Water Stress Effects on the Morphological, Physiological Characteristics of Maize (Zea mays L.), and on Environmental Cost
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Crop Management and Experimental Design
2.3. Morphological Characteristics
2.3.1. Plant Height
2.3.2. Leaf Area Index
2.4. Physiological Characteristics
2.4.1. Leaf Greenness Index (SPAD Index)
2.4.2. Photosynthetic Efficiency
2.4.3. Gas Exchange Measurements
2.5. Energy Equivalent
2.6. Carbon Footprint
2.7. Statistical Analysis
3. Results
3.1. Morphological Characteristics
3.1.1. Plant Height
3.1.2. Leaf Area Index (LAI)
3.2. Physiological Characteristics
3.2.1. Leaf Greenness Index (SPAD Index)
3.2.2. Photosynthetic Efficiency
3.2.3. CO2 Assimilation Rate (A)
3.3. Energy Equivalent
3.4. Carbon Footprint
3.5. Silage Yield
4. Discussion
4.1. Morphological Characteristics
4.1.1. Plant Height
4.1.2. Leaf Area Index (LAI)
4.2. Physiological Characteristics
4.2.1. Leaf Greenness Index (SPAD Index)
4.2.2. Photosynthetic Efficiency
4.2.3. CO2 Assimilation Rate (A)
4.3. Energy Equivalent
4.4. Carbon Footprint
4.5. Silage Yield
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; Le Page, M.; Llasat, M.C.; Albergel, C.; Burak, S.; et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth-Sci. Rev. 2020, 210, 103348. [Google Scholar] [CrossRef]
- Bodner, G.; Nakhforoosh, A.; Kaul, H.P. Management of crop water under drought: A review. Agron. Sustain. Dev. 2015, 35, 401–442. [Google Scholar] [CrossRef]
- Flexas, J.; Diaz-Espejo, A.; Gago, J.; Galle, A.; Galmes, J.; Gulias, J.; Medrano, H. Photosynthetic limitations in Mediterranean plants: A review. Environ. Exp. Bot. 2014, 103, 12–23. [Google Scholar] [CrossRef]
- Del Pozo, A.; Brunel-Saldias, N.; Engler, A.; Ortega-Farias, S.; Acevedo-Opazo, C.; Lobos, G.A.; Jara-Rojas, R.; Molina-Montenegro, M.A. Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs). Sustainability 2019, 11, 2769. [Google Scholar] [CrossRef] [Green Version]
- Keane, R.; Hessburg, P.; Landres, P.; Swanson, F. A review of the use of historical range and variation (HRV) in landscape management. For. Ecol. Manag. 2009, 258, 1025–1037. [Google Scholar] [CrossRef]
- Perkins, S. Crisis on tap pollution and burgeoning populations stress earth’s water resources. Sci. News 2002, 162, 33–48. [Google Scholar]
- UNEP GRID-Arendal (United Nations Environment Programme Global Resource Information Database-Arendal). From supply to food security. In The Environmental Food Crisis: The Environment’s Role in Averting Future Food Crisis; Nellemann, C., MacDevette, M., Manders, T., Eickhout, B., Prins, A.G., Kaltenborn, B.P., Eds.; A UNEP Rapid Response Assessment; Birkeland Trykkeri A.S.: Birkeland, Norway, 2009; pp. 77–91. Available online: http://www.grida.no/publications/rr/foodcrisis/page/3571.aspx (accessed on 25 August 2022).
- Tester, M.; Langridge, P. Breeding technologies to increase crop production in a changing world. Science 2010, 327, 818–822. [Google Scholar] [CrossRef]
- Hess, A. A microcomputer scheduling program for supplementary irrigation. In Irrigation Scheduling: From Theory to Practice: Proceedings of the ICID/FAO Workshop on Irrigation Scheduling, Rome, Italy, 12–13 September 1995; International Commission on Irrigation and Drainage: New Delhi, India; Food and Agriculture Organization of the United Nations: Rome, Italy, 1996. [Google Scholar]
- Mao, Z. Environmental impact of water-saving irrigation for rice. In Irrigation Scheduling: From Theory to Practice: Proceedings of the ICID/FAO Workshop on Irrigation Scheduling, Rome, Italy, 12–13 September 1995; International Commission on Irrigation and Drainage: New Delhi, India; Food and Agriculture Organization of the United Nations: Rome, Italy, 1996. [Google Scholar]
- Hadi, M.H.S.; Darzi, M.; Ashoorabadi, E.S. Study the effects of conventional and low input production system on energy efficiency of Silybum marianum L. World Acad. Sci. Eng. Technol. 2009, 54, 364–366. [Google Scholar]
- Dordas, C.; Papathanasiou, F.; Lithourgidis, A.; Petrevska, J.-K.; Papadopoulos, I.; Pankou, C.; Gekas, F.; Ninou, E.; Mylonas, I.; Sistanis, I.; et al. Evaluation of physiological characteristics as selection criteria for drought tolerance in maize inbred lines and their hybrids. Maydica 2018, 63, 1–14. [Google Scholar]
- Kalamartzis, I.; Dordas, C.; Georgiou, P.; Menexes, G. The Use of Appropriate Cultivar of Basil (Ocimum basilicum) Can Increase Water Use Efficiency under Water Stress. Agronomy 2020, 10, 70. [Google Scholar] [CrossRef] [Green Version]
- Pankou, C.; Lithourgidis, A.; Dordas, C. Effect of Irrigation on Intercropping Systems of Wheat (Triticum aestivum L.) with Pea (Pisum sativum L.). Agronomy 2021, 11, 283. [Google Scholar] [CrossRef]
- Payero, J.; Tarkalson, D.; Irmak, S.; Davison, D.; Petersen, J. Effect of timing of a deficit–irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass. Agric. Water Manag. 2009, 96, 1387–1397. [Google Scholar] [CrossRef] [Green Version]
- Tokatlidis, I.S.; Dordas, C.; Papathanasiou, F.; Papadopoulos, I.; Pankou, C.; Gekas, F.; Ninou, E.; Mylonas, I.; Tzantarmas, C.; Petrevska, J.K.; et al. Improved Plant Yield Efficiency is Essential for Maize Rainfed Production. Agron. J. 2015, 107, 1011–1018. [Google Scholar] [CrossRef]
- Howell, T.; Evett, S.; Tolk, J.; Schneider, A.; Steiner, J. Evapotranspiration of corn Southern high plains. In Evapotranspiration and Irrigation Scheduling: Proceedings of the International Conference, San Antonio, TX, USA, 3–6 November 1996; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1996. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Crop Water Information: Maize. 2021. Available online: https://www.fao.org/land-water/databases-and-software/crop-information/maize/en/ (accessed on 27 August 2022).
- Liu, J.; Guo, Y.; Bai, Y.; Camberato, J.; Xue, J.; Zhang, R. Effects of drought stress on the photosynthesis in maize. Russ. J. Plant Physiol. 2018, 65, 849–856. [Google Scholar] [CrossRef]
- Cakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res. 2004, 89, 1–16. [Google Scholar] [CrossRef]
- Dioudis, I.; Filintas, T.; Papadopoulos, H. Corn yield in response to irrigation interval and the resultant savings in water and the overheads. Irrig. Drain. 2009, 58, 96–104. [Google Scholar] [CrossRef]
- Rogers, D. Irrigation. In Corn Production Handbook; Kansas State University, Agricultural Experiment Station and Cooperative Extension Service: Manhattan, KS, USA, 1994. [Google Scholar]
- Kang, S.; Shi, W.; Zhang, J. An improved water-use efficiency for maize grown under regulated deficit irrigation. Field Crops Res. 2000, 67, 207–214. [Google Scholar] [CrossRef]
- Zhao, X.; Pu, C.; Ma, S.T.; Liu, S.L.; Xue, J.F.; Wang, X.; Wang, Y.Q.; Li, S.S.; Lal, R.; Chen, F.; et al. Management-induced greenhouse gases emission mitigation in global rice production. Sci. Total Environ. 2019, 649, 1299–1306. [Google Scholar] [CrossRef]
- Shakoor, A.; Ashraf, F.; Shakoor, S.; Mustafa, A.; Rehman, A.; Altaf, M.M. Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing. Environ. Sci. Pollut. Res. 2020, 27, 38513–38536. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Software for National Gas Inventories, Intergovernmental Panel on Climate Change. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 13 June 2022).
- Xue, J.; Qi, J.; Gao, Z.; Ren, A.; Wang, Z.; Du, T. Dynamics of carbon footprint of maize production with different functional units in Shanxi Province, China. Pak. J. Agric. Sci. 2018, 55, 489–496. [Google Scholar]
- Adler, P.R.; Del Grosso, S.J.; Parton, W.J. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol. Appl. 2007, 17, 675–691. [Google Scholar] [CrossRef]
- Sheehan, J.; Aden, A.; Paustian, K.; Brenner, J.; Walsh, M.; Nelson, R. Energy and environmental aspects of using corn stover for fuel ethanol. J. Ind. Ecol. 2004, 7, 117–146. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World agriculture towards 2030/2050. The 2012 Revision. Food Agric. Organ. UN 2012, 12, 146. [Google Scholar]
- Argolo dos Santos, R.; Chartuni Mantovani, E.; Filgueiras, R.; Inácio Fernandes-Filho, E.; Barbosa da Silva, A.C.; Peroni Venancio, L. Actual evapotranspiration and biomass of maize from red–green-near-infrared (RGNIR) sensor on board an unmanned aerial vehicle (UAV). Water 2020, 12, 2359. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Papazafiriou, Z.G. Crop evapotranspiration: Regional studies in Greece. In Proceedings of the International Symposium of Applied Agrometeorology Agroclimatology, Volos, Greece, 24–26 April 1996; Dalezios, N.R., Ed.; Office for Official Publication of the European Commission: Luxembourg, 1996; pp. 275–286. [Google Scholar]
- Georgiou, P.; Antonopoulos, V.; Lekakis, E. Soil water balance and distribution in a field of maize under partial root-zone drying drip irrigation. In Proceedings of the International Conference PRE10 Protection and Restoration of the Environment X, Corfu, Greece, 5–9 July 2010; p. 8. [Google Scholar]
- Binder, D.L.; Sander, D.H.; Walters, D.T. Maize response to time of N application as affected by level of nitrogen deficiency. Agron. J. 2000, 92, 1228–1236. [Google Scholar] [CrossRef]
- Konica-Minolta. Chlorophyll Meter SPAD-502 Instruction Manual; Konica Minolta Sensing, Inc.: Ramsey, NJ, USA, 1989. [Google Scholar]
- Pattey, E.; Rochette, P.; Desjardins, R.L.; Dub, P.A. Estimation of the net CO2 assimilation rate of a maize (Zea mays L.) canopy from leaf chamber measurements. Agric. For. Meteorol. 1991, 55, 37–57. [Google Scholar] [CrossRef]
- De, D.; Singh, S.; Chandra, H. Technological impact on energy consumption in rainfed soybean cultivation in Madhya Pradesh. Appl. Energy 2001, 70, 193–213. [Google Scholar] [CrossRef]
- Laskari, M.; Menexes, G.S.; Kalfas, I.; Gatzolis, I.; Dordas, C. Effects of fertilization on morphological and physiological characteristics and environmental cost of maize (Zea mays L.). Sustainability 2022, 14, 8866. [Google Scholar] [CrossRef]
- Vural, H.; Efecan, I. An analysis of energy use and input costs for maize production in Turkey. J. Food Agric. Environ. 2012, 10, 613–616. [Google Scholar]
- Poudel, S.; Bhattarai, S.; Sherpa, T.; Karki, A.; Hyun, D.; Kafle, S. The energy input-output analysis of maize production in Sundarharaincha Municipality, Morang district, Nepal. IOP Conf. Ser. Earth Environ. Sci. 2019, 301, 012027. [Google Scholar] [CrossRef] [Green Version]
- Erdal, G.; Esengun, K.; Erdal, H.; Gunduz, O. Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy 2007, 32, 35–41. [Google Scholar] [CrossRef]
- Shahin, R.; Mousavi-Avval, S.; Mohammadi, A. Modeling and sensitivity analysis of energy inputs for apple production in Iran. Energy 2010, 35, 3301–3306. [Google Scholar]
- Yousefi, M.; Mohammadi, A. Economical analysis and energy use efficiency in alfalfa production systems in Iran. Sci. Res. Essays 2011, 6, 2332–2336. [Google Scholar]
- Baran, M. Energy Analysis of Summery Vetch Production in Turkey: A Case Study for Kirklareli Province. Am. Eurasian J. Agric. Environ. Sci. 2016, 16, 209–215. [Google Scholar]
- Hou, L.; Yang, Y.; Zhang, X.; Jiang, C. Carbon footprint for wheat and maize production modulated by farm size: A study in the North China plain. Int. J. Clim. Chang. Strateg. Manag. 2021, 13, 302–319. [Google Scholar] [CrossRef]
- Zhang, W.; Dou, Z.; Hea, P.; Jua, X.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y.; Zhang, Y.; Wu, L.; et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef] [Green Version]
- West, T.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Zhu, Y.; Waqas, M.; Li, Y.; Zou, X.; Jiang, D.; Wilkes, A.; Qin, X.; Gao, Q.; Wan, Y.; Hasbagan, G. Large-scale farming operations are win-win for grain production, soil carbon storage and mitigation of greenhouse gases. J. Clean. Prod. 2007, 172, 2143–2152. [Google Scholar] [CrossRef]
- Yan, M.; Cheng, K.; Luo, T.; Yan, Y.; Pan, G.; Rees, R.M. Carbon footprint of grain crop production in China-based on farm survey data. J. Clean. Prod. 2015, 104, 130–138. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedure for Agricultural Research, 2nd ed.; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dicky, D.A. Principles and Procedures of Statistics, A Biometrical Approach, 3rd ed.; McGraw Hill, Inc. Book Co.: New York, NY, USA, 1997; pp. 352–358. [Google Scholar]
- Oktem, A. Effects of deficit irrigation on some yield characteristics of sweet corn. Bangladesh J. Bot. 2008, 37, 127–131. [Google Scholar] [CrossRef]
- Yazar, A.; Gökcel, F.; Sezen, M.S. Corn yield response to partial rootzone drying and deficit irrigation strategies applied with drip system. Plant Soil Environ. 2009, 55, 494–503. [Google Scholar] [CrossRef] [Green Version]
- Lubajo, B.; Karuku, G. Effect of deficit irrigation regimes on growth, yield, and water use efficiency of maize (Zea mays) in the semiarid area of Kiboko, Kenya. Trop. Subtrop. Agroecosyst. 2021, 25, 34. [Google Scholar]
- Kamar, F.; Breidy, J.; Chafic, S.; Rouphael, J. Evapotranspiration, yield and water use efficiency of drip irrigated corn in the Bekaa Valley of Lebanon. Agric. Water Manag. 2003, 63, 125–137. [Google Scholar]
- Igbadun, H.E.; Baanda, A.S.; Tarimo, A.K.P.R.; Mahoo, H.F. Effects of deficit irrigation scheduling on yields and soil water balance of irrigated maize. Irrig. Sci. 2008, 27, 11–23. [Google Scholar] [CrossRef]
- Pandey, R.K.; Maranville, J.W.; Chetima, M.M. Deficit irrigation and nitrogen effects on maize in a Sahelian environment II. Shoot growth, nitrogen uptake and water extraction. Agric. Water Manag. 2000, 46, 15–27. [Google Scholar] [CrossRef]
- Pandey, R.K.; Maranville, J.W.; Admou, A. Deficit irrigation and nitrogen effects on maize in a Sahelian environment I grain yield and yield components. Agric. Water Manag. 2000, 46, 1–13. [Google Scholar] [CrossRef]
- Li, R.H.; Guo, P.G.; Baum, M.; Grando, S.; Ceccarelli, S. Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agric. Sci. 2006, 5, 751–757. [Google Scholar] [CrossRef]
- Fotovat, R.; Valizadeh, M.; Toorchi, M. Association between water-use efficiency components and total chlorophyll content (SPAD) in wheat (Triticum aestivum L.) under well-watered and drought stress conditions. J. Food Agric. Environ. 2007, 5, 225–227. [Google Scholar]
- Fischer, K.S.; Palmer, F.E. Tropical Maize in the Physiology of Tropical Field Crops; Goldsworthy, P.R., Fischer, N.M., Eds.; Wiley: New York, NY, USA, 1984; pp. 213–248. [Google Scholar]
- Mansouri-Far, C.; Modarres Sanavy, S.A.M.; Saberali, S.F. Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions. Agric. Water Manag. 2010, 97, 12–22. [Google Scholar] [CrossRef]
- Peuke, A.D.; Rennenberg, H. Impacts of drought on mineral macro- and microelements in provenances of beech (Fagus sylvatica L.) seedlings. Tree Physiol. 2011, 31, 196–207. [Google Scholar] [CrossRef]
- Bista, D.R.; Heckathorn, S.A.; Jayawardena, D.M.; Mishra, S.; Boldt, J.K. Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and -tolerant grasses. Plants 2018, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Langeroodi, A.R.S.; Campiglia, E.; Mancinelli, R.; Radicetti, E. Can biochar improve pumpkin productivity and its physiological characteristics under reduced irrigation regimes? Sci. Hortic. 2019, 247, 195–204. [Google Scholar] [CrossRef]
- Eghball, B.; Power, J. Composted and noncomposted manure application to conventional and no-tillage systems: Corn yield and nitrogen uptake. Agron. J. 1999, 91, 819–825. [Google Scholar] [CrossRef] [Green Version]
- Subedi, K.D.; Ma, B.L. Effects of N-deficiency and timing of N supply on the recovery and distribution of labeled 15 N in contrasting maize hybrids. Plant Soil 2005, 273, 189–202. [Google Scholar] [CrossRef]
- Munne-Bosch, S.; Alegre, L. Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 2000, 210, 925–931. [Google Scholar] [CrossRef]
- Broetto, F.; Duarte, H.M.; Lüttge, Q. Responses of chlorophyll fluorescence parameters of the facultative halophyte and C3-CAM intermediate species Mesembryanthemum crystallinum to salinity and high irradiance stress. J. Plant Physiol. 2007, 164, 904–912. [Google Scholar] [CrossRef]
- Habibi, G. Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biol. Szeged. 2012, 56, 57–63. [Google Scholar]
- Gunes, A.; Inal, A.; Bagci, E.G.; Coban, S. Silicon mediated changes on some physiological and enzymatic parameters symptomatic of oxidative stress in barley grown in sodic-B toxic soil. J. Plant Physiol. 2007, 164, 807–811. [Google Scholar] [CrossRef]
- Boughalleb, F.; Hajlaoui, H. Physiological and anatomical changes induced by drought in two olive cultivars (cvZalmati and Chemlali). Acta Physiol. Plant. 2011, 33, 53–65. [Google Scholar] [CrossRef]
- Dejong, T.M. Photosynthesis and respiration. In Almond Orchard Management; Micke, W.C., Ed.; University of California, Division of Agriculture and Natural Resources: Oakland, CA, USA, 1996; Volume 3364, pp. 103–106. [Google Scholar]
- Lu, J.; Ma, L.; Hu, T.; Geng, C.; Yand, S. Deficit drip irrigation based on crop evapotranspiration and precipitation forecast improves water- use efficiency and grain yield of summer maize. J. Sci. Food Agric. 2021, 102, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Comas, L.; Trout, T.J.; DeJonge, K.C.; Zhang, H.; Gleason, S.M. Water productivity under strategic growth stage-based deficit irrigation in maize. Agric. Water Manag. 2019, 212, 433–440. [Google Scholar] [CrossRef]
- Kizilaslan, N. Energy use and input- output energy analysis for apple production. J. Food Agric. Environ. 2009, 7, 418–423. [Google Scholar]
- Topak, R.; Acar, B.; Ugurlu, N. Analysis of energy use and input costs for irrigation in field crop production: A case study for the konya plain of Turkey. J. Sustain. Agric. 2009, 33, 757–771. [Google Scholar] [CrossRef]
- Huang, X.; Chen, C.; Qian, H.; Chen, M.; Deng, A.; Zhang, J.; Zhang, W. Quantification for carbon footprint of agricultural inputs of grains cultivation in China since 1978. J. Clean. Prod. 2017, 142, 1629–1637. [Google Scholar] [CrossRef]
- Cheng, K.; Pan, G.; Smith, P.; Luo, T.; Li, L.; Zheng, J.; Zhang, X.; Han, X.; Yan, M. Carbon footprint of China's crop production-an estimation using agro-statistics data over 1993–2007. Agric. Ecosyst. Environ. 2011, 142, 231–237. [Google Scholar] [CrossRef]
Inputs | Unit | Energy Equivalent Coefficient (MJ/Unit) | Reference |
---|---|---|---|
Pesticides, Fungicides | kg | 120 | [41] |
Labor | hour | 1.96 | [41] |
Machinery | hour | 64.8 | [40] |
Nitrogen (Ν) | kg | 66.14 | [42] |
Phosphorus (Ρ) | kg | 12.44 | [42] |
Potassium (Κ) | kg | 11.15 | [42] |
Manure | ton | 303.1 | [40] |
Diesel | L | 56.31 | [43] |
Electricity | kWh | 3.6 | [44] |
Irrigation water | m3 | 0.63 | [44] |
Seed for vetch | kg | 10 | [45] |
Seed for maize | kg | 14.7 | [41] |
Inputs | Emission Factor | Reference |
---|---|---|
Nitrogen (Ν) | 8.30 kg CO2-eq kg−1 N | [47] |
Phosphorus (Ρ) | 0.61 kg CO2-eq kg−1 P2O5 | [48] |
Potassium (Κ) | 0.44 kg CO2-eq kg−1 K2O | [48] |
Seeds | 3.85 kg CO2-eq kg−1 | [48] |
Electricity | 0.80 kg CO2-eq kW h−1 | [49] |
Pesticides, Fungicides | 18 kg CO2-eq kg−1 | [48] |
Diesel | 2.63 kg CO2-eq L−1 | [50] |
Growth Stage | Year 2019 * | Year 2020 * | Total Mean * |
---|---|---|---|
GS1 | 2.15 c | 2.60 a | 2.37 b |
GS2 | 2.41 b | 2.67 a | 2.54 a |
Total mean | 2.28 | 2.63 | |
LSD0.05 for interaction GS×Y | 0.10 | ||
Significance of main effect of GS (p-value) | <0.001 | ||
Significance of main effect of Y (p-value) | <0.001 | ||
Irrigation Treatments | Year 2019 | Year 2020 | Total mean |
50% ETc | 2.21 a | 2.57 a | 2.39 a |
70% ETc | 2.22 a | 2.63 b | 2.42 a |
100% ETc | 2.39 b | 2.71 c | 2.55 b |
LSD0.05 for I | 0.05 |
Irrigation Treatments | Year 2019 * | Year 2020 * | Total Mean * |
---|---|---|---|
50% ETc | 2.72 d | 4.62 b | 3.67 c |
70% ETc | 2.81 d | 4.75 a,b | 3.78 b |
100% ETc | 3.26 c | 4.90 a | 4.08 a |
Total mean | 2.26 | 4.75 | |
LSD0.05 for interaction I × Y | 0.16 | ||
LSD0.05 for I | 0.11 | ||
Significance of main effect of Y (p-value) | <0.001 | ||
Growth stage | Year 2019 | Year 2020 | Total mean |
GS1 | 2.97 a | 4.86 a | 3.91 a |
GS2 | 2.89 b | 4.66 b | 3.77 b |
Significance of main effect of GS (p-value) | 0.05 |
Irrigation Treatments | Year 2019 * | Year 2020 * | Total Mean * |
---|---|---|---|
GS1 | 58.10 a | 55.11 b | 56.60 a |
GS2 | 57.50 a | 45.75 c | 51.62 b |
Total mean | 57.80 | 50.43 | |
LSD0.05 for interaction GS × Y | 1.98 | ||
Significance of main effect of GS (p-value) | <0.001 | ||
Significance of main effect of Y (p-value) | <0.001 | ||
Growth stage | Year 2019 | Year 2020 | Total mean |
50% ETc | 53.38 a | 46.47 a | 49.92 a |
70% ETc | 59.17 b | 51.57 b | 55.37 b |
100% ETc | 60.86 c | 53.25 c | 57.05 c |
LSD0.05 for I | 1.63 |
Irrigation Treatments | Year 2019 * | Year 2020 * | Total Mean * |
---|---|---|---|
GS1 | 0.799 a | 0.718 c | 0.758 a |
GS2 | 0.762 b | 0.706 c | 0.734 b |
Total mean | 0.780 | 0.712 | |
LSD0.05 for interaction GS × Y | 0.021 | ||
Significance of main effect of GS (p-value) | <0.001 | ||
Significance of main effect of Y (p-value) | <0.001 | ||
Growth stage | Year 2019 | Year 2020 | Total mean |
50% ETc | 0.770 a | 0.683 a | 0.726 a |
70% ETc | 0.772 a | 0.722 b | 0.747 b |
100% ETc | 0.800 b | 0.732 b | 0.765 c |
LSD0.05 for I | 0.019 |
Irrigation Treatments | Year 2019 * | Year 2020 * | Total Mean * |
---|---|---|---|
50% ETc | 4.772 c | 4.065 d | 4.418 c |
70% ETc | 5.020 c | 5.731 b | 5.375 b |
100% ETc | 5.655 b | 6.398 a | 6.026 a |
Total mean | 5.149 | 5.398 | |
LSD0.05 for interaction I × Y | 0.397 | ||
LSD0.05 for I | 0.281 | ||
Significance of main effect of Y (p-value) | 0.219 | ||
Growth stage | Year 2019 | Year 2020 | Total mean |
GS1 | 5.385 a | 5.458 a | 5.421 a |
GS2 | 4.853 b | 5.338 b | 5.095 b |
Significance of main effect of GS (p-value) | 0.034 |
Year 2019 | ||||
Inputs | The Amount of Input | 50% ETc | 70% ETc | 100% ETc |
Nitrogen (Ν) | 310 kg ha−1 | 2573 kg CO2-eq ha−1 | 2573 kg CO2-eq ha−1 | 2573 kg CO2-eq ha−1 |
Phosphorus (P2O5) | 40 kg ha−1 | 24.4 kg CO2-eq ha−1 | 24.4 kg CO2-eq ha−1 | 24.4 kg CO2-eq ha−1 |
Electricity | 440 kWh ha−1 | 176 kg CO2-eq ha−1 | 246.4 kg CO2-eq ha−1 | 352 kg CO2-eq ha−1 |
Seeds | 20 kg ha−1 | 77 kg CO2-eq ha−1 | 77 kg CO2-eq ha−1 | 77 kg CO2-eq ha−1 |
Pesticides, Fungicides | 1.1 kg ha−1 | 19.8 kg CO2-eq ha−1 | 19.8 kg CO2-eq ha−1 | 19.8 kg CO2-eq ha−1 |
Diesel | 170 L ha−1 | 447.1 kg CO2-eq ha−1 | 447.1 kg CO2-eq ha−1 | 447.1 kg CO2-eq ha−1 |
Total emissions CO2 | 3317 kg CO2-eq ha−1 | 3387.4 kg CO2-eq ha−1 | 3493 kg CO2-eq ha−1 | |
Year 2020 | ||||
Inputs | The Amount of Input | 50% ETc | 70% ETc | 100% ETc |
Nitrogen (Ν) | 310 kg ha−1 | 2573 kg CO2-eq ha−1 | 2573 kg CO2-eq ha−1 | 2573 kg CO2-eq ha−1 |
Phosphorus (P2O5) | 40 kg ha−1 | 24.4 kg CO2-eq ha−1 | 24.4 kg CO2-eq ha−1 | 24.4 kg CO2-eq ha−1 |
Electricity | 660 kWh ha−1 | 264 kg CO2-eq ha−1 | 369.6 kg CO2-eq ha−1 | 528 kg CO2-eq ha−1 |
Seeds | 20 kg ha−1 | 77 kg CO2-eq ha−1 | 77 kg CO2-eq ha−1 | 77 kg CO2-eq ha−1 |
Pesticides, Fungicides | 1.1 kg ha−1 | 19.8 kg CO2-eq ha−1 | 19.8 kg CO2-eq ha−1 | 19.8 kg CO2-eq ha−1 |
Diesel | 170 L ha−1 | 447.1 kg CO2-eq ha−1 | 447.1 kg CO2-eq ha−1 | 447.1 kg CO2-eq ha−1 |
Total emissions CO2 | 3405 kg CO2-eq ha−1 | 3510.6 kg CO2-eq ha−1 | 3669 kg CO2-eq ha−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laskari, M.; Menexes, G.; Kalfas, I.; Gatzolis, I.; Dordas, C. Water Stress Effects on the Morphological, Physiological Characteristics of Maize (Zea mays L.), and on Environmental Cost. Agronomy 2022, 12, 2386. https://doi.org/10.3390/agronomy12102386
Laskari M, Menexes G, Kalfas I, Gatzolis I, Dordas C. Water Stress Effects on the Morphological, Physiological Characteristics of Maize (Zea mays L.), and on Environmental Cost. Agronomy. 2022; 12(10):2386. https://doi.org/10.3390/agronomy12102386
Chicago/Turabian StyleLaskari, Maria, George Menexes, Ilias Kalfas, Ioannis Gatzolis, and Christos Dordas. 2022. "Water Stress Effects on the Morphological, Physiological Characteristics of Maize (Zea mays L.), and on Environmental Cost" Agronomy 12, no. 10: 2386. https://doi.org/10.3390/agronomy12102386
APA StyleLaskari, M., Menexes, G., Kalfas, I., Gatzolis, I., & Dordas, C. (2022). Water Stress Effects on the Morphological, Physiological Characteristics of Maize (Zea mays L.), and on Environmental Cost. Agronomy, 12(10), 2386. https://doi.org/10.3390/agronomy12102386