The PGPR Mechanisms of Salt Stress Adaptation and Plant Growth Promotion
Abstract
:1. Introduction
2. Soil Salinization
3. Effect of Salinity on Plants
4. Role of PGPR for Salt Stress Reduction
5. Mechanisms of Plant Growth Promotion by PGPR under Saline Conditions
5.1. Nitrogen Fixation
5.2. Phosphate Solubilization
5.3. Plant Growth Regulators
5.4. ACC Deaminase Enzyme Production
5.5. Exo-Polysaccharide Production
5.6. Exopolysaccharides and Biofilm Formation
6. Salinity Tolerance of Bacillus sp.
7. Osmoprotectants
8. Induced Antioxidative Activity
9. Volatile Organic Compounds (VOCs)
10. Molecular Mechanisms and Gene Expression of PGPR in Response to Salinity Stress
11. Knowledge Gaps and Future Prospects
- i.
- Identification of genetic and environmental factors responsible for higher bacterial EPS synthesis under salt stress conditions.
- ii.
- Identification of stress-responsive proteins involved in signaling, gene expression, and metabolism during plant–microbe interaction under salt stress conditions.
- iii.
- The mutual sharing of osmoprotectants and antioxidant enzymes of PGPR and plants for maximum plant–microbe interactions under salt stress conditions.
- iv.
- Evaluation of crop performance inoculated with salt-tolerant PGPR in actual saline ecosystems is a prerequisite to observing the consistent field performance of the potential salt-tolerant PGPR.
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ranjbar, F.; Jalali, M. The combination of geostatistics and geochemical simulation for the site-specific management of soil salinity and sodicity. Comput. Electron. Agric. 2016, 121, 301–312. [Google Scholar] [CrossRef]
- Fageria, N.K.; Stone, L.F.; Santos, A.B.D. Breeding for salinity tolerance. Plant Breed. Abiotic Stress Toler. 2012, 9783642305535, 103–122. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Qadir, M.; Quillérou, E.; Nnagia, V.; Nurtaza, G.; Singh, M.; Thomas, R.J.; Drechsel, P.; Nable, A.D.; Noble, A.D. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum. 2014, 38, 282–295. [Google Scholar] [CrossRef]
- Turral, H.; Burke, J.; Faurès, J.M. Climate Change, Water and Food Security; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2011. [Google Scholar]
- Nellemann, C.; MacDevette, M. (Eds.) The Environmental Food Crisis: The Environment’s Role in Averting Future Food Crises: A UNEP Rapid Response Assessment; UNEP/Earthprint: Nairobi, Kenya, 2009. [Google Scholar]
- Ondrasek, G.; Rengel, Z.; Romic, D.; Poljak, M.; Romic, M. Accumulation of non/essential elements in radish plants grown in salt-affected and cadmium-contaminated environment. Cereal Res. Commun. 2009, 37, 9–12. [Google Scholar]
- Othman, Y.; Al-Karaki, G.; Al-Tawaha, A.R.; Al-Horani, A. Variation in germination and ion uptake in barley genotypes under salinity conditions. World J. Agric. Sci. 2006, 2, 11–15. [Google Scholar]
- Ghosh, B.; Md, N.A.; Gantait, S. Response of rice under salinity stress: A review update. Rice Res. 2016, 4, 1–8. [Google Scholar] [CrossRef]
- Shanker, A.; Venkateswarlu, B. (Eds.) Abiotic Stress in Plants: Mechanisms and Adaptations; InTech Publisher: JanezaTridne Rijeka, Croatia, 2011; p. 428. [Google Scholar]
- Lugtenberg, B.J.; Malfanova, N.; Kamilova, F.; Berg, G. Plant growth promotion by microbes. Mol. Microb. Ecol. Rhizosphere 2013, 2, 561–573. [Google Scholar]
- Lugtenberg, B.; Malfanova, N.; Kamilova, F.; Berg, G. Microbial control of plant root diseases. In Molecular Microbial Ecology of the Rhizosphere; De Bruijn, F.J., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 575–586. [Google Scholar]
- Pliego, C.; Kamilova, F.; Lugtenberg, B. Plant growth-promoting bacteria: Fundamentals and exploitation. In Bacteria in Agrobiology: Crop Ecosys; Springer: Berlin/Heidelberg, Germany, 2011; pp. 295–343. [Google Scholar]
- Dodd, I.C.; Perez-Alfocea, F. Microbial alleviation of crop salinity. Plant Mol. Bio. 2012, 63, 3415–3428. [Google Scholar]
- Berg, G.; Alavi, M.; Schmidt, C.S.; Zachow, C.; Egamberdieva, D.; Kamilova, F.; Lugtenberg, B. Biocontrol and Osmoprotection for Plants under Salinated Conditions. In Molecular Microbial Ecology of the Rhizosphere; De Bruijn, F.J., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 561–573. [Google Scholar]
- Qurashi, A.W.; Sabri, A.N. Osmoadaptation and plant growth promotion by salt tolerant bacteria under salt stress. Afr. J. Microbiol. Res. 2011, 5, 3546–3554. [Google Scholar]
- Tester, M.; Davenport, R. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 2003, 91, 503–527. [Google Scholar] [CrossRef] [PubMed]
- Kotuby-Amacher, J.; Koenig, K.; Kitchen, B. Salinity and plant tolerance. AG-SO 2000, 3, 1. [Google Scholar]
- Selamat, A.; Ismail, M.R. Growth and production of rice for the increased Malaysian population as affected by global warming trends: Forecast for 2057. Trans. Malays. Soc. Plant Physiol. 2008, 17, 20–34. [Google Scholar]
- Ismail, A.M.; Thapa, B.; Egdane, J. Salinity tolerance in rice: Physiological bases and implications on management strategies for better crop establishment. In Improving Productivity and Livelihood for Fragile Environments; IRRI Technical Bull. 13; International Rice Research Institute: Los Banos, Philippines, 2009; pp. 8–13. [Google Scholar]
- Hakim, M.A.; Juraimi, A.S.; Ismail, M.R.; Hanafi, M.M.; Selamat, A. A survey on weed diversity in coastal rice fields of Sebarang Perak in peninsular Malaysia. J. Anim. Plant Sci. 2013, 23, 534–542. [Google Scholar]
- Kanawapee, N.; Sanitchon, J.; Srihaban, P.; Theerakulpisut, P. Physiological changes during development of rice (Oryza sativa L.) varieties differing in salt tolerance under saline field condition. Plant Soil. 2013, 370, 89–101. [Google Scholar] [CrossRef]
- Rad, H.E.; Aref, F.; Rezaei, M. Evaluation of salinity stress affects rice growth and yield components in Northern Iran. Am. J. Sci. Res. 2012, 54, 40–51. [Google Scholar]
- Patil, A.D. Alleviating Salt Stress in Crop Plants through Salt Tolerant Microbes. Int. J. Sci. Res. 2015, 4, 1297–1302. [Google Scholar]
- Ding, M.; Hou, P.; Shen, X.; Wang, M.; Deng, S.; Sun, J. Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt resistant and salt sensitive poplar species. Plant Mol. Biol. 2010, 73, 251–269. [Google Scholar] [CrossRef]
- Ahmad, F.; Ahmad, I.; Khan, M.S. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Braz. J. Microbiol. 2008, 163, 173–181. [Google Scholar] [CrossRef]
- Ali, Y.; Aslam, Z.; Ashraf, M.Y.; Tahir, G.R. Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. Int. J. Environ. Sci. Technol. 2004, 1, 221–225. [Google Scholar] [CrossRef] [Green Version]
- Omoto, E.; Taniguchi, M.; Miyake, H. Effects of salinity stress on the structure of bundle sheath and mesophyll chloroplasts in NAD-malic enzyme and PCK type C4 plants. Plant Prod. Sci. 2010, 13, 169–176. [Google Scholar] [CrossRef]
- Ashraf, M.; Harris, P.J.C. Photosynthesis under stressful environments: An overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Kloepper, J.W. Plant growth-promoting rhizobacteria on radishes. In Proceedings of the 4th Internet Conference on Plant Pathogenic Bacter, Station de Pathologie Vegetale et. Phytobacteriologie, INRA, Angers, France; 1978; Volume 2, pp. 879–882. [Google Scholar]
- Hayat, R.; Ali, S.; Amara, U.; Khalid, R.; Ahmed, I. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann. Microbiol. 2010, 60, 579–598. [Google Scholar] [CrossRef]
- Son, J.S.; Sumayo, M.; Hwang, Y.J.; Kim, B.S.; Ghim, S.Y. Screening of plant growth-promoting rhizobacteria as elicitor of systemic resistance against gray leaf spot disease in pepper. Appl. Soil Ecol. 2014, 73, 1–8. [Google Scholar] [CrossRef]
- Bhattacharyya, P.N.; Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 2012, 28, 1327–1350. [Google Scholar] [CrossRef] [PubMed]
- Afrasayab, S.; Faisal, M.; Hasnain, S. Comparative study of wild and transformed salt tolerant bacterial strains on Triticum aestivum grown under salt stress. Braz. J. Microbiol. 2010, 41, 946–955. [Google Scholar] [CrossRef]
- Kapadia, C.; Patel, N.; Rana, A.; Vaidya, H.; Alfarraj, S.; Ansari, M.J.; Gafur, A.; Poczai, P.; Sayyed, R.Z. Evaluation of Plant Growth-Promoting and Salinity Ameliorating Potential of Halophilic Bacteria Isolated From Saline Soil. Front. Plant Sci. 2022, 13, 946217. [Google Scholar] [CrossRef]
- García, J.E.; Maroniche, G.; Creus, C.; Suárez-Rodríguez, R.; Ramirez-Trujillo, J.A.; Groppa, M.D. In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiol. Res. 2017, 202, 21–29. [Google Scholar] [CrossRef]
- Habib, S.H.; Kausar, H.; Saud, H.M.; Ismail, M.R.; Othman, R. Molecular characterization of stress tolerant plant growth promoting rhizobacteria (PGPR) for growth enhancement of rice. Int. J. Agric. Biol. 2016, 18, 184–191. [Google Scholar] [CrossRef]
- Akram, W.; Aslam, H.; Ahmad, S.R.; Anjum, T.; Yasin, N.A.; Khan, W.U.; Ahmad, A.; Guo, J.; Wu, T.; Luo, W.; et al. Bacillus megaterium strain A12 ameliorates salinity stress in tomato plants through multiple mechanisms. J. Plant Interact. 2019, 14, 506–518. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Kim, M.S.; Sun, Y.; Dowd, S.E.; Shi, H.; Paré, P.W. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol. Plant Microbe Interact. 2008, 21, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, S.M.; Zahir, Z.A.; Naveed, M.; Arshad, M. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can. J. Microbiol. 2007, 53, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, D.; Samiyappan, R. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J. Appl. Microbiol. 2007, 102, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Jang, Y.J.; Lee, S.M.; Oh, B.T.; Chae, J.C.; Lee, K.J. Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by upregulation of conserved salinity responsive factors in plants. Mol. Cells 2014, 37, 109–117. [Google Scholar]
- Ahmad, M.; Zahir, Z.A.; Nazli, F.; Akram, F.; Arshad, M.; Khalid, M. Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.). Braz. J. Microbiol. 2013, 44, 1341–1348. [Google Scholar] [CrossRef]
- Shukla, P.S.; Agarwal, P.K.; Jha, B. Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J. Plant Growth Regul. 2012, 31, 195–206. [Google Scholar] [CrossRef]
- Nakbanpote, W.; Panitlurtumpai, N.; Sangdee, A.; Sakulpone, N.; Sirisom, P.; Pimthong, A. Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: Identification and effect on rice under saline conditions. J. Plant Interact. 2014, 9, 379–387. [Google Scholar] [CrossRef]
- Bal, H.B.; Nayak, S.; Dasand, T.; Adhya, K. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 2013, 366, 93–105. [Google Scholar] [CrossRef]
- Noorieh, B.; Arzanesh, H.; Mahlegha, G.; Maryam, S. The effect of plant growth promoting rhizobacteria on growth parameters, antioxidant enzymes and microelements of canola under salt stress. J. Appl. Environ. Biol. Sci. 2013, 3, 17–27. [Google Scholar]
- Palaniyandi, S.A.; Damodharan, K.; Yang, S.H.; Suh, J.W. Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’ tomato plants. J. Appl. Microbiol. 2014, 117, 766–773. [Google Scholar] [CrossRef]
- Singh, R.P.; Jha, P.N. Alleviation of salinity-induced damage on wheat plant by an ACC deaminase-producing halophilic bacterium Serratia sp. SL- 12 isolated from a salt lake. Symbiosis 2016, 69, 101–111. [Google Scholar] [CrossRef]
- Bharti, N.; Pandey, S.S.; Barnawal, D.; Patel, V.K.; Kalra, A. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci. Rep. 2016, 6, 34768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Esawi, M.A.; Alaraidh, I.A.; Alsahli, A.A.; Alamri, S.A.; Ali, H.M.; Alayafi, A.A. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant Physiol. Biochem. 2018, 132, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Safari, D.; Jamali, F.; Nooryazdan, H.R.; Bayat, F. Evaluation of ACC deaminase producing Pseudomonas fluorescens strains for their effects on seed germination and early growth of wheat under salt stress. Aust. J. Crop Sci. 2018, 12, 413–421. [Google Scholar] [CrossRef]
- Azadikhah, M.; Jamali, F.; Nooryazdan, H.R.; Bayat, F. Growth promotion and yield enhancement of barley cultivars using ACC deaminase producing Pseudomonas fluorescens strains under salt stress. Spanish J. Agric. Res. 2019, 17, e0801. [Google Scholar] [CrossRef]
- Chu, T.N.; Tran, B.T.H.; Van Bui, L.; Hoang, M.T.T. Plant growth-promoting rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana. BMC Res. Notes 2019, 12, 11. [Google Scholar] [CrossRef]
- Gupta, S.; Pandey, S. ACC Deaminase Producing Bacteria with Multifarious Plant Growth Promoting Traits Alleviates Salinity Stress in French Bean ( Phaseolus vulgaris) Plants. Front. Microbiol. 2019, 10, 1506. [Google Scholar] [CrossRef]
- You, M.; Fang, S.; MacDonald, J.; Xu, J.; Yuan, Z.C. Isolation and characterization of Burkholderia cenocepacia CR318, a phosphate solubilizing bacterium promoting corn growth. Microbiol. Res. 2020, 233, 126395. [Google Scholar] [CrossRef]
- Mishra, S.K.; Khan, M.H.; Misra, S.; Dixit, V.K.; Gupta, S.; Tiwari, S.; Chandra Gupta, S.; Chauhan, P.S. Drought tolerant Ochrobactrum sp. inoculation performs multiple roles in maintaining the homeostasis in Zea mays L. subjected to deficit water stress. Plant Physiol. Biochem. 2020, 150, 1–14. [Google Scholar] [CrossRef]
- Dixit, V.K.; Misra, S.; Mishra, S.K.; Tewari, S.K.; Joshi, N.; Chauhan, P.S. Characterization of plant growth-promoting alkalotolerant Alcaligenes and Bacillus strains for mitigating the alkaline stress in Zea mays. Antonie Van Leeuwenhoek 2020, 113, 889–905. [Google Scholar] [CrossRef]
- Nawaz, M.S.; Arshad, A.; Rajput, L.; Fatima, K.; Ullah, S.; Ahmad, M.; Imran, A. Growth-Stimulatory Effect of Quorum Sensing Signal Molecule N-Acyl-Homoserine Lactone-Producing Multi-Trait Aeromonas spp. on Wheat Genotypes Under Salt Stress. Front. Microbiol. 2020, 11, 553621. [Google Scholar] [CrossRef] [PubMed]
- Kerbab, S.; Silini, A.; Bouket, A.C.; Cherif-Silini, H.; Eshelli, M.; Rabhi, N.E.H.; Belbahri, L. Mitigation of NaCl Stress in Wheat by Rhizosphere Engineering Using Salt Habitat Adapted PGPR Halotolerant Bacteria. Appl. Sci. 2021, 11, 1034. [Google Scholar] [CrossRef]
- Sharma, A.; Dev, K.; Sourirajan, A.; Choudhary, M. Isolation and characterization of salt-tolerant bacteria with plant growth-promoting activities from saline agricultural fields of Haryana, India. J. Genet. Eng. Biotechnol. 2021, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Omara, A.E.D.; Hafez, E.M.; Osman, H.S.; Rashwan, E.; El-Said, M.A.A.; Alharbi, K.; Abd El-Moneim, D.; Gowayed, S.M. Collaborative Impact of Compost and Beneficial Rhizobacteria on Soil Properties, Physiological Attributes, and Productivity of Wheat Subjected to Deficit Irrigation in Salt Affected Soil. Plants 2022, 11, 877. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.; Wang, X.; Saleem, M.H.; Sumaira; Hafeez, A.; Afridi, M.S.; Khan, S.; Zaib-Un-nisa; Ullah, I.; Amaral, A.T.D., Jr.; et al. PGPR-Mediated Salt Tolerance in Maize by Modulating Plant Physiology, Antioxidant Defense, Compatible Solutes Accumulation and Bio-Surfactant Producing Genes. Plants 2022, 11, 345. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.K.; Mishra, B.M.; Tripathi, P. Salinity stress responses in the plant growth promoting rhizobacteria, Azospirillum spp. J. Biosci. 1998, 23, 463–471. [Google Scholar] [CrossRef]
- Egamberdiyeva, D.; Kucharova, Z. Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol. Fertil. Soils 2009, 45, 563–571. [Google Scholar] [CrossRef]
- Nabti, E.; Sahnoune, M.; Ghoul, M.; Fischer, D.; Hofmann, A.; Rothballer, M.; Hartmann, A. Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J. Plant Growth Regul. 2010, 29, 6–22. [Google Scholar] [CrossRef]
- Abbaspoor, A.; Zabihi, H.R.; Movafegh, S.; Asl, M.A. The efficiency of plant growth promoting rhizobacteria (PGPR) on yield and yield components of two varieties of wheat in salinity condition. Am. Eurasian J. Sustain. Agric. 2009, 3, 824–828. [Google Scholar]
- Bharti, N.; Yadav, D.; Barnawal, D.; Maji, D.; Kalra, A. Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) pennell under primary and secondary salt stress. World J. Microbiol. Biotechnol. 2013, 29, 379–387. [Google Scholar] [CrossRef]
- Vivekanandan, M.; Karthik, R.; Leela, A. Improvement of crop productivity in saline soils through application of saline-tolerant rhizosphere bacteria–current perspective. Int. J. Adv. Res. 2015, 3, 1273–1283. [Google Scholar]
- Glick, B.R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef]
- Loganathan, P.; Nair, S. Swaminathania salitolerants gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Proteresia corctataTateoka). Int. J. Syst. Evol. Microbiol. 2004, 54, 1185–1190. [Google Scholar] [CrossRef]
- Islam, M.Z.; Sattar, M.A.; Ashrafuzzaman, M.; Zulkerami, B.; Shamsuddoha, A.T.M. Evaluating some Salinity Tolerant Rhizobacterial Strains to Lentil Production under Salinity Stress. Int. J. Agric. Biol. 2013, 15, 499–504. [Google Scholar]
- Silini-Cherif, H.; Silini, A.; Ghoul, M.; Yadav, S. Isolation and characterization of plant growth promoting traits of a rhizobacteria: Pantoea agglomerans lma2. Pak. J. Biol. Sci. 2012, 15, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Kumar, H.; Arora, N.K.; Kumar, V.; Maheshwari, D.K. Isolation, characterization and selection of salt tolerant rhizobia nodulating Acacia catechu and A. nilotica. Symbiosis 1999, 26, 279–288. [Google Scholar]
- Arora, N.K.; Singhal, V.; Maheshwari, D.K. Salinity-induced accumulation of poly-b- hydroxyl butyrate in rhizobia indicating its role in cell protection. World J. Microbiol. Biotechnol. 2006, 22, 603–606. [Google Scholar] [CrossRef]
- Banerjee, G.; Scott-Craig, J.S.; Walton, J.D. Improving enzymes for biomass conversion: A basic research perspective. BioEnergy Res. 2010, 3, 82–92. [Google Scholar] [CrossRef]
- Chookietwattana, K.; Maneewan, K. Screening of efficient halotolerant phosphate solubilizing bacterium and its effect on promoting plant growth under saline conditions. World Appl. Sci. J. 2012, 16, 1110–1117. [Google Scholar]
- Son, H.J.; Park, G.T.; Cha, M.S.; Heo, M.S. Solubilization of insoluble inorganic phosphates by a novel salt-and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour. Technol. 2006, 97, 204–210. [Google Scholar] [CrossRef]
- Mantelin, S.; Touraine, B. Plant growth-promoting bacteria and nitrate availability: Impacts on root development and nitrate uptake. J. Exp. Bot. 2004, 55, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Kloepper, J.W.; Gutierrez-Estrada, A.; McInroy, J.A. Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can. J. Microbiol. 2007, 53, 159–167. [Google Scholar] [CrossRef]
- Iglesias, M.J.; Terrile, M.C.; Casalongué, C.A. Auxin and salicylic acid signalings counteract the regulation of adaptive responses to stress. Plant Signal. Behav. 2011, 6, 452–454. [Google Scholar] [CrossRef]
- Wang, Y.; Li, K.; Li, X. Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J. Plant Physiol. 2009, 166, 1637–1645. [Google Scholar] [CrossRef] [PubMed]
- Jha, B.; Gontia, I.; Hartmann, A. The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 2012, 356, 265–277. [Google Scholar] [CrossRef]
- Piccoli, P.; Travaglia, C.; Cohen, A.; Sosa, L.; Cornejo, P.; Masuelli, R.; Bottini, R. An endophytic bacterium isolated from roots of the halophyte Prosopis strombulifera produces ABA, IAA, gibberellins A1 and A3 and jasmonic acid in chemically-defined culture medium. Plant Growth Regul. 2011, 64, 207–210. [Google Scholar] [CrossRef]
- Sgroy, V.; Cassán, F.; Masciarelli, O.; Del Papa, M.F.; Lagares, A.; Luna, V. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl. Microbiol. Biotechnol. 2009, 85, 371–381. [Google Scholar] [CrossRef]
- Shultana, R.; Othman, R.; Zuan, A.T.K.; Yusop, M.R. Growth and nutrients uptake of rice at early seedling stage as inoculated with Bacillus spp. Plant Arch. 2019, 19, 1995–2001. [Google Scholar]
- Zahir, Z.A.; Ghani, U.; Naveed, M.; Nadeem, S.M.; Asghar, H.N. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch. Microbiol. 2009, 191, 415–424. [Google Scholar] [CrossRef]
- Ali, S.; Charles, T.C.; Glick, B.R. Amelioration of damages caused by high salinity stress by plant growth-promoting bacterial endophytes. Plant Physiol. Biochem. 2014, 80, 160–167. [Google Scholar] [CrossRef]
- Shaharoona, B.; Arshad, M.; Zahir, Z.A.; Khalid, A. Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol. Biochem. 2006, 38, 2971–2975. [Google Scholar] [CrossRef]
- Sharma, P.; Khanna, V.; Kumari, P. Efficacy of aminocyclopropane-1-carboxylic acid (ACC)-deaminase-producing rhizobacteria in ameliorating water stress in chickpea under axenic conditions. Afric. J. Microbiol. Res. 2013, 7, 5749–5757. [Google Scholar]
- Nascimento, F.X.; Rossi, M.J.; Soares, C.R.; McConkey, B.J.; Glick, B.R. New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS ONE 2014, 9, e99168. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.S.; Akhtar, M.J.; Asghar, H.N.; Ahmad, R. Isolation and screening of rhizobacteria containing ACC-Daminase for growth promotion of sunflower seedlings under axenic conditions. Soil Environ. 2010, 29, 199–205. [Google Scholar]
- Shahzad, S.M.; Khalid, A.; Arshad, M. Screening rhizobacteria containing ACC-deaminase for growth promotion of chickpea seedlings under axenic conditions. Soil Environ. 2010, 29, 38–46. [Google Scholar]
- Siddikee, M.A.; Glick, B.R.; Chauhan, P.S.; JongYim, W.; Sa, T. Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol. Biochem. 2011, 49, 427–434. [Google Scholar] [CrossRef]
- Wu, Z.; Yue, H.; Lu, J.; Li, C. Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress. World J. Microbiol. Biotechnol. 2012, 28, 2383–2393. [Google Scholar] [CrossRef]
- Akhgar, A.R.; Arzanlou, M.; Bakker, P.A.H.M.; Hamidpour, M. Characterization of 1-aminocycloprane-1-carboxylate (ACC) deaminase containing Pseudomonas spp. in the rhizosphere of salt-stressed canola. Pedosphere 2014, 24, 461–468. [Google Scholar] [CrossRef]
- Singh, R.P.; Jha, P.N. Plant growth promoting potential of ACC deaminase rhizospheric bacteria isolated from Aerva javanica: A plant adapted to saline environments. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 142–152. [Google Scholar]
- Pourbabaee, A.A.; Bahmani, E.; Alikhani, H.A.; Emami, S. Promotion of wheat growth under salt stress by halotolerant bacteria containing ACC deaminase. J. Agric. Sci. Technol. 2016, 18, 855–864. [Google Scholar]
- Heydarian, Z.; Gruber, M.; Glick, B.R.; Hegedus, D.D. Gene expression patterns in roots of camelina sativa with enhanced salinity tolerance arising from inoculation of soil with plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression the corresponding acds gene. Front. Microbiol. 2018, 9, 1297. [Google Scholar] [CrossRef] [PubMed]
- Chinnaswamy, A.; Coba de la Peña, T.; Stoll, A.; de la Peña Rojo, D.; Bravo, J.; Rincón, A.; Lucas, M.M.; Pueyo, J.J. A nodule endophytic Bacillus megaterium strain isolated from Medicago polymorpha enhances growth, promotes nodulation by Ensifer medicae and alleviates salt stress in alfalfa plants. Ann. Appl. Biol. 2018, 172, 295–308. [Google Scholar] [CrossRef]
- Ateş; Kivanç, M. Isolation of ACC deaminase producing rhizobacteria from wheat rhizosphere and determinating of plant growth activities under salt stress conditions. Appl. Ecol. Environ. Res. 2020, 18, 5997–6008. [Google Scholar] [CrossRef]
- Sagar, A.; Sayyed, R.Z.; Ramteke, P.W.; Sharma, S.; Marraiki, N.; Elgorban, A.M.; Syed, A. ACC deaminase and antioxidant enzymes producing halophilic Enterobacter sp. PR14 promotes the growth of rice and millets under salinity stress. Physiol. Mol. Biol. Plants 2020, 26, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Nagaraju, Y.; Mahadevaswamy; Naik, N.M.; Gowdar, S.B.; Narayanarao, K.; Satyanarayanarao, K. ACC Deaminase-positive halophilic bacterial isolates with multiple plant growth-promoting traits improve the growth and yield of chickpea (Cicer arietinum L.) Under Salinity Stress. Front. Agron. 2021, 3, 85. [Google Scholar] [CrossRef]
- Singh, R.P.; Pandey, D.M.; Jha, P.N.; Ma, Y. ACC deaminase producing rhizobacterium Enterobacter cloacae ZNP-4 enhance abiotic stress tolerance in wheat plant. PLoS ONE 2022, 17, e0267127. [Google Scholar] [CrossRef]
- Wei, H.; He, W.; Li, Z.; Ge, L.; Zhang, J.; Liu, T. Salt-tolerant endophytic bacterium Enterobacter ludwigii B30 enhance bermudagrass growth under salt stress by modulating plant physiology and changing rhizosphere and root bacterial community. Front. Plant Sci. 2022, 13, 2592. [Google Scholar] [CrossRef]
- Qurashi, A.W.; Sabri, A.N. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz. J. Microbiol. 2012, 43, 1183–1191. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhang, X.H.; Lv, L.; Wang, Q.; Jiang, Q. Formation of aerobic granular sludge under adverse conditions: Low DO and high ammonia. J. Environ. Biol. 2013, 34, 409. [Google Scholar]
- Wang, W.; Liu, W.; Wang, L.; Yang, T.; Li, R. Characteristics and distribution research on extracellular polymer substance extracted from sewage sludge. J. Environ. Biol. 2016, 37, 305. [Google Scholar]
- Vurukonda, S.S.K.P.; Vardharajula, S.; Shrivastava, M.; SkZ, A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 2016, 184, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Haggag, W.M. Isolation of bioactive antibiotic peptides from Bacillus brevis and Bacillus polymyxa against Botrytis grey mould in strawberry. Arch. Phytopathol. Plant Prot. 2008, 41, 477–491. [Google Scholar] [CrossRef]
- Sandhya, V.S.K.Z.; Ali, S.Z.; Grover, M.; Reddy, G.; Venkateswarlu, B. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul. 2010, 62, 21–30. [Google Scholar] [CrossRef]
- Giroldo, D.; Ortolano, P.I.; Vieira, A.A. Bacteria–algae association in batch cultures of phytoplankton from a tropical reservoir: The significance of algal carbohydrates. Freshw. Biol. 2007, 52, 1281–1289. [Google Scholar] [CrossRef]
- Czarnes, S.; Hallett, P.D.; Bengough, A.G.; Young, I.M. Root- and microbial-derived mucilages affect soil structure and water transport. Eur. J. Soil Sci. 2000, 51, 435–443. [Google Scholar] [CrossRef]
- Vanhaverbeke, C.; Heyraud, A.; Mazeau, K. Conformational analysis of the exopolysaccharide from Burkholderiacaribensis strain MWAP71: Impact on the interaction with soils. Biopolymers 2003, 69, 480–497. [Google Scholar] [CrossRef]
- Chen, T.; Murata, N. Glycinebetaine: An effective protectant against abiotic stress in plants. Trends Plant Sci. 2008, 13, 499–505. [Google Scholar] [CrossRef]
- Hidri, R.; Mahmoud, O.M.B.; Zorrig, W.; Mahmoudi, H.; Smaoui, A.; Abdelly, C.; Azcon, R.; Debez, A. Plant Growth-Promoting Rhizobacteria Alleviate High Salinity Impact on the Halophyte Suaeda fruticosa by Modulating Antioxidant Defense and Soil Biological Activity. Front. Plant Sci. 2022, 13, 1623. [Google Scholar] [CrossRef]
- Vivas, A.; Marulanda, A.; Ruiz-Lozano, J.M.; Barea, J.M.; Azcón, R. Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 2003, 13, 249–256. [Google Scholar] [CrossRef]
- Han, H.S.; Lee, K.D. Physiological responses of soybean-inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res. J. Agric. Biol. Sci. 2005, 1, 216–221. [Google Scholar]
- Roberson, E.B.; Firestone, M.K. Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microbiol. 1992, 58, 1284–1291. [Google Scholar] [CrossRef] [PubMed]
- Ross, I.L.; Alami, Y.; Harvey, P.R.; Achouak, W.; Ryder, M.H. Genetic diversity and biological control activity of novel species of closely related pseudomonads isolated from wheat field soils in South Australia. Appl. Environ. Microbiol. 2000, 66, 1609–1616. [Google Scholar] [CrossRef]
- Shultana, R.; Kee Zuan, A.T.; Yusop, M.R.; Saud, H.M. Characterization of salt-tolerant plant growth-promoting rhizobacteria and the effect on growth and yield of saline-affected rice. PLoS ONE 2020, 15, e0238537. [Google Scholar]
- Chen, Y.; Yan, F.; Chai, Y.; Liu, H.; Kolter, R.; Losick, R.; Guo, J.H. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ. Microbiol. 2013, 15, 848–864. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, K.; Ashraf, M. Exogenous application of glycine betaine modulates activities of antioxidants in maize plants subjected to salt stress. J. Agron. Crop Sci. 2010, 196, 28–37. [Google Scholar] [CrossRef]
- Wijman, J.G.; de Leeuw, P.P.; Moezelaar, R.; Zwietering, M.H.; Abee, T. Air-liquid interface biofilms of Bacillus cereus: Formation, sporulation, and dispersion. Appl. Environ. Microbiol. 2007, 73, 1481–1488. [Google Scholar] [CrossRef]
- Xiang, W.; Guo, J.; Feng, W.; Huang, M.; Chen, H.; Zhao, J.; Zhang, Z.; Sun, Q. Community of extremely halophilic bacteria in historic Dagong Brine Well in southwestern China. World J. Microbiol. Biotechnol. 2008, 24, 2297–2305. [Google Scholar] [CrossRef]
- Paul, D.; Nair, S. Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J. Basic Microbiol. 2008, 48, 378–384. [Google Scholar] [CrossRef]
- Ashraf, M.; Hasnain, S.; Berge, O. Effect of exo-polysaccharides producing bacterial inoculation on growth of roots of wheat (Triticum aestivum) plants grown in a salt-affected soil. Int. J. Environ. Sci. Technol. 2006, 3, 43–51. [Google Scholar] [CrossRef]
- Wafaa, M.W.; Haggag, M.M.; Hussein, H.M.; Mehanna, M.M.; El-Moneim, H.M.D. Bacteria polysaccharides elicit resistance of wheat against some biotic and abiotic stress. Int. J. Pharm. Sci. Res. 2014, 50, 292–298. [Google Scholar]
- Trafny, E.A.; Lewandowski, R.; Zawistowska-Marciniak, I.; Stępińska, M. Use of MTT assay for determination of the biofilm formation capacity of microorganisms in metalworking fluids. World J. Microbiol. Biotechnol. 2013, 29, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.H.; Joe, M.M.; Selvakumar, G.; Kim, K.Y.; Choi, J.H.; Sa, T.M. Influence of salinity variations on exocellular polysaccharide production, biofilm formation and flocculation in halotolerant bacteria. J. Environ. Biol. 2017, 38, 657. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Singh, J.S.; Singh, D.P. Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 2011, 21, 214–222. [Google Scholar] [CrossRef]
- Ruppel, S.; Franken, P.; Witzel, K. Properties of the halophyte microbiome and their implications for plant salt tolerance. Funct. Plant Biol. 2013, 40, 940–951. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Singh, J.S.; Saxena, A.K.; Singh, D.P. Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol. 2012, 14, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Naseem, H.; Bano, A. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J. Plant Interact. 2014, 9, 689–701. [Google Scholar] [CrossRef]
- Mahmud-Ur-Rahman; Naser, I.B.; Mahmud, N.U.; Sarker, A.; Hoque, M.N.; Islam, T. A highly salt-tolerant bacterium brevibacterium sediminis promotes the growth of rice (Oryza sativa L.) seedlings. Stresses 2022, 2, 275–289. [Google Scholar] [CrossRef]
- Nautiyal, C.S.; Bhadauria, S.; Kumar, P.; Lal, H.; Mondal, R.; Verma, D. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol. Lett. 2000, 182, 291–296. [Google Scholar] [CrossRef]
- Singh, R.P.; Jha, P.N. A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum). Front. Plant Sci. 2016, 7, 1890. [Google Scholar] [CrossRef]
- Chen, M.; Wei, H.; Cao, J.; Liu, R.; Wang, Y.; Zheng, C. Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. BMB Rep. 2007, 40, 396–403. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Singh, D.P. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant. Biol. 2015, 17, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Abd_Allah, E.F.; Alqarawi, A.A.; Hashem, A.; Radhakrishnan, R.; Al-Huqail, A.A.; Olyan, F.; Al-Otibi, N.; Malik, A.; Alharbi, I.; Egamberdieva, D. Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J. Plant Interact. 2018, 13, 37–44. [Google Scholar] [CrossRef]
- Ahmad, P.; Abdel, L.A.A.; Abd_Allah, E.F.; Hashem, A.; Sarwat, M.; Anjum, N.A. Calcium and potassium supplementation enhanced growth, osmolyte, secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front. Plant Sci. 2016, 7, 513. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Aunión, C.; Ben-Hamouda, T.F.; Iglesias-Guerra, M.; Argandona Reina-Bueno, M.; Nieto, J.J.; Aouani, M.E.; Vargas, C. Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields. BMC Microbiol. 2010, 10, 192. [Google Scholar] [CrossRef]
- Le Rudulier, D.; Strøm, A.R.; Dandekar, A.M.; Smith, L.T.; Valentine, R.C. Molecular biology of osmoregulation. Science 1984, 224, 1064–1068. [Google Scholar] [CrossRef]
- Wani, S.H.; Singh, N.B.; Haribhushanand, A.; Mir, J.I. Compatible solute engineering in plants for abiotic stress tolerance—Role of glycine betaine. Curr. Genom. 2013, 14, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Umezawa, T.; Fujita, M.; Fujita, Y.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Engineering drought tolerance in plants: Discovering and tailoring genes to unlock the future. Curr. Opin. Biotech. 2006, 17, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Csonka, L.N.; Hanson, A.D. Prokaryotic osmoregulation: Genetics and physiology. Annu. Rev. Microbiol. 1991, 45, 569–606. [Google Scholar] [CrossRef]
- Galinski, E.A.; Trüper, H.G. Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol. Rev. 1994, 15, 95–108. [Google Scholar] [CrossRef]
- Street, T.O.; Bolen, D.W.; Rose, G.D. A molecular mechanism for osmolyte-induced protein stability. Proc. Natl. Acad. Sci. USA 2006, 103, 13997–14002. [Google Scholar] [CrossRef]
- Del Rio, L.A.; Corpas, J.F.; Sandalio, L.; Palma, J.; Barroso, D.J. Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 2003, 55, 71–81. [Google Scholar] [CrossRef]
- Gururani, M.A.; Upadhyaya, C.P.; Baskar, V.; Venkatesh, J.; Nookaraju, A.; Park, S.W. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J. Plant Growth Regul. 2013, 32, 245–258. [Google Scholar] [CrossRef]
- Neshat, M.; Abbasi, A.; Hosseinzadeh, A.; Sarikhani, M.R.; Dadashi Chavan, D.; Rasoulnia, A. Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms. Physiol. Mol. Biol. Plants 2022, 28, 347–361. [Google Scholar] [CrossRef] [PubMed]
- Groenhagen, U.; Baumgartner, R.; Bailly, A.; Gardiner, A.; Eberl, L.; Schulz, S.; Weisskopf, L. Production of bioactive volatiles by different Burkholderia ambifaria strains. J. Chem. Ecol. 2013, 39, 892–906. [Google Scholar] [CrossRef]
- Garbeva, P.; Hordijk, C.; Gerards, S.; de Boer, W. Volatile-mediated interactions between phylogenetically different soil bacteria. Front. Microbiol. 2014, 5, 289. [Google Scholar] [CrossRef] [PubMed]
- Wenke, K.; Kai, M.; Piechulla, B. Below ground volatiles facilitate interactions between plant roots and soil organisms. Planta 2010, 231, 499–506. [Google Scholar] [CrossRef]
- Farag, M.A.; Zhang, H.; Ryu, C.M. Dynamic chemical communication between plants and bacteria through airborne signals: Induced resistance by bacterial volatiles. J. Chem. Ecol. 2013, 39, 1007–1018. [Google Scholar] [CrossRef]
- Völker, U.; Engelmann, S.; Maul, B.; Riethdorf, S.; Völker, A.; Schmid, R.; Hecker, M. Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 1994, 140, 741–752. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Wu, H.; Chen, L.; Zang, H.; Xie, Y.; Gao, X. Transcriptome profiling of Bacillus subtilis OKB105 in response to rice seedlings. BMC Microbiol. 2015, 15, 21. [Google Scholar] [CrossRef]
- Diby, P.; Bharathkumar, S.; Sudha, N. Osmotolerance in biocontrol strain of pseudomonas pseudoalcaligenes MSP-538: A study using osmolyte, protein and gene expression profiling. Ann. Microbiol. 2005, 55, 243–247. [Google Scholar]
- Paul, D.; Dineshkumar, N.; Nair, S. Proteomics of a plant growth-promoting rhizobacterium, Pseudomonas fluorescens MSP-393, subjected to salt shock. World J. Microbiol. Biotechnol. 2006, 22, 369–374. [Google Scholar] [CrossRef]
- Steil, L.; Hoffmann, T.; Budde, I.; Völker, U.; Bremer, E. Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. J. Bacteriol. 2003, 185, 6358–6370. [Google Scholar] [CrossRef]
- Weber, A.; Jung, K. Profiling early osmostress-dependent gene expression in Escherichia coli using DNA macroarrays. J. Bacteriol. 2002, 184, 5502–5507. [Google Scholar] [CrossRef]
- Shabala, S. Salinity and programmed cell death: Unravelling mechanisms for ion specific signalling. J. Exp. Bot. 2009, 60, 709–712. [Google Scholar] [CrossRef]
- Georg, J.; Voss, B.; Scholz, I.; Mitschke, J.; Wilde, A.; Hess, W.R. Evidence for a major role of antisense RNAs in cyanobacterial gene regulation. Mol. Sys. Biol. 2009, 5, 305. [Google Scholar] [CrossRef]
- Paul, D. Osmotic stress adaptations in rhizobacteria. J. Basic Microbiol. 2013, 53, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Rochester, D.E.; Winer, J.A.; Shah, D.M. The structure and expression of maize genes encoding the major heat shock protein hsp70. EMBO 1986, 5, 451–458. [Google Scholar] [CrossRef]
- Lorimer, G.H. A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo. FASEB J. 1996, 10, 5–9. [Google Scholar] [CrossRef]
- Holland, N.; Belkind, A.; Holland, D.; Pick, U.; Edelman, M. Stress-responsive accumulation of plastid chaperonin 60 during seedling development. Plant J. 1998, 13, 311–316. [Google Scholar] [CrossRef]
- Verdoucq, L.; Vignols, F.; Jacquot, J.P.; Chartier, Y.; Meyer, Y. In vivo characterization of a thioredoxin h target protein defines a new peroxiredoxin family. J. Biol. Chem. 1999, 274, 19714–19722. [Google Scholar] [CrossRef]
- Patrice, M.; Robinson, A. The Enzymology of Osmoregulation in Archaea: Glutamine Synthetase and Beta-Glutamine Production. Ph.D. Thesis, Boston College, Chestnut Hill, MA, USA, 1999; p. 2677. [Google Scholar]
- Visick, J.E.; Ichikawa, J.K.; Clarke, S. Mutations in the Escherichia coli surE gene increase isoaspartyl accumulation in a strain lacking the pcm repair methyltransferase but suppress stress-survival phenotypes. FEMS Microbiol. Lett. 1998, 167, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Kandasamy, S.; Loganathan, K.; Muthuraj, R.; Duraisamy, S.; Seetharaman, S.; Thiruvengadam, R.; Ramasamy, S. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Proteome Sci. 2009, 7, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name of the Bacteria | Plant Species | Major Mechanism | Reference |
---|---|---|---|
Bacillus megaterium A12 | Lycopersicon esculentum | The upregulation of PIP aquaporin expression | [38] |
Bacillus subtilis GB03 | Arabidopsis thaliana | The upregulation of the sodium transporter HKT1 | [39] |
Pseudomonas syringae S5, Pseudomonas fluorescens S20, Enterobacter aerogenes S14, | Zea mays | ACC deaminase enzyme production | [40] |
Pseudomonas fluorescens TDK1 | Arachis hypogaea | ACC deaminase production | [41] |
Enterobacter sp. EJ01 | Lycopersicum esculentum Arabidopsis thaliana | The regulation of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18. The upregulation of proline biosynthetic genes (i.e., P5CS1 and P5CS2) and of genes related to priming processes (i.e., MPK3 and MPK6) | [42] |
Pseudomonas syringae Mk1; Pseudomonas fluorescens Mk20 and Pseudomonas fluorescens Mk25 | Vigna radiata | Auxin production, ACC deaminase production | [43] |
Brachybacterium saurashtrense JG-06, Brevibacterium casei JG-08 | Arachis hypogaea | Reduced oxidative stress through high proline and low MDA content in plants | [44] |
Pseudomonas sp. PMDZnCd 2003 | Oryza sativa | Indole-3-acetic acids (IAA) production, nitrogen fixation, and phosphate solubilization. | [45] |
Alcaligenes sp. SB1.ACC2 and Ochrobactrum sp. SB2.ACC2 | Oryza sativa | Production of ACC Deaminase enzyme production | [46] |
Azospirillum sp. | Brassica napus | Regulation of antioxidant enzymes | [47] |
Streptomyces sp. PGPA39 | Solanum lycopersicum | Production of ACC Deaminase, | [48] |
Serratia sp. SL-12 | Triticum aestivum | Accumulation of osmolytes such as total soluble sugar and total protein content | [49] |
Dietzia natronolimnaea STR1 | Triticum aestivum | ABA-signaling cascade, as TaABARE and TaOPR1 were upregulated | [50] |
Azospirillum lipoferum FK1 | Cicer arietinum | Modulating osmolytes, antioxidant machinery and stress-related genes expression. | [51] |
Pseudomonas fluorescens PGU2-79, WBO-3, WKZ1-93 and WB1-7 | Triticum aestivum, | ACC deaminase production | [52] |
Pseudomonas fluorescens B10, B2-10, B2-11 and B4-6 | Hordeum vulgare | ACC deaminase production | [53] |
Pseudomonas PS01 | Arabidopsis thaliana | Upregulation of LOX2 | [54] |
Aneurinbacillus aneurinilyticus ACC02 and Paenibacillus sp. ACC06 | Phaseolus vulgaris | ACC deaminase activity | [55] |
Burkholderia cenocepacia CR318 | Zea mays | Phosphate and potassium solubilization and antimicrobial activity | [56] |
Ochrobactrum sp. NBRISH6 | Zea mays | Ion homeostasis | [57] |
Bacillus sp. NBRI YN4.4 | Zea mays | Improves photosynthetic pigments, soluble sugar content, enhances soil enzymes. | [58] |
Aeromonas sp. SAL-17 and SAL-21 | Triticum aestivum | Acyl homoserine lactone | [59] |
Bacillus atrophaeus BR5, OR15, and RB13 | Arabidopsis thaliana, Triticum aestivum | Increase proline, TSS, Antioxidant enzyme, decrease MDA | [60] |
Bacillus paramycoides HB6J2, Bacillus amyloliquefaciens HB8P1 and Bacillus pumilus HB4N3 | - | HCN production, phosphate solubilization, IAA and ammonia production | [61] |
Azospirillum lipoferum SP2, Bacillus coagulans NCAIM B.01123, Bacillus circulance NCAIMB.02324, and Bacillus subtilis MF497446 | Triticum aestivum | Reduced the uptake of Na+ resulted in an increment in superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX) activities that lessened oxidative damage and improved the nutrient uptake (N, P, and K) of deficiently irrigated wheat plants under soil salinity. | [62] |
Enterobacter cloacae PM23 | Zea mays | Enhanced radical scavenging capacity, relative water content, soluble sugars, proteins, total phenolic, and flavonoid content | [63] |
Name of the Bacteria | Plant Species | Reference |
---|---|---|
Pseudomonas syringae S5, Pseudomonas fluorescens S20 Enterobacter aerogenes S14 | Zea mays | [40] |
Raoultella planticola Rs-2 | Gossypium hirsutum | [95] |
Pseudomonas fluorescens EU647703.1 | Brassica napus | [96] |
Enterobacter cloaceae AJS-15 | Aerva javanica | [97] |
Bacillus mojavensi K78 | Triticum aestivum | [98] |
Pseudomonas migulae 8R6 and Pseudomonas sp. UW4 | Camelina sativa | [99] |
Bacillus megaterium NMp082 | Medicago spp.; Arabidopsis thaliana | [100] |
Bacillus cereus KP027636.1, Serratia odorifera NR037110.1, Lelliottia amnigena KM114915.1, Arthrobacter arilaitensis CP012750.1, Pseudomonas putida GQ2008822.1 | Triticum aestivum | [101] |
Enterobacter sp. PR 14 | - | [102] |
B. safensis HB-5 | Cicer arietinum | [103] |
Enterobacter cloacae ZNP-4 | Triticum aestivum | [104] |
Enterobacter ludwigii B30 | Cynodon dactylon | [105] |
Name of the Bacteria | Plant Species | Reference |
---|---|---|
Halomonas variabilis (HT1) and Planococcus rifietoensis (RT4) | Cicer arietinum | [106] |
Pseudomonas fluorescens, Bacillus amyloliquefaciens and Bacillus polymyxa | Triticum aestivum | [128] |
Bacillus amyloliquefaciens MAS4, Bacillus insolitus MAS10 and MAS26, Pseudomonas syringae MAS129, Microbacterium sp MAS133. | Triticum aestivum | [127] |
Shewanella putrefaciens (isolates No.603) | - | [129] |
Bacillus iodinum RS16, and Bacillus aryabhattai RS341 | Capsicum annuum | [130] |
Bacillus sp. SKU5, Burkholderia cepacian (SKU6), Microbacterium sp. (SKU9), Enterobacter sp. (SKU9), and Paenibacillus macerans (SKU10) | Triticum aestivum | [131,132,133] |
Pseudomonas aeruginosa (Pa2), Proteus penneri (Pp1), and Alcaligenes faecalis (AF3) | Zea mays | [134] |
Bacillus tequilensis UPMRB9, Bacillus aryabhattai UPMRE6 | Oryza sativa | [121] |
Brevibacterium sediminis S4-57 | Oryza sativa | [135] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shultana, R.; Zuan, A.T.K.; Naher, U.A.; Islam, A.K.M.M.; Rana, M.M.; Rashid, M.H.; Irin, I.J.; Islam, S.S.; Rim, A.A.; Hasan, A.K. The PGPR Mechanisms of Salt Stress Adaptation and Plant Growth Promotion. Agronomy 2022, 12, 2266. https://doi.org/10.3390/agronomy12102266
Shultana R, Zuan ATK, Naher UA, Islam AKMM, Rana MM, Rashid MH, Irin IJ, Islam SS, Rim AA, Hasan AK. The PGPR Mechanisms of Salt Stress Adaptation and Plant Growth Promotion. Agronomy. 2022; 12(10):2266. https://doi.org/10.3390/agronomy12102266
Chicago/Turabian StyleShultana, Rakiba, Ali Tan Kee Zuan, Umme Aminun Naher, A. K. M. Mominul Islam, Md. Masud Rana, Md. Harun Rashid, Israt Jahan Irin, Shams Shaila Islam, Adiba Afrin Rim, and Ahmed Khairul Hasan. 2022. "The PGPR Mechanisms of Salt Stress Adaptation and Plant Growth Promotion" Agronomy 12, no. 10: 2266. https://doi.org/10.3390/agronomy12102266
APA StyleShultana, R., Zuan, A. T. K., Naher, U. A., Islam, A. K. M. M., Rana, M. M., Rashid, M. H., Irin, I. J., Islam, S. S., Rim, A. A., & Hasan, A. K. (2022). The PGPR Mechanisms of Salt Stress Adaptation and Plant Growth Promotion. Agronomy, 12(10), 2266. https://doi.org/10.3390/agronomy12102266