Application of Multiplex TaqMan Real-Time PCR Assay in Survey of Five Lily Viruses Infecting Lilium spp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. RNA Extraction and Reverse Transcription
2.3. Design of Primers and TaqMan Probes
2.4. Optimization of the Multiplex TaqMan Real-Time PCR Assay
2.5. Construction of Standard Plasmids and Standard Curves
2.6. Specificity of the Multiplex Real-Time PCR
2.7. Analytical Sensitivity
2.8. Reproducibility
2.9. Survey of Lily Viruses by the Multiplex Real-Time PCR Assay
2.10. Statistical Analysis
3. Results
3.1. Optimization of the Multiplex TaqMan Real-Time PCR Assay
3.2. Standard Curves of the Multiplex TaqMan Real-Time PCR Assay
3.3. Specificity of the Multiplex TaqMan Real-Time PCR Assay
3.4. Sensitivity of the Multiplex TaqMan Real-Time PCR Assay
3.5. Repeatability of the Multiplex TaqMan Real-Time PCR Assay
3.6. Application of Multiplex TaqMan Real-Time PCR Assay in Survey of Lily Viruses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Munafo, J.P., Jr.; Ramanathan, A.; Jimenez, L.S.; Gianfagna, T.J. Isolation and structural determination of steroidal glycosides from the bulbs of easter lily (Lilium longiflorum Thunb.). J. Agric. Food Chem. 2010, 58, 8806–8813. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, Y.; Yan, L.; Guo, Y.; Niu, L. Phenolic compounds and antioxidant activity of bulb extracts of six Lilium species native to China. Molecules 2012, 17, 9361–9378. [Google Scholar] [CrossRef] [PubMed]
- Bakhshaie, M.; Khosravi, S.; Azadi, P.; Bagheri, H.; van Tuyl, J.M. Biotechnological advances in Lilium. Plant Cell Rep. 2016, 35, 1799–1826. [Google Scholar] [CrossRef]
- Asjes, C.J. Control of aphid-borne Lily symptomless virus and Lily mottle virus in Lilium in the Netherlands. Virus Res. 2000, 71, 23–32. [Google Scholar] [CrossRef]
- Komatsu, K.; Yamaji, Y.; Ozeki, J.; Hashimoto, M.; Kagiwada, S.; Takahashi, S.; Namba, S. Nucleotide sequence analysis of seven Japanese isolates of Plantago asiatica mosaic virus (PlAMV): A unique potexvirus with significantly high genomic and biological variability within the species. Arch. Virol. 2008, 153, 193–198. [Google Scholar] [CrossRef]
- Chinestra, S.C.; Facchinetti, C.; Curvetto, N.R.; Marinangeli, P.A. Detection and frequency of lily viruses in argentina. Plant Dis. 2010, 94, 1188–1194. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Xie, Z.; Yang, G.; Guo, Z.; Wang, L. Simultaneous detection of three lily viruses using Triplex IC-RT-PCR. J. Virol. Methods 2017, 249, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; He, G.; Cao, Y.; Xu, L.; Ming, J. First Report of Shallot yellow stripe virus in Lilium lancifolium in China. Plant Dis. 2019, 103, 2146. [Google Scholar] [CrossRef]
- Tanaka, M.; Verbeek, M.; Takehara, M.; Pham, K.; Lemmers, M.; Slootweg, C.; Arie, T.; Komatsu, K. Differences in infectivity and pathogenicity of two Plantago asiatica mosaic virus isolates in lilies. Eur. J. Plant Pathol. 2019, 153, 813–823. [Google Scholar] [CrossRef]
- Le, T.B.; Kim, H.K.; Na, W.; Le, V.P.; Song, M.-S.; Song, D.; Jeong, D.G.; Yoon, S.-W. Development of a Multiplex RT-qPCR for the Detection of Different Clades of Avian Influenza in Poultry. Viruses 2020, 12, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, C.G.; Turechek, W.W.; Li, W.; Kousik, C.S.; Adkins, S. Development and Evaluation of ELISA and qRT-PCR for Identification of Squash vein yellowing virus in Cucurbits. Plant Dis. 2017, 101, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Du, X.; Chen, C.; Chen, Z.; Zhang, L.; Han, Q.; Xia, X.; Song, Y.; Zhang, J. Development and characterization of double-antibody sandwich ELISA for detection of Zika virus infection. Viruses 2018, 10, 634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Q.; Bi, Z.; Yin, D.; Gu, X.; Xu, Z.; Huang, R.; Xing, X.; Qi, K.; Wang, G. Development and application of an indirect ELISA for the serological detection of duck Tembusu virus infection based on the NS1 protein antigen. Arch. Virol. 2020, 165, 709–714. [Google Scholar] [CrossRef]
- Santiago, G.A.; Vázquez, J.; Courtney, S.; Matías, K.Y.; Andersen, L.E.; Colón, C.; Butler, A.E.; Roulo, R.; Bowzard, J.; Villanueva, J.M.; et al. Performance of the Trioplex real-time RT-PCR assay for detection of Zika, dengue, and chikungunya viruses. Nat. Commun. 2018, 9, 1391. [Google Scholar] [CrossRef]
- Diaz-Lara, A.; Stevens, K.; Klaassen, V.; Golino, D.; Al Rwahnih, M. Comprehensive Real-Time RT-PCR Assays for the Detection of Fifteen Viruses Infecting Prunus spp. Plants 2020, 9, 273. [Google Scholar] [CrossRef] [Green Version]
- Mahapatra, M.; Howson, E.; Fowler, V.; Batten, C.; Flannery, J.; Selvaraj, M.; Parida, S. Rapid Detection of Peste des Petits Ruminants Virus (PPRV) Nucleic Acid Using a Novel Low-Cost Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) Assay for Future Use in Nascent PPR Eradication Programme. Viruses 2019, 11, 699. [Google Scholar] [CrossRef] [Green Version]
- Liu, I.-L.; Lin, Y.-C.; Lin, Y.-C.; Jian, C.-Z.; Cheng, I.-C.; Chen, H.-W. A Novel Immunochromatographic Strip for Antigen Detection of Avian Infectious Bronchitis Virus. Int. J. Mol. Sci. 2019, 20, 2216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niimi, Y.; Han, D.S.; Fujisaki, M. Production of virus-free plantlets by anther culture of Lilium × ‘Enchantment’. Sci. Hortic. 2001, 90, 325–334. [Google Scholar] [CrossRef]
- Niimi, Y.; Han, D.S.; Mori, S.; Kobayashi, H. Detection of Cucumber mosaic virus, Lily symptomless virus and Lily mottle virus in Lilium species by RT-PCR technique. Sci. Hortic. 2003, 97, 57–63. [Google Scholar] [CrossRef]
- Zhao, B.; Yang, D.; Zhang, Y.; Xu, Y.; Zhao, X.; Liang, J.; Fan, X.; Du, Y.; Zhu, Z.; Shi, B.; et al. Rapid visual detection of Lily mottle virus using a loop-mediated isothermal amplification method. Arch. Virol. 2018, 163, 545–548. [Google Scholar] [CrossRef]
- Zhao, X.; Du, Y.; Zhang, Y.; Liang, J.; Cai, Y.; Xu, Y.; Fan, X.; Wu, W.; Zhang, Q.; Zhang, X.; et al. Effective detection of Lily symptomless virus using the reverse transcription loop–mediated isothermal amplification method. Australas. Plant Pathol. 2019, 48, 373–374. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Xie, Z.; Wang, R.; Guo, Z.; He, Y. Rapid Detection of Lily mottle virus and Arabis mosaic virus Infecting Lily (Lilium spp.) Using Reverse Transcription Loop-Mediated Isothermal Amplification. Plant Pathol. J. 2020, 36, 170–178. [Google Scholar] [CrossRef]
- Elnifro, E.M.; Ashshi, A.M.; Cooper, R.J.; Klapper, P.E. Multiplex PCR: Optimization and application in diagnostic virology. Clin. Microbiol. Rev. 2000, 13, 559–570. [Google Scholar] [CrossRef]
- Giry, C.; Roquebert, B.; Li-Pat-Yuen, G.; Gasque, P.; Jaffar-Bandjee, M.C. Simultaneous detection of Chikungunya virus, dengue virus and human pathogenic Leptospira genomes using a multiplex TaqMan® assay. BMC Microbiol. 2017, 17, 105. [Google Scholar] [CrossRef] [PubMed]
- Wolff, B.J.; Morrison, S.S.; Winchell, J.M. Development of a multiplex TaqMan real-time PCR assay for the detection of Chlamydia psittaci and Chlamydia pneumoniae in human clinical specimens. Diagn. Microbiol. Infect. Dis. 2018, 90, 167–170. [Google Scholar] [CrossRef]
- Zhen, W.; Berry, G.J. Development of a New Multiplex Real-Time RT-PCR Assay for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Detection. J. Mol. Diagn. 2020, 22, 1367–1372. [Google Scholar] [CrossRef]
- Yu, Z.; Wu, H.; Huang, Q.; Zhong, Z. Simultaneous detection of Marburg virus and Ebola virus with TaqMan-based multiplex real-time PCR method. J. Clin. Lab. Anal. 2021, 35, 6. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Wang, J.; Xu, F.; Huang, B.; Lian, Y.; Rao, D.; Yin, X.; Wu, M.; Zhu, Y.; Zhang, Y.; et al. Development of a duplex real-time RT-PCR for the simultaneous detection and differentiation of Theiler’s murine encephalomyelitis virus and rat theilovirus. J. Virol. Methods 2016, 236, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Calixto, R.; Oliveira, G.; Lima, M.; Andrade, A.C.; Trindade, G.D.S.; De Oliveira, D.B.; Kroon, E.G. A Model to Detect Autochthonous Group 1 and 2 Brazilian Vaccinia virus Coinfections: Development of a qPCR Tool for Diagnosis and Pathogenesis Studies. Viruses 2018, 10, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Zhang, Y.; Cui, P.; Wang, C.; Zeng, X.; Deng, G.; Wang, X. Development of a duplex TaqMan real-time RT-PCR assay for simultaneous detection of newly emerged H5N6 influenza viruses. Virol. J. 2019, 16, 1. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, D.; Hu, J.; Sun, W.; Liu, K.; Li, J.; Xu, H.; Liu, J.; He, L.; Jiang, D.; et al. Multiplex one-step real-time PCR assay for rapid simultaneous detection of velogenic and mesogenic Newcastle disease virus and H5-subtype avian influenza virus. Arch. Virol. 2019, 164, 1111–1119. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, W.; Ye, R.; Pan, Z.; Li, G.; Su, S. One-step multiplex TaqMan probe-based method for real-time PCR detection of four canine diarrhea viruses. Mol. Cell. Probes 2020, 53, 101618. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chen, J.; Yao, G.; Guo, Q.; Wang, J.; Liu, G. A TaqMan-probe-based multiplex real-time RT-qPCR for simultaneous detection of porcine enteric coronaviruses. Appl. Microbiol. Biotechnol. 2019, 103, 4943–4952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šimenc, L.; Knific, T.; Toplak, I. The Comparison of Honeybee Viral Loads for Six Honeybee Viruses (ABPV, BQCV, CBPV, DWV, LSV3 and SBV) in Healthy and Clinically Affected Honeybees with TaqMan Quantitative Real-Time RT-PCR Assays. Viruses 2021, 13, 1340. [Google Scholar] [CrossRef]
- Caraballo, D.A.; Lombardo, M.A.; Becker, P.; Sabio, M.S.; Lema, C.; Martínez, L.M.; Beltrán, F.J.; Li, Y.; Cisterna, D.M. Evaluation of Two Real-Time, TaqMan Reverse Transcription-PCR Assays for Detection of Rabies Virus in Circulating Variants from Argentina: Influence of Sequence Variation. Viruses 2021, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Malandraki, I.; Varveri, C.; Olmos, A.; Vassilakos, N. One-step multiplex quantitative RT-PCR for the simultaneous detection of viroids and phytoplasmas of pome fruit trees. J. Virol. Methods 2015, 213, 12–17. [Google Scholar] [CrossRef]
- Lan, P.; Li, F.; Abad, J.; Pu, L.; Li, R. Simultaneous detection and differentiation of three Potyviridae viruses in sweet potato by a multiplex TaqMan real time RT-PCR assay. J. Virol. Methods 2018, 252, 24–31. [Google Scholar] [CrossRef]
- Pappi, P.G.; Fotiou, I.; Efthimiou, K.E.; Katis, N.I.; Maliogka, V.I. Development of three duplex real-time RT-PCR assays for the sensitive and rapid detection of a phytoplasma and five viral pathogens affecting stone fruit trees. Mol. Cell. Probes 2020, 53, 101621. [Google Scholar] [CrossRef]
- Alsaheli, Z.; Abdallah, A.; Incerti, O.; Shalaby, A.; Youssef, S.; Digiaro, M.; Elbeaino, T. Development of singleplex and multiplex real-time (Taqman®) RT-PCR assays for the detection of viruses associated with fig mosaic disease. J. Virol. Methods 2021, 293, 114145. [Google Scholar] [CrossRef]
- Diaz-Lara, A.; Stevens, K.A.; Klaassen, V.; Hwang, M.S.; Al Rwahnih, M. Sequencing a Strawberry Germplasm Collection Reveals New Viral Genetic Diversity and the Basis for New RT-qPCR Assays. Viruses 2021, 13, 1442. [Google Scholar] [CrossRef]
- Lamien, C.E.; Lelenta, M.; Goger, W.; Silber, R.; Tuppurainen, E.; Matijevic, M.; Luckins, A.G.; Diallo, A. Real time PCR method for simultaneous detection, quantitation and differentiation of capripoxviruses. J. Virol. Methods 2011, 171, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Bardou, P.; Mariette, J.; Escudie, F.; Djemiel, C.; Klopp, C. jvenn: An interactive Venn diagram viewer. BMC Bioinform. 2014, 15, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markoulatos, P.; Siafakas, N.; Moncany, M. Multiplex polymerase chain reaction: A practical approach. J. Clin. Lab. Anal. 2002, 16, 47–51. [Google Scholar] [CrossRef] [PubMed]
Virus | Primer/Probe | Target Gene | Sequence (5′–3′) | Product Length (bp) |
---|---|---|---|---|
LSV | LSV-F | CP | GCGTCGTATCTAACAACA | 184 |
LSV-R | GCTCCATTCTCAAACTCA | |||
LSV-Probe | CY5-CAAGGAACGCCGAACTGCTC-BHQ3 | |||
LMoV | LMoV-F | CP | CAGTGAAAGACGAGTATG | 88 |
LMoV-R | GAGGTGCCATTCTCTATG | |||
LMoV-Probe | FAM-CAGACCATTCATTGCGAGAGCC-BHQ1 | |||
CMV | CMV-F | CP | GACAGTCCGTAAAGTTCC | 105 |
CMV-R | GATGCAGCGTACTGATAA | |||
CMV-Probe | Texas Red-TATCCGTTGCCGCCATCTCT-BHQ2 | |||
SYSV | SYSV-F | CP | GCTTGGATGGTAACATAAG | 80 |
SYSV-R | CGTGTGATGATCCTTATTC | |||
SYSV-Probe | CY5.5-AGAACGACATACAGCAGCCGABHQ2 | |||
PlAMV | PlAMV-F | CP | CCAACATCAAGTTCGAAC | 153 |
PlAMV-R | CGAAGAGGTTTAGGGATC | |||
PlAMV-Probe | HEX-CGTCTCATTGGCAGTTACTTCGTC-BHQ1 |
Plasmid | Concentration (Copies·μL−1) | Intra-Assay Cq Value | Inter-Assay Cq Value | |||||
---|---|---|---|---|---|---|---|---|
Mean | SD | CV% | Mean | SD | CV% | |||
LSV | 1.33× | 107 | 17.05 | 0.29 | 1.68 | 17.68 | 0.02 | 0.11 |
105 | 25.80 | 0.30 | 1.15 | 26.74 | 0.07 | 0.27 | ||
103 | 31.17 | 0.07 | 0.23 | 31.53 | 0.18 | 0.58 | ||
LMoV | 1.27× | 107 | 17.41 | 0.02 | 0.12 | 16.39 | 0.21 | 1.30 |
105 | 23.84 | 0.12 | 0.49 | 23.97 | 0.22 | 0.93 | ||
103 | 30.65 | 0.16 | 0.52 | 31.15 | 0.13 | 0.42 | ||
CMV | 1.28× | 107 | 18.40 | 0.21 | 1.14 | 18.56 | 0.08 | 0.41 |
105 | 26.20 | 0.20 | 0.76 | 26.23 | 0.20 | 0.76 | ||
103 | 30.89 | 0.14 | 0.44 | 30.64 | 0.19 | 0.61 | ||
SYSV | 2.33× | 107 | 16.02 | 0.15 | 0.94 | 16.08 | 0.09 | 0.54 |
105 | 24.30 | 0.05 | 0.19 | 24.48 | 0.07 | 0.27 | ||
103 | 30.59 | 0.04 | 0.14 | 31.21 | 0.08 | 0.27 | ||
PlAMV | 2.01× | 107 | 15.80 | 0.28 | 1.77 | 15.51 | 0.12 | 0.77 |
105 | 24.29 | 0.46 | 1.89 | 23.61 | 0.24 | 1.03 | ||
103 | 31.65 | 0.55 | 1.74 | 32.09 | 0.08 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Song, M.; Ming, J. Application of Multiplex TaqMan Real-Time PCR Assay in Survey of Five Lily Viruses Infecting Lilium spp. Agronomy 2022, 12, 47. https://doi.org/10.3390/agronomy12010047
Xu L, Song M, Ming J. Application of Multiplex TaqMan Real-Time PCR Assay in Survey of Five Lily Viruses Infecting Lilium spp. Agronomy. 2022; 12(1):47. https://doi.org/10.3390/agronomy12010047
Chicago/Turabian StyleXu, Leifeng, Meng Song, and Jun Ming. 2022. "Application of Multiplex TaqMan Real-Time PCR Assay in Survey of Five Lily Viruses Infecting Lilium spp." Agronomy 12, no. 1: 47. https://doi.org/10.3390/agronomy12010047
APA StyleXu, L., Song, M., & Ming, J. (2022). Application of Multiplex TaqMan Real-Time PCR Assay in Survey of Five Lily Viruses Infecting Lilium spp. Agronomy, 12(1), 47. https://doi.org/10.3390/agronomy12010047