The Fate and Balance of Nitrogen on a Sloped Peanut Field on Red Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Research Method
2.2.1. Test Device
2.2.2. Experimental Design
2.2.3. Data Processing
3. Results
3.1. Characteristics of Rainfall, Runoff, and Sediment Yield
3.2. Characteristics of N Output by Erosion and Leakage
3.2.1. N Loss by Leaching Water
3.2.2. N Loss by Soil and Water Loss
N loss by Surface Runoff
N Loss by Erosion Sediment
3.3. Direction of Fertilizer N
3.3.1. Apparent N Balance
3.3.2. The Apparent Fate of Fertilizer N
4. Discussion
4.1. Apparent N Balance and Its Influencing Factors
4.2. Key Pathways and Regulation Suggestions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, G.; Zhao, Q. Initial exploration of red soil ecology. Acta Ecol. Sin. 2014, 34, 5173–5181. [Google Scholar]
- Zheng, H.; Li, H.; Mo, M.; Song, Y.; Liu, Z.; Zhang, H. Quantified benefits of cultivating day-lily (Hemerocallis citrina) hedgerows over multiple years on sloped red-soil farmland, southern China. J. Soil Sci. Plant Nutr. 2020, 21, 69–80. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Y.; Zhao, Y.; Li, R.; Si, Y.; Huang, Y.; Ye, Y.; Zhang, F. Effects of NPK ratio on yield, nutrient absorption and economic benefit of high-yielding summer peanut in a fluvo-aquic soil. Soil Fertil. Sci. China 2019, 2, 98–104. [Google Scholar]
- FAOSTAT. Crops and Livestock Products. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 5 March 2022).
- Zheng, W.; Tan, W.; Liu, Z.; Wang, L.; Zheng, H. Effect of reduced nitrogen fertilization on nitrogen runoff loss and apparent balance on red-soil dry slope peanut land. Acta Pedol. Sin. 2022, accepted; in press. [Google Scholar]
- Wang, C.; Zheng, Y.; Shen, P.; Zheng, Y.; Wu, Z.; Sun, X.; Yu, T.; Feng, H. Determining N supplied sources and N use efficiency for peanut under applications of four forms of N fertilizers labeled by isotope 15N. J. Integr. Agric. 2016, 15, 432–439. [Google Scholar] [CrossRef]
- Sainju, U.; Lenssen, A.; Allen, B.; Stevens, J. Nitrogen balance in dryland agroecosystem in response to tillage, crop rotation, and cultural practice. Nutr. Cycl. Agroecosystems 2018, 110, 467–483. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Gu, B.; Ju, X.; Chang, S.; Ge, Y.; Chang, J. Nitrogen use efficiencies in Chinese agricultural systems and implications for food security and environmental protection. Reg. Environ. Chang. 2017, 17, 1217–1227. [Google Scholar] [CrossRef]
- Zuo, H.; Zhang, Q.; Ma, L.; Xu, L.; Lv, W.; Ma, C.; Yang, Z.; Wang, Z. Dynamic variation characteristics of nitrate nitrogen concentration in farmland leaching water under different planting patterns. J. Soil Water Conserv. 2010, 24, 174–179. [Google Scholar]
- Ding, Y.; Yang, X.; Tong, Y.A.; Han, Z.; Chen, C.; Tang, X. Characteristics of N leaching and apparent N budget in cultivated lands under a winter wheat-summer maize rotation system. Acta Sci. Circumstantiae 2015, 35, 1914–1921. [Google Scholar]
- Hartmann, T.E.; Yue, S.; Schulz, R.; Chen, X.; Zhang, F.; Müller, T. Nitrogen dynamics, apparent mineralization and balance calculations in a maize—Wheat double cropping system of the north China plain. Field Crops Res. 2014, 160, 22–30. [Google Scholar] [CrossRef]
- Zhu, Z. Research on soil nitrogen in China. Acta Pedol. Sin. 2008, 5, 778–783. [Google Scholar]
- Javier, A.; Peter, M.; Corinne, V.; Miguel, A.G. Impacts of cultivation and fallow length on soil carbon and nitrogen availability in the Bolivian Andean highland region. Mt. Res. Dev. 2013, 33, 391–403. [Google Scholar]
- Shi, Z.; Li, D.; Jing, Q.; Cai, J.; Jiang, D.; Cao, W.; Dai, T. Effects of nitrogen applications on soil nitrogen balance and nitrogen utilization of winter wheat in a rice–wheat rotation. Field Crops Res. 2012, 127, 241–247. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, B.; Yu, L.; Zhou, Z.; Ni, X.; Tao, L.; Wu, Y. Nitrogen loss and rice profits with matrix-based slow-release urea. Nutr. Cycl. Agroecosystems 2018, 110, 213–225. [Google Scholar] [CrossRef]
- Lawlor, P.A.; Helmers., M.J.; Baker., J.L.; Melvin., S.W.; Lemke., D.W. Nitrogen application rate effect on nitrate-nitrogen concentration and loss in subsurface drainage for a corn-soybean rotation. Trans. ASABE 2008, 51, 83–94. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, X.; Gao, J.; Clayton, R.B.; Chen, Q.; Liu, M.; Yang, Y.; Xia, Y.; Xiao, X. Effects of fertilizer types on nitrogen and phosphorous loss from rice-wheat rotation system in the Taihu Lake region of China. Agric. Ecosyst. Environ. 2019, 285, 106605. [Google Scholar] [CrossRef]
- Cambouris, A.N.; St. Luce, M.; Zebarth, B.J.; Ziadi, N.; Grant, C.A.; Perron, I. Potato response to nitrogen sources and rates in an irrigated sandy soil. Agron. J. 2016, 108, 391–401. [Google Scholar] [CrossRef]
- Wang, C.; Li, S.; Wang, X.; Su, T. Nitrate nitrogen residue and leaching in dryland soil and influence factors. Soils 2006, 6, 676–681. [Google Scholar]
- Ma, K.; Wang, Z.; Chen, X.; You, L. Study on properties of nutrient loss from red soil in sloping land under different rainfall intensities. J. Soil Water Conserv. 2002, 3, 16–19. [Google Scholar]
- Zheng, H.; Liu, Z.; Nie, X.; Zuo, J.; Wang, L. Comparison of active nitrogen loss in four pathways on a sloped peanut field with red soil in China under conventional fertilization conditions. Sustainability 2019, 11, 6219. [Google Scholar] [CrossRef] [Green Version]
- SL 419-2007; Test Specification of Soil and Water Conservation. China Water&Power Press: Beijing, China, 2008.
- Lu, R. Soil Agrochemical Analysis Method; China Agricultural Science and Technology Press: Beijing, China, 2000; pp. 146–195. [Google Scholar]
- Guo, Z.; Liu, H.; Zhang, Y.; Zheng, J.; Chen, L. Effects of different fertilization modes on nitrogen loss bysurface runoff and the apparent nitrogen balance in the vegetable fields of Taihu Lake region. J. Soil Water Conserv. 2018, 32, 37–42. [Google Scholar]
- Bao, S. Soil Agrochemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000; pp. 264–268. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Felipe, D.; Reinhard, S. Agricolae—Ten years of an open source statistical tool for experiments in breeding, agriculture and biology. PeerJ PrePrints 2015, 3, 1404. [Google Scholar]
- Macdonald, A.J.; Poulton, P.R.; Stockdale, E.A.; Powlson, D.S.; Jenkinson, D.S. The fate of residual 15N-labelled fertilizer in arable soils: Its availability to subsequent crops and retention in soil. Plant Soil 2002, 246, 123–137. [Google Scholar] [CrossRef]
- Schwenke, G.D.; Haigh, B.M. The interaction of seasonal rainfall and nitrogen fertiliser rate on soil N2O emission, total N loss and crop yield of dryland sorghum and sunflower grown on sub-tropical Vertosols. Soil Res. 2016, 54, 604–618. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Yang, S.; Xu, J.; Luo, Y.; Hou, H. Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements. Paddy Water Environ. 2011, 9, 333–342. [Google Scholar] [CrossRef]
- Gunavathy, S.; Huck, Y.C. Enhancing soil nitrogen availability and rice growth by using urea fertilizer amended with rice straw biochar. Agronomy 2021, 11, 1352. [Google Scholar]
- Figueiredo, C.C.D.; Wickert, É.G.; Vieira, N.H.C.; Coser, T.R.; PazFerreiro, J. Sewage sludge biochar increases nitrogen fertilizer recovery: Evidence from a 15N tracer field study. Soil Use Manag. 2020, 37, 689–697. [Google Scholar] [CrossRef]
- Tejada, M.; Gonzalez., J.L. Influence of two organic amendments on the soil physical properties, soil losses, sediments and runoff water quality. Geoderma 2008, 145, 325–334. [Google Scholar] [CrossRef]
- Wang, L.; Nie, X.; Zuo, J.; Liu, Z.; Zheng, H. Effects of growth periods nitrogen loss in runoff of peanut land on dry slope of red soil. J. Soil Water Conserv. 2019, 33, 34–40. [Google Scholar]
- Lai, T.; Li, C.; Li, Q.; Lai, Q. Study on the balance and fate of N in red arid soil. Plant Nutr. Fertil. Sci. 1995, 1, 85–89. [Google Scholar]
- Yang, J.; Zhou, Z.; Zhang, D.; Li, R.; Wu, H. Nitrogen and phosphorus leaching under pig manure application and safe manure digestion capacity of red clay soils of different fertilities. Soils 2019, 51, 305–315. [Google Scholar]
- Bouwman, L.; Goldewijk, K.K.; Van Der Hoek, K.W.; Beusen, A.H.; Van Vuuren, D.P.; Willems, J.; Rufino, M.C.; Stehfest, E. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl. Acad. Sci. USA 2013, 110, 20882–20887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.; Luo, C.; Pang, L.; Huang, J.; Fu, D.; Tu, S. Effects of different cultivation and mulching methods on soil erosion and nutrient losses from a purple soil of sloping land. Acta Ecol. Sin. 2010, 30, 6091–6101. [Google Scholar]
- Wang, Q.; Cao, Y.; Zhang, J.; Chen, G.; Li, Z.; Wu, H.; Wang, L. Characteristics of nitrogen transportation in castanea mollissima forest around the fushi reservoir watershed in north Zhejiang province, China. Chin. J. Appl. Ecol. 2017, 28, 545–553. [Google Scholar]
- Huang, S.; Lv, W.; Bloszies, S.; Shi, Q.; Pan, X.; Zeng, Y. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: A meta-analysis. Field Crops Res. 2016, 192, 118–125. [Google Scholar] [CrossRef]
- Lian, Z.; Wei, O.; Hao, F.; Liu, H.; Hao, Z.; Lin, C.; Mengchang, H. Changes in fertilizer categories significantly altered the estimates of ammonia volatilizations induced from increased synthetic fertilizer application to Chinese rice fields. Agric. Ecosyst. Environ. 2018, 265, 112–122. [Google Scholar] [CrossRef]
- Zheng, H.; Nie, X.; Liu, Z.; Mo, M.; Song, Y. Identifying optimal ridge practices under different rainfall types on runoff and soil loss from sloping farmland in a humid subtropical region of Southern China. Agric. Water Manag. 2021, 255, 107043. [Google Scholar] [CrossRef]
- Shen, H.; Ma, R.; Ye, Q.; Feng, J.; Wang, J. Impacts of corn straw coverage and slope gradient on soil erosion and sediment size distributions in the Mollisol region, NE China. Eurasian Soil Sci. 2021, 54, 2000–2008. [Google Scholar] [CrossRef]
Year | Treatment | Runoff Amount/mm | Proportion of Leaching Water/% | Sediment Yield /(kg ha−1) | ||
---|---|---|---|---|---|---|
Leakage Water | Surface Runoff | Total Runoff | ||||
2017 | CF | 468.30 ± 131.46 Aa | 261.20 ± 44.77 Aa | 729.50 ± 107.96 Aa | 64.19 | 7587.82 ± 2199.38 Aa |
NF | 388.81 ± 95.36 Aa | 246.94 ± 50.15 Aa | 635.75 ± 107.95 Aa | 61.16 | 6109.17 ± 593.83 Aa | |
2018 | CF | 50.95 ± 16.04 Ba | 18.77 ± 3.59 Ba | 69.72 ± 19.63 Ba | 73.08 | 1323.62 ± 159.08 Ba |
NF | 36.12 ± 3.98 Ba | 22.33 ± 2.10 Ba | 58.45 ± 6.08 Ba | 61.80 | 1228.54 ± 103.63 Ba |
Year | Treatment | N Output/(kg ha−1) | Proportion in TN Output/% | |||||
---|---|---|---|---|---|---|---|---|
TN | DTN | NH4+-N | NO3−-N | DTN | NH4+-N | NO3−-N | ||
2017 | CF | 54.86 ± 12.10 Aa | 49.69 ± 10.60 Aa | 1.98 ± 0.77 Aa | 27.61 ± 5.63 Aa | 90.58 | 3.61 | 50.33 |
NF | 26.88 ± 7.57 Ab | 24.12 ± 6.86 Ab | 1.37 ± 0.43 Aa | 10.16 ± 3.01 Ab | 89.73 | 5.10 | 37.80 | |
2018 | CF | 11.18 ± 4.27 Ba | 10.08 ± 3.47 Ba | 0.60 ± 0.14 Ba | 7.89 ± 3.48 Ba | 90.16 | 5.37 | 70.57 |
NF | 4.78 ± 0.74 Ba | 4.41 ± 0.46 Ba | 0.29 ± 0.04 Bb | 3.60 ± 0.24 Ba | 92.26 | 6.07 | 75.31 |
Year | Item | TN | DTN | Inorganic Chemistry N | ||
---|---|---|---|---|---|---|
NO3−-N | NH4+-N | Subtotal | ||||
2017 | Output/(kg ha−1) | 27.98 ± 4.53 | 25.57 ± 3.74 | 17.45 ± 2.62 | 0.61 ± 0.34 | 18.06 ± 2.96 |
Proportion of N output/% | 100.00 | 91.39 | 62.37 | 2.18 | 64.55 | |
Proportion of fertilizer input/% | 16.27 | 14.87 | 10.15 | 0.35 | 10.50 | |
2018 | Output/(kg ha−1) | 6.40 ± 3.53 | 5.67 ± 3.01 | 4.29 ± 3.24 | 0.31 ± 0.10 | 4.60 ± 3.34 |
Proportion of N output/% | 100.00 | 88.59 | 67.03 | 4.84 | 71.88 | |
Proportion of fertilizer input/% | 4.27 | 3.78 | 2.86 | 0.21 | 3.07 |
Year | Treatment | N Output/(kg ha−1) | Proportion in TN Output/% | |||||
---|---|---|---|---|---|---|---|---|
TN | DTN | NH4+-N | NO3−-N | DTN | NH4+-N | NO3−-N | ||
2017 | CF | 20.07 ± 3.72 Aa | 17.39 ± 3.03 Aa | 6.09 ± 0.74 Aa | 4.19 ± 0.94 Aa | 86.65 | 30.34 | 20.88 |
NF | 11.27 ± 2.71 Ab | 8.86 ± 2.08 Ab | 3.09 ± 0.96 Ab | 1.51 ± 0.85 Ab | 78.62 | 27.42 | 13.40 | |
2018 | CF | 0.68 ± 0.14 Ba | 0.56 ± 0.10 Ba | 0.27 ± 0.19 Ba | 0.11 ± 0.06 Ba | 82.35 | 39.71 | 16.18 |
NF | 0.54 ± 0.04 Ba | 0.43 ± 0.06 Ba | 0.19 ± 0.06 Ba | 0.07 ± 0.03 Ba | 79.63 | 35.19 | 12.96 |
Year | Item | TN | DTN | Inorganic Chemistry N | ||
---|---|---|---|---|---|---|
NO3−-N | NH4+-N | Subtotal | ||||
2017 | Output/(kg ha−1) | 8.80 ± 1.01 | 8.53± 0.95 | 2.68 ± 0.09 | 3.00 ± 0.00 | 5.68 ± 0.09 |
Proportion of N output/% | 100.00 | 96.93 | 30.45 | 34.09 | 64.55 | |
Proportion of fertilizer input/% | 5.12 | 4.96 | 1.56 | 1.74 | 3.30 | |
2018 | Output/(kg ha−1) | 0.14 ± 0.10 | 0.13 ± 0.04 | 0.04 ± 0.03 | 0.08 ± 0.13 | 0.12 ± 0.16 |
Proportion of N output/% | 100.00 | 92.86 | 21.43 | 57.14 | 78.57 | |
Proportion of fertilizer input/% | 0.09 | 0.09 | 0.03 | 0.05 | 0.08 |
Year | Treatment | TN/(kg ha−1) | Fertilizer N/(kg ha−1) |
---|---|---|---|
2017 | CF | 5.22 ± 1.28 Aa | 1.35 ± 0.77 |
NF | 3.87 ± 0.41 Aa | -- | |
2018 | CF | 0.80 ± 0.08 Ba | 0.03 ± 0.00 |
NF | 0.77 ± 0.08 Ba | -- |
Item | 2017 | 2018 | |||
---|---|---|---|---|---|
CF | NF | CF | NF | ||
A. Input of N | (1) Fertilizer N | 172 | 0 | 150 | 0 |
(2) N mineralization | 28.36 | 28.36 | 91.76 | 91.76 | |
(3) Initial inorganic N | 60.08 | 60.08 | 36.67 | 36.67 | |
(4) Precipitation N | 11.47 | 11.47 | 4.80 | 4.80 | |
(5) Seed N | 11.33 | 11.33 | 11.68 | 11.68 | |
(1) + (2) + (3) + (4) + (5) | 283.24 | 111.24 | 294.91 | 144.91 | |
B. Output of N | (1) Crop absorption | 107.9 | 59.97 | 107.16 | 69.38 |
(2) Soil residual N | 26.32 | 9.25 | 91.62 | 69.44 | |
(3) N surface runoff loss | 20.07 | 11.27 | 0.68 | 0.54 | |
(4) N sediment loss | 5.22 | 3.87 | 0.8 | 0.77 | |
(5) N leaching loss | 54.86 | 26.88 | 11.18 | 4.78 | |
(6) Other apparent loss (gaseous loss, etc.) | 68.87 | -- | 83.47 | -- | |
(1) + (2) + (3) + (4) + (5) + (6) | 283.24 | 111.24 | 294.91 | 144.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Zheng, H.; Wang, L.; Nie, X.; Zuo, J.; Liu, S.; Cheng, J. The Fate and Balance of Nitrogen on a Sloped Peanut Field on Red Soil. Agronomy 2022, 12, 2388. https://doi.org/10.3390/agronomy12102388
Zhao L, Zheng H, Wang L, Nie X, Zuo J, Liu S, Cheng J. The Fate and Balance of Nitrogen on a Sloped Peanut Field on Red Soil. Agronomy. 2022; 12(10):2388. https://doi.org/10.3390/agronomy12102388
Chicago/Turabian StyleZhao, Liwen, Haijin Zheng, Lingyun Wang, Xiaofei Nie, Jichao Zuo, Shiyu Liu, and Jinhua Cheng. 2022. "The Fate and Balance of Nitrogen on a Sloped Peanut Field on Red Soil" Agronomy 12, no. 10: 2388. https://doi.org/10.3390/agronomy12102388
APA StyleZhao, L., Zheng, H., Wang, L., Nie, X., Zuo, J., Liu, S., & Cheng, J. (2022). The Fate and Balance of Nitrogen on a Sloped Peanut Field on Red Soil. Agronomy, 12(10), 2388. https://doi.org/10.3390/agronomy12102388