gómez, V.; Muñoz-García, M.; Hernández-Callejo, L. Analysis of the Viability of a Photovoltaic Greenhouse with Semi-Transparent Amorphous Silicon (a-Si) Glass. Agronomy 2021, 11, 1097. [Google Scholar] [CrossRef]
- Waller, R.; Kacira, M.; Magadley, E.; Teitel, M.; Yehia, I. Semi-Transparent Organic Photovoltaics Applied as Greenhouse Shade for Spring and Summer Tomato Production in Arid Climate. Agronomy 2021, 11, 1152. [Google Scholar] [CrossRef]
- Diez, F.; Martínez-Rodríguez, A.; Navas-Gracia, L.; Chico-Santamarta, L.; Correa-Guimaraes, A.; Andara, R. Estimation of the Hourly Global Solar Irradiation on the Tilted and Oriented Plane of Photovoltaic Solar Panels Applied to Greenhouse Production. Agronomy 2021, 11, 495. [Google Scholar] [CrossRef]
- Othman, N.F.; Yaacob, M.E.; Su, A.S.M.; Jaafar, J.N.; Hizam, H.; Shahidan, M.F.; Jamaluddin, A.H.; Chen, G.; Jalaludin, A. Modeling of Stochastic Temperature and Heat Stress Directly Underneath Agrivoltaic Conditions with Orthosiphon Stamineus Crop Cultivation. Agronomy 2020, 10, 1472. [Google Scholar] [CrossRef]
- Bhandari, S.N.; Schlüter, S.; Kuckshinrichs, W.; Schlör, H.; Adamou, R.; Bhandari, R. Economic Feasibility of Agrivoltaic Systems in Food-Energy Nexus Context: Modelling and a Case Study in Niger. Agronomy 2021, 11, 1906. [Google Scholar] [CrossRef]
- Moreda, G.; Muñoz-García, M.; Alonso-García, M.; Hernández-Callejo, L. Techno-Economic Viability of Agro-Photovoltaic Irrigated Arable Lands in the EU-Med Region: A Case-Study in Southwestern Spain. Agronomy 2021, 11, 593. [Google Scholar] [CrossRef]
- Pascaris, A.S.; Schelly, C.; Pearce, J.M. A First Investigation of Agriculture Sector Perspectives on the Opportunities and Barriers for Agrivoltaics. Agronomy 2020, 10, 1885. [Google Scholar] [CrossRef]
- Weselek, A.; Bauerle, A.; Zikeli, S.; Lewandowski, I.; Högy, P. Effects on Crop Development, Yields and Chemical Composition of Celeriac (Apium Graveolens L. Var. Rapaceum) Cultivated Underneath an Agrivoltaic System. Agronomy 2021, 11, 733. [Google Scholar] [CrossRef]
- Chand, A.; Prasad, K.; Mar, E.; Dakai, S.; Mamun, K.; Islam, F.; Mehta, U.; Kumar, N. Design and Analysis of Photovoltaic Powered Battery-Operated Computer Vision-Based Multi-Purpose Smart Farming Robot. Agronomy 2021, 11, 530. [Google Scholar] [CrossRef]
- Swain, M.; Zimon, D.; Singh, R.; Hashmi, M.F.; Rashid, M.; Hakak, S. LoRa-LBO: An Experimental Analysis of LoRa Link Budget Optimization in Custom Build IoT Test Bed for Agriculture 4.0. Agronomy 2021, 11, 820. [Google Scholar] [CrossRef]
- Pindado, S.; Alcala-Gonzalez, D.; Alfonso-Corcuera, D.; del Toro, E.G.; Más-López, M. Improving the Power Supply Performance in Rural Smart Grids with Photovoltaic DG by Optimizing Fuse Selection. Agronomy 2021, 11, 622. [Google Scholar] [CrossRef]
- Ibrik, I. Micro-Grid Solar Photovoltaic Systems for Rural Development and Sustainable Agriculture in Palestine. Agronomy 2020, 10, 1474. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-García, M.A.; Hernández-Callejo, L. Photovoltaics and Electrification in Agriculture. Agronomy 2022, 12, 44. https://doi.org/10.3390/agronomy12010044
Muñoz-García MA, Hernández-Callejo L. Photovoltaics and Electrification in Agriculture. Agronomy. 2022; 12(1):44. https://doi.org/10.3390/agronomy12010044
Chicago/Turabian StyleMuñoz-García, Miguel A., and Luis Hernández-Callejo. 2022. "Photovoltaics and Electrification in Agriculture" Agronomy 12, no. 1: 44. https://doi.org/10.3390/agronomy12010044
APA StyleMuñoz-García, M. A., & Hernández-Callejo, L. (2022). Photovoltaics and Electrification in Agriculture. Agronomy, 12(1), 44. https://doi.org/10.3390/agronomy12010044