Study on the Natural Ventilation Characteristics of a Solar Greenhouse in a High-Altitude Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Materials
2.2. CFD Model
2.3. Boundary Conditions and Geometric Modeling
2.4. Grid Irrelevance Verification
2.5. CFD Model Validation
3. Results and Discussion
3.1. Wind and Heat Pressure Calculations
3.1.1. Wind Pressure Ventilation
3.1.2. Thermal Pressure Ventilation
3.1.3. Coupled Wind and Thermal Pressure Ventilation
3.1.4. Discussion
3.2. Ventilation Rate
3.2.1. Sample Values of Greenhouse Ventilation Rate
3.2.2. Correlation Analysis of Factors Affecting Ventilation Rate
3.2.3. Ventilation Rate Equation Fitting and Prediction Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, K. Environmental Simulation and Optimization of Multi-Span Plastic Greenhouse in Hainan. Master’s Degree, Hainan University, Hainan, China, 2020. [Google Scholar]
- Agarwal, A.; Gupta, S.; Ahmed, Z. Influence of plant densities on productivity of bell pepper (Capsicum annuum L.) under greenhouse in high altitude cold desert of Ladakh. In Proceedings of the International Symposium on Medicinal and Nutraceutical Plants 756, Macon, GA, USA, 19–23 March 2007; pp. 309–314. [Google Scholar]
- Acharya, S.; Kumar, H. Effect of some organic manure on growth and yield of garlic in greenhouse condition at cold desert high altitude Ladakh Region. Def. Life Sci. J. 2018, 3, 100–104. [Google Scholar] [CrossRef]
- Yin, C.; Pang, X.; Lei, Y. Populus from high altitude has more efficient protective mechanisms under water stress than from low-altitude habitats: A study in greenhouse for cuttings. Physiol. Plant. 2009, 137, 22–35. [Google Scholar] [CrossRef]
- Fuller, R.; Aye, L.; Zahnd, A.; Thakuri, S. Thermal evaluation of a greenhouse in a remote high altitude area of Nepal. Int. Energy J. 2009, 10, 71–80. [Google Scholar]
- Cheng, X.; Huang, Y.; Ren, H.; Ren, Z. Simulation of summer mechanical ventilation in flower greenhouses based on CFD. J. Hebei Agric. Univ. 2021, 44, 113–118. (In Chinese) [Google Scholar]
- Liu, J.; Wen, X.; Li, Y.; Bai, J. Effect of the Wall of Solar Greenhouse with Forced Ventilation on the Indoor Temperature and Humidity. J. Shanxi Agric. Sci. 2018, 46, 421–425. (In Chinese) [Google Scholar]
- Jerszurki, D.; Saadon, T.; Zhen, J.; Agam, N.; Tas, E.; Rachmilevitch, S.; Lazarovitch, N. Vertical microclimate heterogeneity and dew formation in semi-closed and naturally ventilated tomato greenhouses. Sci. Hortic. 2021, 288, 110271. [Google Scholar] [CrossRef]
- Shen, M.; Hao, F. Numerical simulation of airflow distribution inside a tunnel greenhouse under two typical outside wind directions. Nongye Gongcheng Xuebao 2004, 20, 227–232. [Google Scholar]
- Xu, F.; Cai, Y.; Chen, J.; Zhang, L. Temperature/flow field simulation and parameter optimal design for greenhouses with fan-pad evaporative cooling system. Trans. Chin. Soc. Agric. Eng. 2015, 31, 201–208. [Google Scholar]
- Meneses, J.F.; Raposo, J.R. Ventilação natural de instalações agrícolas: Teoria e métodos de cálculo. An. Inst. Super. Agron. 1987, 42, 249. [Google Scholar]
- Boulard, T.; Meneses, J.; Mermier, M.; Papadakis, G. The mechanisms involved in the natural ventilation of greenhouses. Agric. For. Meteorol. 1996, 79, 61–77. [Google Scholar] [CrossRef]
- Boulard, T.; Papadakis, G.; Kittas, C.; Mermier, M. Air flow and associated sensible heat exchanges in a naturally ventilated greenhouse. Agric. For. Meteorol. 1997, 88, 111–119. [Google Scholar] [CrossRef]
- Ge, J.; Xin, Q.; Gong, X.; Ping, Y.; Bo, G.; Li, Y. Effects of greenhouse ventilation and water control conditions on water consumption characteristics and yield of tomato. J. Agric. Eng. 2021, 37, 204–213. (In Chinese) [Google Scholar]
- Okushima, L.; Sase, S.; Nara, M. A support system for natural ventilation design of greenhouses based on computational aerodynamics. In Proceedings of the International Symposium on Models for Plant Growth, Environmental Control and Farm Management in Protected Cultivation 248, Hanover, Germeny, 28 August–2 September 1988; pp. 129–136. [Google Scholar]
- Mistriotis, A.; Bot, G.; Picuno, P.; Scarascia-Mugnozza, G. Analysis of the efficiency of greenhouse ventilation using computational fluid dynamics. Agric. For. Meteorol. 1997, 85, 217–228. [Google Scholar] [CrossRef]
- Vollebregt, H.; Van de Braak, N. Analysis of radiative and convective heat exchange at greenhouse walls. J. Agric. Eng. Res. 1995, 60, 99–106. [Google Scholar] [CrossRef]
- Cheng, X.; Mao, H.; Wu, D.; Li, B. Numerical simulation of thermal profiles in spatial and temporal field for natural ventilated glasshouse. Trans. Chin. Soc. Agric. Mach. 2009, 40, 179–183. [Google Scholar]
- Kim, K.; Yoon, J.-Y.; Kwon, H.-J.; Han, J.-H.; Son, J.E.; Nam, S.-W.; Giacomelli, G.A.; Lee, I.-B. 3-D CFD analysis of relative humidity distribution in greenhouse with a fog cooling system and refrigerative dehumidifiers. Biosyst. Eng. 2008, 100, 245–255. [Google Scholar] [CrossRef]
- Roy, J.; Fatnassi, H.; Boulard, T.; Pouillard, J.-B.; Grisey, A. CFD determination of the climate distribution in a semi closed greenhouse with air cooling. In Proceedings of the International Symposium on New Technologies and Management for Greenhouses-GreenSys2015 1170, Evora, Portugal, 19–23 July 2015; pp. 103–110. [Google Scholar]
- Boulard, T.; Roy, J.-C.; Pouillard, J.-B.; Fatnassi, H.; Grisey, A. Modelling of micrometeorology, canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics. Biosyst. Eng. 2017, 158, 110–133. [Google Scholar] [CrossRef]
- Boulard, T.; Roy, J.; Fatnassi, H.; Kichah, A.; Lee, I. Computer fluid dynamics prediction of climate and fungal spore transfer in a rose greenhouse. Comput. Electron. Agric. 2010, 74, 280–292. [Google Scholar] [CrossRef]
- Akrami, M.; Javadi, A.A.; Hassanein, M.J.; Farmani, R.; Dibaj, M.; Tabor, G.R.; Negm, A. Study of the effects of vent configuration on mono-span greenhouse ventilation using computational fluid dynamics. Sustainability 2020, 12, 986. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-W.; Lee, I.-B.; Hwang, H.-S.; Seo, I.-H.; Bitog, J.; Yoo, J.-I.; Kim, K.-S.; Lee, S.-H.; Kim, K.-W.; Yoon, N.-K. Numerical simulation of ventilation efficiencies of naturally ventilated multi-span greenhouses in Korea. Trans. ASABE 2008, 51, 1417–1432. [Google Scholar] [CrossRef]
- Li, H.; Ji, D.; Hu, X.; Xie, T.; Song, W.; Tian, S. Comprehensive evaluation of combining CFD simulation and entropy weight to predict natural ventilation strategy in a sliding cover solar greenhouse. Int. J. Agric. Biol. Eng. 2021, 14, 213–221. [Google Scholar] [CrossRef]
- He, K.; Chen, D.; Sun, L.; Liu, Z. Effects of Wind Regime and Vent Configuration on Microclimate in Tunnel Greenhouses in Summer. J. Agric. Mach. 2017, 48, 311–339. [Google Scholar]
- Boulard, T.; Baille, A. Modelling of air exchange rate in a greenhouse equipped with continuous roof vents. J. Agric. Eng. Res. 1995, 61, 37–47. (In Chinese) [Google Scholar] [CrossRef]
- Baptista, F.; Bailey, B.; Randall, J.; Meneses, J. Greenhouse ventilation rate: Theory and measurement with tracer gas techniques. J. Agric. Eng. Res. 1999, 72, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Yang, Q.; Zhang, Y.; Cheng, R.; Zhang, F.; Lu, W. Simulation on ventilation flux of solar greenhouse based on the coupling between stack and wind effects. Chin. J. Agrometeorol. 2016, 37, 531. [Google Scholar]
- Kittas, C.; Boulard, T.; Papadakis, G. Natural ventilation of a greenhouse with ridge and side openings: Sensitivity to temperature and wind effects. Trans. ASAE 1997, 40, 415–425. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, C. Determination of calculated method for necessary ventilation rate and its determination analysis of parameter value. Trans. Chin. Soc. Agric. Eng. 2017, 33, 190–198. [Google Scholar]
- Sherman, M.H. Infiltration-Pressurization Correlation: Simplified Physical Modeling. 1980. Available online: https://www.osti.gov/biblio/5443198 (accessed on 29 September 2022).
- Fernandez, J.; Bailey, B. Measurement and prediction of greenhouse ventilation rates. Agric. For. Meteorol. 1992, 58, 229–245. [Google Scholar] [CrossRef]
- Wu, F.; Xu, F.; Zhang, L.; Ma, X. Numerical simulation on thermal environment of heated glass greenhouse based on porous medium. Trans. Chin. Soc. Agric. Mach. 2011, 42, 180–185. [Google Scholar]
- Jiang, G.; Hu, Y.; Liu, Y.; Zou, Z. Analysis on insulation performance of sunken solar greenhouse based on CFD. Trans. Chin. Soc. Agric. Eng. 2011, 27, 275–281. [Google Scholar]
- Jain, D.; Tiwari, G.N. Modeling and optimal design of evaporative cooling system in controlled environment greenhouse. Energy Convers. Manag. 2002, 43, 2235–2250. [Google Scholar] [CrossRef]
- Miao, Z. Numerical Simulation and Optimization of Vent Configuration for Natural Ventilation of the Large Space Exhibition Greenhouse. Refrig. Air Cond. 2020, 34, 29–38. (In Chinese) [Google Scholar]
- Wei, J. Research on Experimental and Simulation of Soil-Crop-Environment Hydrothermal System in Typical Double-Flim Solar Greenhouse in Cold and Arid Regions. Ph.D. Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2021. [Google Scholar]
- Luan, Z.; Zhou, Z.; Huang, S.; Ye, M. Investigation on the effect of buoyancy on the subcooled flow boiling heat transfer characteristics of water in tubes. Nucl. Fusion Plasma Phys. PKU 2022, 42, 236–243. (In Chinese) [Google Scholar]
- Luo, T. Fluid Mechanics; Mechanical Engineering Press: Beijing, China, 2017. [Google Scholar]
- Zhang, Y.; Henke, M.; Li, Y.; Yue, X.; Xu, D.; Liu, X.; Li, T. High resolution 3D simulation of light climate and thermal performance of a solar greenhouse model under tomato canopy structure. Renew. Energy 2020, 160, 730–745. [Google Scholar] [CrossRef]
- Chen, N.; Liao, S.; Rao, Z. Numerical investigation of heat and mass transfer in hypobaric atmosphere. J. Cent. South Univ. 2013, 44, 388–396. [Google Scholar]
- Shklyar, A.; Arbel, A. Numerical model of the three-dimensional isothermal flow patterns and mass fluxes in a pitched-roof greenhouse. J. Wind Eng. Ind. Aerodyn. 2004, 92, 1039–1059. [Google Scholar] [CrossRef]
Instrument | Measurement Data | Measurement Range | Precision |
---|---|---|---|
PT100 | Temperature | −40 °C~80 °C | ±0.2 °C |
Humidity sensor | Humidity | 0 RH~99% RH | ±3% RH (5% RH~95% RH, 25 °C) |
Thermal bulb wind speed sensor | Velocity | 0~5 m/s | ±(0.03 m/s + 2% reading) |
Light sensor | Total indoor radiation | 0~2000 W/m2 | ±10 W/m2 |
PT100 | Temperature | −40 °C~80 °C | ±0.2 °C |
Parameters | Boundary Conditions | Parameters | Boundary Conditions |
---|---|---|---|
Air Density (kg/m3) | 0.761 | Pressure (Kpa) | 66.1 |
Air thermal conductivity (W·m−1·K−1) | 0.027 | Wall temperature (°C) | 23.8 |
Viscosity (m2/s) | 2.63 × 10−5 | Inlet velocity (m/s) | 0.27 |
Specific heat of air (J·kg−1·K−1) | 1005.93 | Inlet temperature (°C) | 30.5 |
Wall density (kg/m3) | 1600 | Outlet temperature (°C) | 28.5 |
Specific heat of the wall (J·kg−1·K−1) | 1051 | Crop temperature (°C) | 27.3 |
Thermal conductivity of walls (W·m−1·K−1) | 0.76 | Covering film temperature (°C) | 47.0 |
Soil density (kg/m3) | 1700 | Soil temperature (°C) | 27.5 |
Soil specific heat (J·kg−1·K−1) | 1010 | Crop canopy pressure drop coefficient (°C) [10,34] | 0.395 |
Soil thermal conductivity (W·m−1·K−1) | 0.8 | Internal dropout factor (C1) [10,34] | 0.2 |
Covering film density (kg/m3) | 950 | Crop porosity | 0.7 |
Covering film specific heat (J·kg−1·K−1) | 1600 | leaf area index (LAI) | 2.6 |
Thermal conductivity of covering film (W·m−1·K−1) | 0.29 | Latent heat of evaporation (J·kg−1) | 2.43 |
Crop density (kg/m3) | 560 | Saturated water vapor pressure difference (Pa) | 650 |
Crop specific heat (J·kg−1·K−1) | 2100 | d (mm) | 6.0 |
Crop thermal conductivity (W·m−1·K−1) | 0.19 | ra (s·m−1) | 225.4 |
Indoor radiation (W/m2) | 743 | rs (s·m−1) | 200 |
Air temperature (°C) | 29.55 | Internal heat source (W/m3) | 19.96 |
Observation Point | Temperature (°C) | Velocity (m/s) | ||
---|---|---|---|---|
Measurement Value | Calculated Value | Measurement Value | Calculated Value | |
1 | 27.6 | 29.34 | 0.17 | 0.151 |
2 | 27.3 | 28.91 | 0.21 | 0.199 |
6 | 28.3 | 29.76 | 0.21 | 0.186 |
7 | 35 | 34.12 | 0.29 | 0.307 |
11 | 28.5 | 29.79 | 0.74 | 0.637 |
ARE | - | 4.880% | - | 9.525% |
MAE | - | 1.396 | - | 0.035 |
RMSE | - | 1.428 | - | 0.049 |
R2 | - | 0.9982 | - | 0.9869 |
Inlet Velocity (m/s) | Reference Temperature (°C) | Reference Pressure (Pa) | Inlet Temperature (°C) | Outlet Temperature (°C) |
---|---|---|---|---|
1.95 | 17.30 | 66,780 | 19.0 | 18.1 |
0.27 | 29.55 | 66,100 | 30.5 | 28.5 |
1.3 | 23 | 66,340 | 24 | 23.8 |
Period | Reference Temperature (°C) | Velocity (m/s) | Inlet Temperature (°C) | Outlet Temperature (°C) |
---|---|---|---|---|
9:00 | 14.18 | 1.21 | 15.6 | 15.7 |
10:00 | 17.30 | 1.95 | 19.0 | 18.1 |
11:00 | 23.30 | 0.42 | 24.6 | 21.7 |
12:00 | 23.48 | 1.91 | 24.8 | 22.2 |
13:00 | 27.75 | 0.15 | 28.8 | 25.8 |
14:00 | 29.55 | 0.27 | 30.5 | 28.5 |
15:00 | 30.60 | 0.14 | 28.8 | 28.2 |
16:00 | 27.85 | 1.11 | 29.4 | 26.8 |
17:00 | 24.45 | 1.32 | 26.3 | 24.6 |
18:00 | 23 | 1.3 | 24 | 23.8 |
Period | Ventilation Rate (m3/s) | Inlet Velocity (m/s) | ΔT (°C) | Δρ (kg/m3) | Total Radiation (W/m2) | Heat Source (W/m3) |
---|---|---|---|---|---|---|
9:00 | 41.51 | 1.21 | 1.20 | 0.003 | 40 | 116.20 |
10:00 | 66.76 | 1.95 | 0.93 | 0.004 | 301 | 113.14 |
11:00 | 14.95 | 0.42 | 5.53 | 0.015 | 523 | 8.24 |
12:00 | 65.24 | 1.91 | 2.88 | 0.005 | 213 | 25.27 |
13:00 | 7.09 | 0.15 | 7.35 | 0.011 | 394 | 11.94 |
14:00 | 9.25 | 0.27 | 7.43 | 0.008 | 743 | 19.96 |
15:00 | 4.80 | 0.14 | 9.85 | 0.022 | 639 | 12.88 |
16:00 | 37.76 | 1.11 | 6.80 | 0.000 | 412 | 53.52 |
17:00 | 44.94 | 1.32 | 5.15 | 0.002 | 366 | 75.11 |
18:00 | 44.27 | 1.30 | 3.90 | 0.003 | 296 | 60.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, B.; Zhao, S.; Li, Y.; Wang, P.; Liu, Z.; Zhang, J.; Ding, T. Study on the Natural Ventilation Characteristics of a Solar Greenhouse in a High-Altitude Area. Agronomy 2022, 12, 2387. https://doi.org/10.3390/agronomy12102387
Liang B, Zhao S, Li Y, Wang P, Liu Z, Zhang J, Ding T. Study on the Natural Ventilation Characteristics of a Solar Greenhouse in a High-Altitude Area. Agronomy. 2022; 12(10):2387. https://doi.org/10.3390/agronomy12102387
Chicago/Turabian StyleLiang, Bohua, Shumei Zhao, Yanfeng Li, Pingzhi Wang, Zhiwei Liu, Jingfu Zhang, and Tao Ding. 2022. "Study on the Natural Ventilation Characteristics of a Solar Greenhouse in a High-Altitude Area" Agronomy 12, no. 10: 2387. https://doi.org/10.3390/agronomy12102387
APA StyleLiang, B., Zhao, S., Li, Y., Wang, P., Liu, Z., Zhang, J., & Ding, T. (2022). Study on the Natural Ventilation Characteristics of a Solar Greenhouse in a High-Altitude Area. Agronomy, 12(10), 2387. https://doi.org/10.3390/agronomy12102387