Determining the Effects of Nanonutrient Application in Cabbage (Brassica oleracea var. capitate L.) Using Spectrometry and Biomass Estimation with UAV
Abstract
:1. Introduction
2. Study Area
3. Materials and Equipment
4. Methodology
4.1. Initial Assessment
4.2. Generation of Information
4.3. Data Processing
4.4. Spectral Library
5. Results
5.1. Characterization of Treatments and Phenological Stages by Vegetation Index (Spectral Data)
5.1.1. Results of Trial A
5.1.2. Results of Trial B
5.2. Content of Chlorophyll (CC)
5.2.1. Results of Trial A
5.2.2. Results of Trial B
5.3. Validation of Biomass
5.4. Spectral Library
6. Analysis and Discussion
6.1. Spectral Data
6.1.1. Analysis of Trial A
6.1.2. Analysis of Trial B
6.2. CC
6.2.1. Results of Trial A
6.2.2. Analysis of Trial B
6.3. Biomass
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garcia-Sanchez, A.J.; Garcia-Sanchez, F.; Garcia-Haro, J. Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Comput. Electron. Agric. 2011, 75, 288–303. [Google Scholar] [CrossRef]
- Patrício, D.I.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 2018, 153, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Gusev, A.S.; Beznosov, G.A.; Ziablitckaia, N.V.; Kholmanskikh, M.V.; Novopashin, L.A.; Denyozhko, L.V.; Sadov, A.A. An analysis of research areas in precision agriculture. Int. Trans. J. Eng. Manag. Appl. Sci. Technol. 2019, 10, 10A1D. [Google Scholar]
- Bauer, A.; Bostrom, A.G.; Ball, J.; Applegate, C.; Cheng, T.; Laycock, S.; Rojas, S.M.; Kirwan, J.; Zhou, J. Combining computer vision and deep learning to enable ultra-scale aerial phenotyping and precision agriculture: A case study of lettuce production. Hortic. Res. 2019, 6, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyaga, J.M.; Onyango, C.M.; Wetterlind, J.; Söderström, M. Precision agriculture research in sub-Saharan Africa countries: A systematic map. Precis. Agric. 2021, 22, 1217–1236. [Google Scholar] [CrossRef]
- Cassman, K.G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 1999, 96, 5952–5959. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Casasnovas, J.A.; Bordes, J. Viticultura de precisión: Predicción de cosecha a partir de variables del cultivo e índices de vegetación. Rev. Teledetección 2005, 24, 67–71. [Google Scholar]
- Guerrero, J. Sistema de Visión Para Agricultura de Precisión: Identificación en Tiempo Real de Líneas de Cultivo y Malas Hierbas en Campos de Maíz. Ph.D. Thesis, Complutense University of Madrid, Madrid, España, 2015. [Google Scholar]
- Lowenberg-DeBoer, J. The economics of precision agriculture. In Precision Agriculture for Sustainability; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 481–1502. [Google Scholar]
- Saiz-Rubio, V.; Rovira-Más, F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy 2020, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Kamble, S.S.; Gunasekaran, A.; Kumar, V.; Kumar, A. A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Comput. Oper. Res. 2020, 119, 104926. [Google Scholar] [CrossRef]
- Sozzi, M.; Kayad, A.; Gobbo, S.; Cogato, A.; Sartori, L.; Marinello, F. Economic comparison of satellite, plane and UAV-acquired NDVI images for site-specific nitrogen application: Observations from Italy. Agronomy 2021, 11, 2098. [Google Scholar] [CrossRef]
- Bongiovanni, R.; Mantovani, E.; Best, S.; Roel, Á. Introducción a la agricultura de precisión. In Agricultura de Precisión: Integrando Conocimientos para una Agricultura Moderna y Sustentable; Procisur/IICA: Montevideo, Uruguay, 2006. [Google Scholar]
- INIAP. Promoviendo una Agricultura Climáticamente Inteligente en la Amazonía; INIAP: Orellana, Ecuador, 2018. [Google Scholar]
- Dreher, K. Health and Environmental Impact of Nanotechnology: Toxicological Assessment of Manufactured Nanoparticles. Toxicol. Sci. 2004, 77, 3–5. [Google Scholar] [CrossRef]
- Kumar, N.; Kumbhat, S. Essentials in Nanoscience and Nanotechnology; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajadi, M.S.; Atarod, M.; Sajjadi, M.; Isaabadi, Z. An Introduction to Green Nanotechnology; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Mousavi, S.; Rezaei, M. Nanotechnology in Agriculture and Food Production. J. Appl. Environ. Biol 2011, 10, 414–419. [Google Scholar]
- Rai, M.; Ingle, A. Role of nanotechnology in agriculture with special reference to management of insect pests. Appl. Microbiol. Biotechnol. 2012, 94, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Tarafdar, J.C.; Raliya, R.; Mahawar, H.; Rathore, I. Development of Zinc Nanofertilizer to Enhance Crop Production in Pearl Millet (Pennisetum americanum). Agric. Res. 2014, 3, 257–262. [Google Scholar] [CrossRef]
- Shalaby, T.A.; Bayoumi, Y.; Abdalla, N.; Taha, H.; Alshaal, T.; Shehata, S.; Amer, M.; Domokos-Szabolcsy, É.; El-Ramady, H. Nanoparticles, soils, plants and sustainable agriculture. In Nanoscience in Food and Agriculture 1; Springer: Cham, Switzerland, 2016; pp. 283–312. [Google Scholar]
- Elemike, E.E.; Uzoh, I.M.; Onwudiwe, D.C.; Babalola, O.O. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl. Sci. 2019, 9, 499. [Google Scholar] [CrossRef] [Green Version]
- Luque, A.; Rubiales, D. Nanotechnology for Parasitic Plant Control Pest Management. Sci. J. 2009, 10, 1002–1732. [Google Scholar]
- Alfalahi, A.O.; Abdulqahar, F.W. Nanonutrients: Plant Nutritive and Possible Antioxidant Regulators. In Nanobiotechnology; Springer: Cham, Switzerland, 2021; pp. 471–498. [Google Scholar]
- Turan, M.; Sevimli, F. Influence of different nitrogen sources and levels on ion content of cabbage (Brassica oleracea var. capitate). N. Zeal. J. Crop Hortic. Sci. 2005, 33, 241–249. [Google Scholar] [CrossRef]
- Xu, Y.; Xiao, Y.; Lagnika, C.; Li, D.; Liu, C.; Jiang, N.; Song, J.; Zhang, M. A comparative evaluation of nutritional properties, antioxidant capacity and physical characteristics of cabbage (Brassica oleracea var. capitate var L.) subjected to different drying methods. Food Chem. 2020, 309, 124935. [Google Scholar] [CrossRef]
- Petit, G. HOR09-08. Comportamiento y Desempeño de Seis Cultivares de Repollo (Brassica olereacea L. var capitata) Cultivados en el Valle de Comayagua; Programa de Hortalizas, FHIA: Comayagua, Honduras, 2009. [Google Scholar]
- Song, X.; Li, Y.; Hou, X. Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genom. 2013, 14, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Šamec, D.; Pavlović, I.; Salopek-Sondi, B. White cabbage (Brassica oleracea var. capitata f. alba): Botanical, phytochemical and pharmacological overview. Phytochem. Rev. 2017, 16, 117–135. [Google Scholar]
- Ramos, M. Cultivo de Repollo en México (Brassica oleracea L.) var. Capitata L.; UAAAN: Santillo, México, 2007. [Google Scholar]
- Kong, C.; Chen, G.; Yang, L.; Zhuang, M.; Zhang, Y.; Wang, Y.; Ji, J.; Fang, Z.; Lv, H. Germplasm screening and inheritance analysis of resistance to cabbage black rot in a worldwide collection of cabbage (Brassica oleracea var. capitata) resources. Sci. Hortic. 2021, 288, 110234. [Google Scholar] [CrossRef]
- Guambo, M. Estudio Bioagronómico de 20 Cultivares de Col (Brassica oleracea L. var. capitta); ESPOCH, Recursos Humanos: Riobamba, Ecuador, 2010. [Google Scholar]
- Simons, A. The Healing Power of Plants: Medical Plants from Abuta and Acerola to Yohimbe and Yucca: A Practical Selection; MayaMedia Verlag: Falkensee, Germany, 2013. [Google Scholar]
- Bartram, T. Bartram’s Encyclopedia of Herbal Medicine; Hachette: Paris, France, 2013; ISBN 13: 978-1-85487-586-0. [Google Scholar]
- Gupta, S.G.; Ghonge, M.M.; Jawandhiya, P.M. Review of unmanned aircraft system (UAS). Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 2013, 2, 1646–1658. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Siebert, S.; Teizer, J. Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Autom. Constr. 2014, 41, 1–14. [Google Scholar] [CrossRef]
- Kyrkou, C.; Timotheou, S.; Kolios, P.; Theocharides, T.; Panayiotou, C. Drones: Augmenting our quality of life. IEEE Potentials 2019, 38, 30–36. [Google Scholar] [CrossRef]
- Berni, J.; Suarez, L.; Zarco-Tejada, P.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef] [Green Version]
- Krzysztof, B. Secrets of UAV Photomapping. Presented Satellite Maps. 2011. Available online: file:///C:/Users/MDPI/AppData/Local/Temp/BosaksecretsofUAVphotomapping.pdf (accessed on 14 November 2021).
- Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. Photogramm. Remote Sens. 2015, 108, 245–259. [Google Scholar] [CrossRef]
- Portero, C.; Salas, P.; Mercadal, M.; Casterad, M. Experiencias en la adquisición de imágenes para agricultura a empresas de drones españolas. In Nuevas Plataformas y Sensores de Teledetección. XVII Congreso de la Asociación Española de Teledetección; Editorial Politécnica de Valencia: Zaragoza, Spain, 2017; pp. 461–464. [Google Scholar]
- Kayad, A.; Sozzi, M.; Gatto, S.; Marinello, F.; Pirotti, F. Monitoring within-field variability of corn yield using Sentinel-2 and machine learning techniques. Remote Sens. 2019, 11, 2873. [Google Scholar] [CrossRef] [Green Version]
- Morgan, M.; Shanahan, J.; Signorielli, N. Yesterday’s new cultivation, tomorrow. Mass Commun. Soc. 2015, 18, 674–699. [Google Scholar] [CrossRef]
- Ponzoni, F.J.; Pacheco, L.R.F.; dos Santos, S.B.; Andrades Filho, C.D.O. Caracterização espectro-temporal de dosséis de Eucalyptus spp. mediante dados radiométricos TM/Landsat5. Cerne 2015, 21, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Körner, C. Scaling from species to vegetation: The usefulness of functional groups. In Biodiversity and Ecosystem Function; Springer: Berlin/Heidelberg, Germany, 1994; pp. 117–140. [Google Scholar]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Jamaludin, M.I.; Matori, A.N.; Kholik, M.F.; Mokhtar, M.M. Development Spectral Library of Vegetation Stress for Hydrocarbon Seepage. Appl. Mech. Mater. 2014, 567, 693–698. [Google Scholar] [CrossRef]
- Okada, Y.; Maeno, E. Apoptosis, cell volume regulation and volume-regulatory chloride channels. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2001, 130, 377–383. [Google Scholar] [CrossRef]
- Shanahan, J.F.; Schepers, J.S.; Francis, D.D.; Varvel, G.E.; Wilhelm, W.W.; Tringe, J.M.; Schlemmer, M.R.; Major, D.J. Use of remote-sensing imagery to estimate corn grain yield. Agron. J. 2001, 93, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Moges, S.M.; Raun, W.R.; Mullen, R.W.; Freeman, K.W.; Johnson, G.V.; Solie, J.B. Evaluation of green, red, and near infrared bands for predicting winter wheat biomass, nitrogen uptake, and final grain yield. J. Plant Nutr. 2005, 27, 1431–1441. [Google Scholar] [CrossRef]
- Babar, M.A.; Reynolds, M.P.; Van Ginkel, M.; Klatt, A.R.; Raun, W.R.; Stone, M.L. Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll, and canopy temperature in wheat. Crop Sci. 2006, 46, 1046–1057. [Google Scholar] [CrossRef]
- Jiang, L.; Kogan, F.N.; Guo, W.; Tarpley, J.D.; Mitchell, K.E.; Ek, M.B.; Tian, Y.; Zheng, W.; Zou, C.Z.; Ramsay, B.H. Real-time weekly global green vegetation fraction derived from advanced very high resolution radiometer-based NOAA operational global vegetation index (GVI) system. J. Geophys. Res. Atmos. 2010, 115, D11. [Google Scholar] [CrossRef]
- Pettorelli, N.; Ryan, S.; Mueller, T.; Bunnefeld, N.; Jędrzejewska, B.; Lima, M.; Kausrud, K. The Normalized Difference Vegetation Index (NDVI): Unforeseen successes in animal ecology. Clim. Res. 2011, 46, 15–27. [Google Scholar] [CrossRef]
- Khaleghi, E.; Arzani, K.; Moallemi, N.; Barzegar, M. Evaluation of chlorophyll content and chlorophyll fluorescence parameters and relationships between chlorophyll a, b and chlorophyll content index under water stress in Olea europaea cv. Dezful. World Acad. Sci. Eng. Technol. 2012, 6, 1154–1157. [Google Scholar]
- Eastman, J.R.; Sangermano, F.; Machado, E.A.; Rogan, J.; Anyamba, A. Global trends in seasonality of normalized difference vegetation index (NDVI) 1982–2011. Remote Sens. 2013, 5, 4799–4818. [Google Scholar] [CrossRef] [Green Version]
- Hunt Jr, E.R.; Doraiswamy, P.C.; McMurtrey, J.E.; Daughtry, C.S.; Perry, E.M.; Akhmedov, B. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Caseras, I. Seguimiento de Viñas Mediante Imágenes Multiespectrales Aéreas y de Satélite; Univesidad Pública de Navarra: Navarra, España, 2017. [Google Scholar]
- Liu, C.; Liu, Y.; Lu, Y.; Liao, Y.; Nie, J.; Yuan, X.; Chen, F. Use of a leaf chlorophyll content index to improve the prediction of above-ground biomass and productivity. PeerJ 2019, 6, e6240. [Google Scholar] [CrossRef]
- Zuñiga, C.; Sankaran, S.; Khot, L.; Jacoby, P. High Resolution Multispectral and Thermal Remote Sensing-Based Water Stress Assessment in Subsurface Irrigated Grapevines. Remote Sens. Agric. Veg. 2017, 9, 961. [Google Scholar] [CrossRef] [Green Version]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef] [Green Version]
- Karpina, M.; Jarząbek-Rychard, M.; Tymków, P.; Borkowski, A. UAV-based automatic tree growth measurement for biomass estimation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 8, 685–688. [Google Scholar] [CrossRef] [Green Version]
- Devia, C.A.; Rojas, J.P.; Petro, E.; Martinez, C.; Mondragon, I.F.; Patiño, D.; Rebolledo, M.C.; Colorado, J. High-throughput biomass estimation in rice crops using UAV multispectral imagery. J. Intell. Robot. Syst. 2019, 96, 573–589. [Google Scholar] [CrossRef]
- Gil-Docampo, M.; Arza, M.; Ortiz, J.; Martínez, S.; Robles, M.; Sánchez, L. Above-ground biomass estimation of arable crops using UAV-based SfM photogrammetry. Geocarto Int. 2020, 35, 687–699. [Google Scholar] [CrossRef]
- Sinde-González, I.; Gil-Docampo, M.; Arza-García, M.; Grefa-Sánchez, J.; Yánez-Simba, D.; Pérez-Guerrero, P.; Abril-Porras, V. Biomass estimation of pasture plots with multitemporal UAV-based photogrammetric surveys. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102355. [Google Scholar] [CrossRef]
- Gutiérrez, H.; De la Vara, R. Análisis y Diseño de Experimentos; Segunda, Ed.; McGraw-Hill: Mexico City, México, 2008. [Google Scholar]
- Chuvieco, E. Principios físicos de la Teledetección. In Fundamentos de Teledetección Espacial; Ediciones Rialp.S.A.: Madrid, España, 1990; pp. 45–50. [Google Scholar]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Houborg, R.; Soegaard, H.; Boegh, E. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sens. Environ. 2007, 106, 39–58. [Google Scholar] [CrossRef]
- Moncayo Cevallos, L.N.; Andrade Suárez, B.I.; Sinde González, I.; Maiguashca Guzmán, J.A.; Rivadeneira García, J.L.; Leiva González, C.A.; Yépez Campoverde, J.A.; Toulkeridis, T. A NDVI analysis contrasting different spectrum data methodologies applied in pasture crops previous grazing—A case study from Ecuador. In Proceedings of the 2018 5th International Conference on eDemocracy and eGovernment, ICEDEG 2018, Ambato, Ecuador, 4–6 April 2018; pp. 126–135. [Google Scholar]
- Viera-Torres, M.; Sinde-González, I.; Gil-Docampo, M.; Bravo, V.; Toulkeridis, T. Generation of the base line in the early detection of bud rot and the red ring disease in oil palms by geospatial technologies. Remote Sens. 2020, 12, 3229. [Google Scholar] [CrossRef]
- Mora Villacís, M.G.; Cañarte Ruiz, D.A.; Kirby, E.; Maiguashca Guzmán, J.A.; Toulkeridis, T. Index Relationship of Vegetation with the Development of a Quinoa Crop (Chenopodium quinoa) in its First Phenological Stages in Central Ecuador Based on GIS Techniques. In Proceedings of the 2020 7th International Conference on eDemocracy and eGovernment, ICEDEG 2020, Buenos Aires, Argentina, 22–24 April 2020; pp. 190–199. [Google Scholar]
- Cañarte Ruiz, D.A.; Mora Villacís, M.G.; Kirby, E.; Maiguashca Guzmán, J.A.; Toulkeridis, T. Correlation of NDVI Obtained by Different Methodologies of Spectral Data Collection in a Commercial Crop of Quinoa (Chenopodium quinoa) in Central Ecuador. In Proceedings of the 2020 7th International Conference on eDemocracy and eGovernment, ICEDEG 2020, Buenos Aires, Argentina, 22–24 April 2020; pp. 207–214. [Google Scholar]
- Liu, J.; Pattey, E.; Jégo, G. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sens. Environ. 2012, 123, 347–358. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Escalante, J.; Rodríguez, M.; Reynolds, M. Índices de reflectancia y rendimiento del frijol con aplicaciones de nitrógeno. Terra Latinoam. 2004, 22, 409–416. [Google Scholar]
- Tucker, C. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Díaz, J. Estudio de Índices de Vegetación a Partir de Imágenes Aéreas Tomadas Desde UAS/RPAS y Aplicaciones de Estos a la Agricultura de Precisión; UCM: Madrid, España, 2015. [Google Scholar]
- Lira, R.; Méndez, B.; De los Santos, G.; Vera, I. Potencial de la nanotecnología en la agricultura. Acta Univ. 2018, 28, 16. [Google Scholar]
- Gitelson, A.; Kaufman, Y.; Merzlyak, M. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Hoffmann, H.; Rasmus, J.; Thomsen, A.; Nieto, H.; Rasmussen, J.; Friborg, T. Crop water stress maps for an entire growing season from visible and thermal UAV imagery. Biogeosciences 2016, 13, 6548. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Liu, T.-X.; Everitt, J.H. Estimating cabbage physical parameters using remote sensing technology. Crop Prot. 2008, 27, 25–35. [Google Scholar] [CrossRef]
- Bracke, J.; Elsen, A.; Adriaenssens, S.; Vandendriessche, H.; Van Labeke, M.C. Utility of proximal plant sensors to support nitrogen fertilization in Chrysanthemum. Sci. Hortic. 2019, 256, 108544. [Google Scholar] [CrossRef]
- Acharya, A.; Pal, P.K. Agriculture nanotechnology: Translating research outcome to field applications by influencing environmental sustainability. NanoImpact 2020, 19, 100232. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; López-Granados, F.; De Castro, A.I.; Peña-Barragán, J.M. Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management. PloS ONE 2013, 8, e58210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raj, R.; Kar, S.; Nandan, R.; Jagarlapudi, A. Precision agriculture and unmanned aerial Vehicles (UAVs). In Unmanned Aerial Vehicle: Applications in Agriculture and Environment; Springer: Cham, Switzerland, 2020; pp. 7–23. [Google Scholar]
- Jannoura, R.; Brinkmann, K.; Uteau, D.; Bruns, C.; Joergensen, R.G. Monitoring of crop biomass using true colour aerial photographs taken from a remote controlled hexacopter. Biosyst. Eng. 2015, 129, 341–351. [Google Scholar] [CrossRef]
- Chappelle, E.W.; Kim, M.S. Ratio Analysis of Reflectance Spectra (RARS): An Algorithm for the Remote Estimation of the Concentrations of Chlorophyll A, Chlorophyll B, and Carotenoids in Soybean Leaves. Teledetección Medio Ambiente 1992, 39, 239–247. [Google Scholar] [CrossRef]
- López, G.; Méndez, B.; Lira, R. Medición de Intercambio Gaseoso, Área Foliar e Índice de Clorofila en Plantas Elicitadas con Nanopartículas. In Agronano Tecnología: Nueva Frontera de la Revolución Verde; CIQA: Mexico City, México, 2016; pp. 112–128. [Google Scholar]
- Tarafdar, J.C.; Adhikari, T.A.P.A.N. Nanotechnology in soil science. In Soil Science: An Introduction, Chapter: Nanotechnology in Soil Science; Melbourne University Publishing: Melbourne, Australia, 2015; pp. 775–807. [Google Scholar]
- Kwak, D.-A.; Lee, W.-K.; Cho, H.-K.; Lee, S.-H.; Son, Y.; Kafatos, M.; Kim, S.-R. Estimating stem volume and biomass of Pinus koraiensis using LiDAR data. J. Plant Res. 2010, 123, 421–432. [Google Scholar] [CrossRef]
Sampling | Phenological State | Trial A | Trial B |
---|---|---|---|
Days after Sowing (das) | |||
First sampling | Establishment | 31 | 32 |
Second sampling | Vegetative development | 38 | 36 |
Third sampling | Head preforming | 52 | 50 |
Fourth sampling | Head formation | 66 | 65 |
Index | F | p-Value | F | p-Value | F | p-Value |
---|---|---|---|---|---|---|
NDVI | 22.59 | <0.0001 * | 5.813 | 0.0001 * | 156.517 | <0.0001 * |
GNDVI | 15.04 | <0.0001 * | 5.948 | 0.0001 * | 176.667 | <0.0001 * |
NGRDI | 75.33 | <0.0001 * | 3.598 | 0.00066 * | 29.151 | <0.0001 * |
RVI | 22.01 | <0.0001 * | 5.737 | 0.0002 * | 152.650 | <0.0001 * |
GVI | 16.60 | <0.0001 * | 5.642 | 0.0002 * | 174.657 | <0.0001 * |
CCI RARSa | 40.55 | <0.0001 * | 6.751 | <0.0001 * | 141.735 | <0.0001 * |
Index | F | p-Value |
---|---|---|
CC (phenological states, trial A) | 22.51 | 0.0001 * |
CC (treatments) | 5.64 | 0.0002 * |
CC (phenological states, trial B) | 3.28 | 0.0275 * |
Variable | Biomass | |
---|---|---|
Zone | Trial B | Validation Zone |
Mean | 0.790022 | 0.78184 |
Observations | 3 | 4 |
Variance | 0.28301 | 0.004 |
Difference of means | 0.01 | |
t | 0.03 | |
Degrees of freedom | 2 | |
p-value | 0.9813 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinde-González, I.; Gómez-López, J.P.; Tapia-Navarro, S.A.; Murgueitio, E.; Falconí, C.; Benítez, F.L.; Toulkeridis, T. Determining the Effects of Nanonutrient Application in Cabbage (Brassica oleracea var. capitate L.) Using Spectrometry and Biomass Estimation with UAV. Agronomy 2022, 12, 81. https://doi.org/10.3390/agronomy12010081
Sinde-González I, Gómez-López JP, Tapia-Navarro SA, Murgueitio E, Falconí C, Benítez FL, Toulkeridis T. Determining the Effects of Nanonutrient Application in Cabbage (Brassica oleracea var. capitate L.) Using Spectrometry and Biomass Estimation with UAV. Agronomy. 2022; 12(1):81. https://doi.org/10.3390/agronomy12010081
Chicago/Turabian StyleSinde-González, Izar, Josselyn Paola Gómez-López, Stalin Alejandro Tapia-Navarro, Erika Murgueitio, César Falconí, Fatima L. Benítez, and Theofilos Toulkeridis. 2022. "Determining the Effects of Nanonutrient Application in Cabbage (Brassica oleracea var. capitate L.) Using Spectrometry and Biomass Estimation with UAV" Agronomy 12, no. 1: 81. https://doi.org/10.3390/agronomy12010081
APA StyleSinde-González, I., Gómez-López, J. P., Tapia-Navarro, S. A., Murgueitio, E., Falconí, C., Benítez, F. L., & Toulkeridis, T. (2022). Determining the Effects of Nanonutrient Application in Cabbage (Brassica oleracea var. capitate L.) Using Spectrometry and Biomass Estimation with UAV. Agronomy, 12(1), 81. https://doi.org/10.3390/agronomy12010081