The Composition of the Organic Matter Fractions of Loamy Sand after Long-Term FYM Application without Liming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Location
2.2. Study Area
2.3. Soil Sampling and Methods of Staistical Analysis
3. Results and Discussion
3.1. Soil Organic Carbon Content and Soil pH
3.2. Humic Substance Characterization
3.3. HA/FA Ratio—Indicator of the Soil Organic Matter Quality
3.4. The Degree of Humification (DH) Index
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guimarães, D.V.; Gonzaga, M.I.S.; da Silva, T.O.; da Silva, T.L.; Dias, N.D.S.; Matias, M.I.S. Soil organic matter pools and carbon fractions in soil under different land uses. Soil Tillage Res. 2013, 126, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Paul, E.A.; Collins, H.P.; Leavitt, S.W. Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally-occurring 14C abundance. Geoderma 2001, 104, 239–256. [Google Scholar] [CrossRef]
- Orlov, D.S. Humus Acids of Soils; A.A. Balkema: Rotterdam, The Netherlands, 1985. [Google Scholar]
- Jaskulska, I.; Jaskulski, D. Influence of many years’fertilization on the dynamics of soil properties. Adv. Agric. Sci. 2003, 4, 21–31. [Google Scholar]
- VDLUFA; Körschens, M. Humusbilanzierung. Methode zur Beurteilung und Bemessung der Humusversorgung von Ackerland. Standpunkt VDLUFA, Bonn, 2004. Humusbilanzierung Eine Methode zur Analyse und Bewertung der Humusversorgung von Ackerland. Available online: https://www.vdlufa.de/download/Humus/Standpunkt_Humusbilanzierung.pdf (accessed on 7 March 2014).
- Körschens, M. Importance of Soil Organic Matter (SOM) for Biomass Production and Environment (a review). Arch. Agron. Soil Sci. 2002, 48, 89–94. [Google Scholar] [CrossRef]
- Mockeviciene, I.; Repsiene, R.; Amaleviciute-Volunge, K.; Karcauskiene, D.; Slepetiene, A.; Lepane, V. Effect of long-term application of organic fertilizers on improving organic matter quality in acid soil. Arch. Agron. Soil Sci. 2022, 68, 1192–1204. [Google Scholar] [CrossRef]
- Maćkowiak, C. The effect of plant selection in the crop rotation, manure and mineral fertilizers on the organic carbon content in the soil and the productivity of the rotations. Fertil. Fertil. 2000, 4, 91–102. (In Polish) [Google Scholar]
- Pikuła, D.; Rutkowska, A. Effect of leguminous crop and fertilization on soil organic carbon in 30-years field experiment. Plant Soil Environ. 2014, 60, 507–511. [Google Scholar] [CrossRef]
- Mercik, S.; Stępień, W.; Lenart, S. Soil fertility in three fertilization languages: Mineral, organic and organic−mineral−in long-term experiment. Part I.24. Physical and physicochemical properties of soils. Folia Pomeranae Universitatis Technologiae Stetinensis, 11. Agricultue 2000, 84, 311–316, (In Polish with English abstract). [Google Scholar]
- Garbuio, F.J.; Jones, D.L.; Alleoni, L.R.; Murphy, D.V.; Caires, E.F. Carbon and nitrogen dynamics in an Oxisol as affected by liming and crop residues under no-till. Soil Biol. Biochem. Soil Sci. Soc. Am. 2011, 75, 1723–1730. [Google Scholar] [CrossRef]
- Montauliak, G. On the characterisation of soil organic matter in Central German arable soil (Zur Charakterisierung der organischen Bodensubstanz in mitteldeutschen Ackerboden). Poczwowiedien 1960, 3. Available online: https://scholar.google.com/scholar?hl=zh-CN&as_sdt=0%2C5&q=Zur+Charakterisierung+der+organischen+Bodensubstanz+in+mitteldeutschen+Ackerboden%29.+&btnG= (accessed on 11 July 2022).
- Mercik, S.; Stępień, W.; Gębski, M. Plant yields and some chemical properties of soils in 75-year fertilizer experiments in Skierniewice. Adv. Agric. Sci. Probl. Issues 1999, 465, 39–49. [Google Scholar]
- Łabza, T. Organic carbon content of loess soils under crop-livestock management conditions. Adv. Agric. Sci. Probl. Issues 1999, 421, 261–266. [Google Scholar]
- Łabętowicz, J.; Korc, M.; Szulc, W. Accumulation of soil organic matter under the influence of mineral fertilization on light soil. Sci. J. Agric. Acad. Szczec. 172 Rol. 1996, 62, 296–303. [Google Scholar]
- Łakomieć, I. Effect of many-years fertilizer treatment on the compositions of humus compounds in podzols. Soil Sci. Ann. 1996, 16, 131–155. [Google Scholar]
- Wojnowska, T.; Sienkiewicz, S.; Wojtas, A. Dynamics of CO2 release from soil depending on manure and NPK fertilization and the crops grown. Adv. Agric. Sci. Probl. Issues 1993, 411, 101–106. [Google Scholar]
- Haynes, R.J.; Naidu, R. Infuence of lime, fertilizer and manure application on soil organic matter content and soil physical conditions: A review. Nutr. Cycl. Agroecosyst. 1998, 51, 123–137. [Google Scholar] [CrossRef]
- Rutkowska, A.; Pikuła, D. Effect of crop rotation and nitrogen fertilization on the quality and quantity of soil organic matter. In Soil Processes and Current Trends in Quality Assessment; Hernandez Soriano, M.C., Ed.; InTech: London, UK, 2013; pp. 249–268. ISBN 978-953-51-1029-3. [Google Scholar]
- Tejada, M.; Gonzalez, J.L.; Garcia-Martinez, A.M.; Parrado, J. Application of a green manure and green manure composted with beet vinasse on soil restoration: Effects on soil properties. Bioresour. Technol. 2008, 99, 4949–4957. [Google Scholar] [CrossRef]
- Smoliński, S.; Kotwica, K.; Jaskulski, D.; Tomalak, S. Effect of stubble crop on soil microbial activity. Changes in the abundance of bacteria involved in C and N transformations. Mat. conf. scient. Microbes in the environment. Occur. Act. Signif. 1997, 625–630. Available online: https://yadda.icm.edu.pl/yadda/element/bwmeta1.element.agro-article-412928aa-5139-48c8-b29d-1e9ae1943068/c/000010200700006000010004500056.pdf (accessed on 11 July 2022).
- Xu, R.K.; Coventry, D.R. Soil pH changes associated with lupin and wheat plant materials incorporated in a red-brown earth soil. Plant Soil 2003, 250, 113–119. [Google Scholar] [CrossRef]
- Gonet, S.S. Properties of Humic Acids of Soils with Diversified Fertilization, Dissertations 33; Technical and Agricultural Academy of Bydgoszcz: Bydgoszcz, Poland, 1989; p. 55. [Google Scholar]
- Dziadowiec, H.; Gonet, S.S. Methodological Guide to Soil Organic Matter Surveys. Proc. Sci. Comm. PTG 1999, 120, 42–43. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 3rd ed.; FAO: Rome, Italy, 2014; ISBN 978-92-5-108370-3. Available online: https://scholar.google.com/scholar?hl=zh-CN&as_sdt=0%2C5&q=World+Reference+Base+for+Soil+Resources+2014.+International+soil+classification+system+for+naming+soils+and+creating+legends+for+soil+maps&btnG= (accessed on 11 July 2022).
- Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources. Available online: https://www.eea.europa.eu/policy-documents/council-directive-91-676-eec (accessed on 12 December 1991).
- Stefanescu, M. Researches regarding the influence of manure in wheat-maize rotation. Biol. Biodiversitate Timis. 2002, 243. [Google Scholar]
- Gonet, S.S.; Wegner, K. Influence of fertilization on soil humus. Sci. J. Agric. Univ. Wroc. Agric. 1990, 53, 127–135. [Google Scholar]
- Adamus, M.; Drozd, J.; Stanisławska, E. Effect of varying organic and mineral fertilisation on some elements of soil fertility. Soil. Sci. Ann. 1989, 40, 101–110. [Google Scholar]
- Körschens, M.; Erhard, A.; Armbruster, M.; Barkusky, D.; Baumecker, M.; Behle-Schalk, L.; Bischoff, R.; Čergan, Z.; Ellmer, F.; Herbst, F.; et al. Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: Results from 20 European long-term field experiments of the twenty-first century. Arch. Agron. Soil Sci. 2013, 59, 1–24. [Google Scholar] [CrossRef]
- Bruni, E.; Guenet, B.; Huang, Y.; Clivot, H.; Virto, I.; Farina, R.; Kätterer, T.; Ciai, P.; Martin, M.; Chenu, C. Additional carbon inputs to reach a 4 per 1000 objective in Europe: Feasibility and projected impacts of climate change based on Century simulations of long-term arable experiments. BG 2021, 18, 3981–4004. [Google Scholar] [CrossRef]
- Trawczyński, C. Balance of nitrogen, phosphorus and potassium in the second cycle of crop rotation in organic production system on the sandy soil. Fragm. Agron. 2015, 32, 87–96. [Google Scholar]
- Martyniuk, S.; Pikuła, D.; Kozieł, M. Soil properties and productivity in two long-term crop rotations differing with respect to organic matter management on an Albic Luvisol. Sci. Rep. 2019, 9, 1878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łoginov, W.; Andrzejewski, J.; Janowiak, J. The role of organic fertilization in maintaining soil organic matter resources. Soil Sci. Ann. 1991, 42, 19–25. [Google Scholar]
- Panak, H.; Nowak, G. Effect of intensive mineral fertilization on the decomposition of soil organic matter. Soil Sci. Ann. 1989, 40, 39–52. [Google Scholar]
- Wiśniewski, W.; Gonet, S.S. The effect of fertilization with mineral nitrogen and manure on the fractional composition of organic soil matter, the state of humus in the soil in long-term static fertilization experiments. Pamięt. Puławski–Puławski’s Diary 1986, 87, 19–29. [Google Scholar]
- Cambardella, C.E.; Gajda, A.M.; Doran, J.W.; Wienhold, B.J.; Kettler, T.A. Estimation of particulate and total organic matter by weight-loss-on ignition. In Assessment Methods for Soil Carbon; Lal, R., Kimble, J.F., Follet, R.F., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 349–359. [Google Scholar]
- Strosser, E. Methods for determination of labile soil organic matter: An overview. J. Agrobiol. 2010, 27, 49–60. [Google Scholar] [CrossRef]
- Kaiser, K.; Kalbitzb, K. Cycling downwards—dissolved organic matter in soils. Soil Biol. Biochem. 2012, 52, 29–32. [Google Scholar] [CrossRef]
- Suwara, I.; Gawrońska-Kulesza, A.; Kuszelewski, L. Influence of manure fertilization and liming on selected soil physical properties. Sci. J. Agric. Acad. 1996, 62, 491–495. [Google Scholar]
- Sollins, F.; Homann, P.; Caldwell, B.A. Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma 1996, 74, 65–105. [Google Scholar] [CrossRef]
- Lal, R. Tillage effects on soil degradation, soil resilience, soil quality, and sustainability. Soil Tillage Res. 1993, 27, 1–8. [Google Scholar] [CrossRef]
- Gonet, S.S.; Dębska, B. Properties of humic acids producted during decomposition of plant residues in soil. Rostl. Vyroba 1999, 45, 455–460. [Google Scholar]
- Franzluebbers, A.J. Soil organic matter stratification ratio as an indicator of soil quality. Rostl. Vyroba Res. 2002, 66, 95–106. [Google Scholar] [CrossRef]
- Muñoz, C.; Paulino, L.; Monreal, C.; Erick, Z. Greenhouse gas (CO2 and N2O) emissions from soils: A review. Chil. J. Agr. Res. 2010, 70, 485–497. [Google Scholar] [CrossRef] [Green Version]
- Ukalska-Jaruga, A.; Smreczak, B.; Strzelecka, J. Influence of organic matter on the quality of agriculturally used soils. Stud. Rep. IUNG-PIB 2017, 54, 25–39. (In Polish) [Google Scholar] [CrossRef]
- Liu, H. Relationship between organic matter humification and bioavailability of sludge-borne copper and calcium during long-term sludge amendment to soil. Sci. Total Environ. 2016, 566, 8–14. [Google Scholar] [CrossRef]
Crop Rotation | Crops | Mineral Fertilization [kg·ha−1] | |||||
---|---|---|---|---|---|---|---|
N0 | N1 | N2 | N3 | P | K | ||
A | Grain maize | 0 | 50 | 100 | 150 | 24 | 133 |
Winter wheat | 0 | 50 | 100 | 150 | 24 | 83 | |
Spring barley | 0 | 30 | 60 | 90 | 24 | 71 | |
Maize for silage | 0 | 50 | 100 | 150 | 24 | 100 | |
B | Grain maize | 0 | 50 | 100 | 150 | 24 | 133 |
Winter wheat | 0 | 50 | 100 | 150 | 24 | 83 | |
Spring barley | 0 | 30 | 60 | 90 | 24 | 71 | |
Clover—grass mixture | 0 | 50 | 100 | 150 | 24 | 96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pikuła, D.; Ciotucha, O. The Composition of the Organic Matter Fractions of Loamy Sand after Long-Term FYM Application without Liming. Agronomy 2022, 12, 2385. https://doi.org/10.3390/agronomy12102385
Pikuła D, Ciotucha O. The Composition of the Organic Matter Fractions of Loamy Sand after Long-Term FYM Application without Liming. Agronomy. 2022; 12(10):2385. https://doi.org/10.3390/agronomy12102385
Chicago/Turabian StylePikuła, Dorota, and Olga Ciotucha. 2022. "The Composition of the Organic Matter Fractions of Loamy Sand after Long-Term FYM Application without Liming" Agronomy 12, no. 10: 2385. https://doi.org/10.3390/agronomy12102385
APA StylePikuła, D., & Ciotucha, O. (2022). The Composition of the Organic Matter Fractions of Loamy Sand after Long-Term FYM Application without Liming. Agronomy, 12(10), 2385. https://doi.org/10.3390/agronomy12102385