Plant Biostimulants Increase the Agronomic Performance of Lavandin (Lavandula x intermedia) in Northern Apennine Range
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Conditions
2.2. Growth Conditions
2.3. Biostimulant Treatments
2.4. Agronomic and Morphological Data Recorded
2.5. Steam Distillation
2.6. GC-MS and GC-FID Analyses
2.7. Statistical Analyses
3. Results
3.1. Weather Conditions
3.2. Morphological Data
3.3. Agronomical Data
3.4. Chemical Composition of the EOs Extracted
3.5. Principal Component Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lis-Balchin, M. Lavender: The Genus Lavandula, 1st ed.; Taylor and Francis Group: London, UK, 2002; 283p. [Google Scholar]
- Demasi, S.; Caser, M.; Lonati, M.; Cioni, P.L.; Pistelli, L.; Najar, B.; Scariot, V. Latitude and Altitude Influence Secondary Metabolite Production in Peripheral Alpine Populations of the Mediterranean Species Lavandula Angustifolia Mill. Front. Plant Sci. 2018, 9, 983. [Google Scholar] [CrossRef]
- Salehi, B.; Mnayer, D.; Özçelik, B.; Altin, G.; Kasapoğlu, K.N.; Daskaya-Dikmen, C.; Sharifi-Rad, M.; Selamoglu, Z.; Acharya, K.; Sen, S.; et al. Plants of the Genus Lavandula: From Farm to Pharmacy. Nat. Prod. Commun. 2018, 13, 1385–1402. [Google Scholar] [CrossRef]
- Pistelli, L.; Najar, B.; Giovanelli, S.; Lorenzini, L.; Tavarini, S.; Angelini, L.G. Agronomic and Phytochemical Evaluation of Lavandin and Lavender Cultivars Cultivated in the Tyrrhenian Area of Tuscany (Italy). Ind. Crops Prod. 2017, 109, 37–44. [Google Scholar] [CrossRef]
- Baldoni, R. Coltivazioni Erbacee: Piante Oleifere, da Zucchero, da Fibra, Orticole e Aromatiche; PATRON: Bologna, Italy, 2000; Volume 2. [Google Scholar]
- Chrysargyris, A.; Drouza, C.; Tzortzakis, N. Optimization of Potassium Fertilization/Nutrition for Growth, Physiological Development, Essential Oil Composition and Antioxidant Activity of Lavandula Angustifolia Mill. J. Soil Sci. Plant Nutr. 2017, 17, 291–306. [Google Scholar] [CrossRef]
- Hassiotis, C.N.; Tarantilis, P.A.; Daferera, D.; Polissiou, M.G. Etherio, a New Variety of Lavandula angustifolia with Improved Essential Oil Production and Composition from Natural Selected Genotypes Growing in Greece. Ind. Crops Prod. 2010, 32, 77–82. [Google Scholar] [CrossRef]
- Wells, R.; Truong, F.; Adal, A.M.; Sarker, L.S.; Mahmoud, S.S. Lavandula Essential Oils: A Current Review of Applications in Medicinal, Food, and Cosmetic Industries of Lavender. Nat. Prod. Commun. 2018, 13, 1403–1417. [Google Scholar] [CrossRef]
- Piccaglia, R.; Marotti, M. Characterization of Several Aromatic Plants Grown in Northern Italy. Flavour Fragr. J. 1993, 8, 115–122. [Google Scholar] [CrossRef]
- Lesage-Meessen, L.; Bou, M.; Sigoillot, J.-C.; Faulds, C.B.; Lomascolo, A. Essential Oils and Distilled Straws of Lavender and Lavandin: A Review of Current Use and Potential Application in White Biotechnology. Appl. Microbiol. Biotechnol. 2015, 99, 3375–3385. [Google Scholar] [CrossRef]
- Pretty, J. Agricultural Sustainability: Concepts, Principles and Evidence. Phil. Trans. R. Soc. B 2008, 363, 447–465. [Google Scholar] [CrossRef] [PubMed]
- Rueff, H.; Inam-ur-Rahim; Kohler, T.; Mahat, T.J.; Ariza, C. Can the Green Economy Enhance Sustainable Mountain Development? The Potential Role of Awareness Building. Environ. Sci. Policy 2015, 49, 85–94. [Google Scholar] [CrossRef]
- Centre for Development and Environment. Mountains and Climate Change: From Understanding to Action; Kohler, T., Maselli, D., Universität Bern, Eds.; CDE: Bern, Switzerland, 2009; ISBN 978-3-905835-16-8. [Google Scholar]
- Bozzola, M.; Massetti, E.; Mendelsohn, R.; Capitanio, F. A Ricardian Analysis of the Impact of Climate Change on Italian Agriculture. Eur. Rev. Agric. Econ. 2018, 45, 57–79. [Google Scholar] [CrossRef]
- MacDonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Gutierrez Lazpita, J.; Gibon, A. Agricultural Abandonment in Mountain Areas of Europe: Environmental Consequences and Policy Response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Posmyk, M.M.; Szafrańska, K. Biostimulators: A New Trend towards Solving an Old Problem. Front. Plant Sci. 2016, 7, 748. [Google Scholar] [CrossRef]
- Toscano, S.; Romano, D.; Massa, D.; Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulant Applications in Low Input Horticultural Cultivation Systems. Italus Hortus 2018, 25, 27–36. [Google Scholar] [CrossRef]
- Caradonia, F.; Ronga, D.; Tava, A.; Francia, E. Plant Biostimulants in Sustainable Potato Production: An Overview. Potato Res. 2021, 65, 83–104. [Google Scholar] [CrossRef]
- Godlewska, K.; Ronga, D.; Michalak, I. Plant Extracts—Importance in Sustainable Agriculture. Ital. J. Agron. 2021, 16, 149–171. [Google Scholar] [CrossRef]
- La Torre, A.; Battaglia, V.; Caradonia, F. An Overview of the Current Plant Biostimulant Legislations in Different European Member States: Plant Biostimulants. J. Sci. Food Agric. 2016, 96, 727–734. [Google Scholar] [CrossRef]
- Truzzi, E.; Benvenuti, S.; Bertelli, D.; Francia, E.; Ronga, D. Effects of Biostimulants on the Chemical Composition of Essential Oil and Hydrosol of Lavandin (Lavandula x Intermedia Emeric Ex Loisel.) Cultivated in Tuscan-Emilian Apennines. Molecules 2021, 26, 6157. [Google Scholar] [CrossRef]
- Wise, K.; Gill, H.; Selby-Pham, J. Willow Bark Extract and the Biostimulant Complex Root Nectar® Increase Propagation Efficiency in Chrysanthemum and Lavender Cuttings. Sci. Hortic. 2020, 263, 109108. [Google Scholar] [CrossRef]
- Halpern, M.; Bar-Tal, A.; Ofek, M.; Minz, D.; Muller, T.; Yermiyahu, U. The Use of Biostimulants for Enhancing Nutrient Uptake. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2015; Volume 130, pp. 141–174. ISBN 978-0-12-802137-8. [Google Scholar]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed Extracts as Biostimulants of Plant Growth and Development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Tanase, C.; Ștefănescu, R.; Darkó, B.; Muntean, D.L.; Fărcaş, A.C.; Socaci, S.A. Biochemical and Histo-Anatomical Responses of Lavandula angustifolia Mill. to Spruce and Beech Bark Extracts Application. Plants 2020, 9, 859. [Google Scholar] [CrossRef]
- Faheed, F.A.; Fattah, Z.A. Effect of Chlorella Vulgaris as Bio-Fertilizer on Growth Parameters and Metabolic Aspects of Lettuce Plant. J. Agric. Soc. Sci. 2008, 4, 165–169. [Google Scholar]
- Chiaiese, P.; Corrado, G.; Colla, G.; Kyriacou, M.C.; Rouphael, Y. Renewable Sources of Plant Biostimulation: Microalgae as a Sustainable Means to Improve Crop Performance. Front. Plant Sci. 2018, 9, 1782. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant Action of a Plant-Derived Protein Hydrolysate Produced through Enzymatic Hydrolysis. Front. Plant Sci. 2014, 5, 448. [Google Scholar] [CrossRef] [PubMed]
- Parađiković, N.; Teklić, T.; Zeljković, S.; Lisjak, M.; Špoljarević, M. Biostimulants Research in Some Horticultural Plant Species—A Review. Food Energy Secur. 2019, 8, e00162. [Google Scholar] [CrossRef]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein Hydrolysates as Biostimulants in Horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Mian, G.; Cantone, P.; Golinelli, F. First Evidence of the Effect of a New Biostimulant Made by Fabaceae Tissue on Ripening Dynamics and Must Technological Main Parameters in Vitis vinifera ‘Ribolla Gialla’. Acta Hortic. 2022, 1333, 317–322. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural Uses of Plant Biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; Volume 456. [Google Scholar]
- Murphy, B.; Martini, M.; Fedi, A.; Loera, B.L.; Elliott, C.T.; Dean, M. Consumer Trust in Organic Food and Organic Certifications in Four European Countries. Food Control 2022, 133, 108484. [Google Scholar] [CrossRef]
- Szempliński, W.; Nowak, J.; Jankowski, K.J. Coriander (Coriandrum sativum L.) Response to Different Levels of Agronomic Factors in Poland. Ind. Crops Prod. 2018, 122, 456–464. [Google Scholar] [CrossRef]
- Mishra, B.K.; Dubey, P.N.; Aishwath, O.P.; Kant, K.; Sharma, Y.K.; Vishal, M.K. Effect of Plant Growth Promoting Rhizobacteria on Coriander (Coriandrum sativum) Growth and Yield under Semi-Arid Condition of India. Indian J. Agric. Sci. 2017, 87, 607–612. [Google Scholar]
- Mazzocchi, C.; Sali, G. Supporting Mountain Agriculture through “Mountain Product” Label: A Choice Experiment Approach. Environ. Dev. Sustain. 2022, 24, 701–723. [Google Scholar] [CrossRef]
- Giannoulis, K.D.; Evangelopoulos, V.; Gougoulias, N.; Wogiatzi, E. Lavender Organic Cultivation Yield and Essential Oil Can Be Improved by Using Bio-Stimulants. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2020, 70, 648–656. [Google Scholar] [CrossRef]
- Sangwan, N.S.; Farooqi, A.H.A.; Shabih, F.; Sangwan, R.S. Regulation of Essential Oil Production in Plants. Plant Growth Regul. 2001, 34, 19. [Google Scholar] [CrossRef]
- Liao, Z.; Huang, Q.; Cheng, Q.; Khan, S.; Yu, X. Seasonal Variation in Chemical Compositions of Essential Oils Extracted from Lavandin Flowers in the Yun-Gui Plateau of China. Molecules 2021, 26, 5639. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Sestelo, M.; Carrillo, J. Environmental Effects on Yield and Composition of Essential Oil in Wild Populations of Spike Lavender (Lavandula latifolia Medik.). Agriculture 2020, 10, 626. [Google Scholar] [CrossRef]
- Farahani, H.A.; Valadabadi, S.A.; Daneshian, J.; Shiranirad, A.H.; Khalvati, M.A. Medicinal and Aromatic Plants Farming under Drought Conditions. J. Hortic. For. 2009, 1, 86–92. [Google Scholar]
- Hassiotis, C.N.; Ntana, F.; Lazari, D.M.; Poulios, S.; Vlachonasios, K.E. Environmental and Developmental Factors Affect Essential Oil Production and Quality of Lavandula Angustifolia during Flowering Period. Ind. Crops Prod. 2014, 62, 359–366. [Google Scholar] [CrossRef]
- Luz, J.M.Q.; Silva, S.M.; Marquez, G.R.; Nogueira, P.A.M.; Alves, P.B.; Alves, M.F.; Matos, I.L. Agronomic Production and Essential Yield of Lavandula Dentata L. in Different Systems and Fertilization. Acta Hortic. 2016, 1125, 113–120. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Khan, A.; Ren, G.; Afridi, M.Z.; Feng, Y.; Yang, G. Wheat Straw Mulching Offset Soil Moisture Deficient for Improving Physiological and Growth Performance of Summer Sown Soybean. Agric. Water Manag. 2019, 211, 16–25. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Dayal, D.; Bandyopadhyay, K.K.; Mohanty, M. Evaluation of Straw and Polythene Mulch for Enhancing Productivity of Irrigated Summer Groundnut. Field Crops Res. 2006, 99, 76–86. [Google Scholar] [CrossRef]
- Qin, X.; Huang, T.; Lu, C.; Dang, P.; Zhang, M.; Guan, X.; Wen, P.; Wang, T.-C.; Chen, Y.; Siddique, K.H.M. Benefits and Limitations of Straw Mulching and Incorporation on Maize Yield, Water Use Efficiency, and Nitrogen Use Efficiency. Agric. Water Manag. 2021, 256, 107128. [Google Scholar] [CrossRef]
- Jordán, A.; Zavala, L.M.; Gil, J. Effects of Mulching on Soil Physical Properties and Runoff under Semi-Arid Conditions in Southern Spain. CATENA 2010, 81, 77–85. [Google Scholar] [CrossRef]
- Hoeberechts, J.; Nicola, S.; Fontana, E. Growth of Lavender (Lavandula officinalis) and Rosemary (Rosmarinus officinalis) in Response to Different Mulches. Acta Hortic. 2004, 629, 245–251. [Google Scholar] [CrossRef]
- Szekely-Varga, Z.; Boscaiu, M.; Kentelky, E.; Cantor, M. Does Mulch Affect Lavender Growth? Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 2021, 78, 102. [Google Scholar] [CrossRef]
- Ji, S.; Unger, P.W. Soil Water Accumulation under Different Precipitation, Potential Evaporation, and Straw Mulch Conditions. Soil Sci. Soc. Am. J. 2001, 65, 442–448. [Google Scholar] [CrossRef]
- Prosdocimi, M. The Immediate Effectiveness of Barley Straw Mulch in Reducing Soil Erodibility and Surface Runoff Generation in Mediterranean Vineyards. Sci. Total Environ. 2016, 547, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Oosterhuis, D. Foliar Fertilization: Mechanisms and Magnitude of Nutrient Uptake. In Proceedings of the Fluid Forum 2009, Scottsdale, AZ, USA, 15–17 February 2009. [Google Scholar]
- England, J.R.; Attiwill, P.M. Changes in Stomatal Frequency, Stomatal Conductance and Cuticle Thickness during Leaf Expansion in the Broad-Leaved Evergreen Species, Eucalyptus regnans. Trees 2011, 25, 987–996. [Google Scholar] [CrossRef]
- Schweingruber, F.H. Stem Anatomy of Caryophyllaceae. Flora-Morphol. Distrib. Funct. Ecol. Plants 2007, 202, 281–292. [Google Scholar] [CrossRef]
- Wilson, J.R. Organization of Forage Plant Tissues. In ASA, CSSA, and SSSA Books; Jung, H.G., Buxton, D.R., Hatfield, R.D., Ralph, J., Eds.; American Society of Agronomy; Crop Science Society of America; Soil Science Society of America: Madison, WI, USA, 2015; pp. 1–32. ISBN 978-0-89118-238-2. [Google Scholar]
- Marchi, S.; Tognetti, R.; Minnocci, A.; Borghi, M.; Sebastiani, L. Variation in Mesophyll Anatomy and Photosynthetic Capacity during Leaf Development in a Deciduous Mesophyte Fruit Tree (Prunus persica) and an Evergreen Sclerophyllous Mediterranean Shrub (Olea europaea). Trees 2008, 22, 559–571. [Google Scholar] [CrossRef]
- Fernández, V.; Sotiropoulos, T.; Brown, P.H. Foliar Fertilization: Scientific Principles and Field Pratices; International Fertilizer Industry Association: Paris, France, 2013; ISBN 979-10-92366-00-6. [Google Scholar]
- Giannoulis, K.D.; Evangelopoulos, V.; Gougoulias, N.; Wogiatzi, E. Could Bio-Stimulators Affect Flower, Essential Oil Yield, and Its Composition in Organic Lavender (Lavandula angustifolia) Cultivation? Ind. Crops Prod. 2020, 154, 112611. [Google Scholar] [CrossRef]
- Cristiano, G.; De Lucia, B. Petunia Performance Under Application of Animal-Based Protein Hydrolysates: Effects on Visual Quality, Biomass, Nutrient Content, Root Morphology, and Gas Exchange. Front. Plant Sci. 2021, 12, 640608. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Schiavon, M.; Ertani, A. Plant Biostimulants: Physiological Responses Induced by Protein Hydrolyzed-Based Products and Humic Substances in Plant Metabolism. Sci. Agric. 2016, 73, 18–23. [Google Scholar] [CrossRef]
- Ertani, A.; Cavani, L.; Pizzeghello, D.; Brandellero, E.; Altissimo, A.; Ciavatta, C.; Nardi, S. Biostimulant Activity of Two Protein Hydrolyzates in the Growth and Nitrogen Metabolism of Maize Seedlings. Z. Pflanzenernähr. Bodenk. 2009, 172, 237–244. [Google Scholar] [CrossRef]
- Cristiano, G.; Pallozzi, E.; Conversa, G.; Tufarelli, V.; De Lucia, B. Effects of an Animal-Derived Biostimulant on the Growth and Physiological Parameters of Potted Snapdragon (Antirrhinum majus L.). Front. Plant Sci. 2018, 9, 861. [Google Scholar] [CrossRef]
- Craigie, J.S. Seaweed Extract Stimuli in Plant Science and Agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Mancuso, S.; Azzarello, E.; Mugnai, S.; Briand, X. Marine Bioactive Substances (IPA Extract) Improve Foliar Ion Uptake and Water Stress Tolerance in Potted Vitis vinifera Plants. Adv. Hortic. Sci. 2006, 20, 156–161. [Google Scholar]
- De Saeger, J.; Van Praet, S.; Vereecke, D.; Park, J.; Jacques, S.; Han, T.; Depuydt, S. Toward the Molecular Understanding of the Action Mechanism of Ascophyllum Nodosum Extracts on Plants. J. Appl. Phycol. 2020, 32, 573–597. [Google Scholar] [CrossRef]
- Stirk, W.A.; Tarkowská, D.; Turečová, V.; Strnad, M.; van Staden, J. Abscisic Acid, Gibberellins and Brassinosteroids in Kelpak®, a Commercial Seaweed Extract Made from Ecklonia maxima. J. Appl. Phycol. 2014, 26, 561–567. [Google Scholar] [CrossRef]
- Cassan, L.; Jeannin, I.; Lamaze, T.; Morot-Gaudry, J.-F. The Effect of the Ascophyllum Nodosum Extract Goëmar GA 14 on the Growth of Spinach. Bot. Mar. 1992, 35, 437–439. [Google Scholar] [CrossRef]
- Wally, O.S.D.; Critchley, A.T.; Hiltz, D.; Craigie, J.S.; Han, X.; Zaharia, L.I.; Abrams, S.R.; Prithiviraj, B. Regulation of Phytohormone Biosynthesis and Accumulation in Arabidopsis Following Treatment with Commercial Extract from the Marine Macroalga Ascophyllum Nodosum. J. Plant Growth Regul. 2013, 32, 324–339. [Google Scholar] [CrossRef]
- Georgieva, R.; Delibaltova, V.; Chavdarov, P. Change in Agronomic Characteristics and Essential Oil Composition of Coriander after Application of Foliar Fertilizers and Biostimulators. Ind. Crops Prod. 2022, 181, 114819. [Google Scholar] [CrossRef]
- Badi, H.N.; Yazdani, D.; Ali, S.M.; Nazari, F. Effects of Spacing and Harvesting Time on Herbage Yield and Quality/Quantity of Oil in Thyme, Thymus Vulgaris L. Ind. Crops Prod. 2004, 19, 231–236. [Google Scholar] [CrossRef]
- Hussein, M.S.; El-Sherbeny, S.E.; Khalil, M.Y.; Naguib, N.Y.; Aly, S.M. Growth Characters and Chemical Constituents of Dracocephalum Moldavica L. Plants in Relation to Compost Fertilizer and Planting Distance. Sci. Hortic. 2006, 108, 322–331. [Google Scholar] [CrossRef]
- Tibaldi, G.; Hazrati, S.; Hosseini, S.J.; Ertani, A.; Bulgari, R.; Nicola, S. Cultivation Techniques and Drying Process Can Affect the Inflorescence Essential Oil Composition of Three Selections of Salvia officinalis. Ind. Crops Prod. 2022, 183, 114923. [Google Scholar] [CrossRef]
- Minev, N. Effects of Foliar Fertilization on Growth, Developmente and Production of Flowers and Essential Oil on Lavender (Lavandula angustifolia Mill.). Agronomy 2020, 63, 415–421. [Google Scholar]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and Crop Responses: A Review. Biol. Agric. Hortic. 2014, 31, 19. [Google Scholar] [CrossRef]
- Kolomazník, K.; Pecha, J.; Friebrová, V.; Janáčová, D.; Vašek, V. Diffusion of Biostimulators into Plant Tissues. Heat Mass Transf. 2012, 48, 1505–1512. [Google Scholar] [CrossRef]
- Pecha, J.; Fürst, T.; Kolomazník, K.; Friebrová, V.; Svoboda, P. Protein Biostimulant Foliar Uptake Modeling: The Impact of Climatic Conditions. AICHE J. 2012, 58, 2010–2019. [Google Scholar] [CrossRef]
Number of Spikelets Plant−1 | FW Spikelets Plant−1 (g) | FW Stem Plant−1 (g) | FW Plant (g) | DW Spikelets Plant−1 (g) | DW Stem Plant−1 (g) | DW Plant (g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Farm | ||||||||||||||
CA | 112.0 | b | 137.9 | b | 331.1 | b | 468.9 | b | 60.7 | b | 61.4 | b | 117.4 | b |
PE | 105.4 | b | 58.7 | c | 121.7 | c | 180.5 | c | 24.7 | c | 19.1 | c | 43.2 | c |
PR | 282.1 | a | 251.0 | a | 478.3 | a | 729.2 | a | 87.3 | a | 73.9 | a | 148.4 | a |
Treatment | ||||||||||||||
CTRL | 161.4 | ns | 131.4 | b | 268.9 | b | 400.3 | b | 55.3 | ns | 44.0 | ns | 99.3 | ns |
T1 | 179.6 | ns | 138.7 | b | 334.5 | a | 473.3 | a | 55.8 | ns | 58.9 | ns | 114.7 | ns |
T2 | 175.2 | ns | 177.4 | a | 327.6 | a | 505.0 | a | 61.6 | ns | 51.4 | ns | 113.0 | ns |
F * T | ||||||||||||||
CA CTRL | 136.3 | ns | 149.8 | cd | 347.2 | b | 497.0 | c | 75.1 | bc | 59.9 | bcd | 135.0 | b |
CA T2 | 100.1 | ns | 117.0 | d | 347.5 | b | 464.5 | c | 50.7 | d | 74.4 | abc | 125.0 | b |
CA T1 | 85.4 | ns | 146.8 | d | 298.6 | b | 445.3 | c | 56.3 | cd | 50.0 | d | 106.3 | b |
PE CTRL | 107.2 | ns | 49.9 | e | 116.8 | c | 166.7 | d | 24.4 | e | 18.2 | e | 42.6 | c |
PE T2 | 113.6 | ns | 69.2 | e | 135.8 | c | 205.0 | d | 27.5 | e | 21.3 | e | 48.8 | c |
PE T1 | 111.6 | ns | 57.1 | e | 112.6 | c | 169.7 | d | 22.2 | e | 17.9 | e | 40.1 | c |
PR CTRL | 240.7 | ns | 194.6 | bc | 342.7 | b | 537.3 | c | 66.4 | cd | 54.0 | cd | 120.4 | b |
PR T2 | 325.2 | ns | 230.0 | b | 520.4 | a | 750.3 | b | 89.3 | ab | 81.2 | ab | 170.4 | a |
PR T1 | 328.6 | ns | 328.4 | a | 571.6 | a | 900.0 | a | 106.4 | a | 86.4 | a | 192.7 | a |
Farm | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |||||||
Treatment | 0.732 | 0.004 | 0.016 | 0.006 | 0.388 | 0.055 | 0.212 | |||||||
F * T | 0.196 | 0.001 | <0.001 | <0.001 | 0.001 | 0.048 | 0.005 |
Number of Spikelets Plant−1 | FW Spikelets Plant−1 (g) | FW Stem Plant−1 (g) | FW Plant (g) | DW Spikelets Plant−1 (g) | DW Stem Plant−1 (g) | DW Plant (g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Farm | ||||||||||||||
CA | 827.3 | a | 204.6 | a | 321.7 | a | 526.3 | a | 101.8 | a | 159.5 | a | 261.3 | a |
PE | 787.3 | ab | 113.4 | b | 111.6 | c | 225.0 | c | 71.6 | b | 70.3 | b | 141.8 | c |
PR | 648.7 | b | 217.5 | a | 200.8 | b | 418.3 | b | 95.6 | a | 89.5 | b | 185 | b |
Treatment | ||||||||||||||
CTRL | 701.6 | ns | 136.0 | b | 185.1 | ns | 321.1 | b | 71.5 | b | 94.5 | ns | 166 | b |
T1 | 778.9 | ns | 199.7 | a | 219 | ns | 418.7 | a | 94.8 | a | 104.7 | ns | 199.5 | ab |
T2 | 782.8 | ns | 199.7 | a | 230 | ns | 429.8 | a | 102.7 | a | 120.1 | ns | 222.8 | a |
F * T | ||||||||||||||
CA CTRL | 877 | a | 185.2 | bc | 322.7 | a | 507.9 | a | 84.8 | abcd | 147.7 | ns | 232.5 | ns |
CA T2 | 778.6 | a | 214.6 | b | 316.6 | a | 531.2 | a | 105.3 | abc | 153.5 | ns | 258.8 | ns |
CA T1 | 826.4 | a | 214 | b | 325.8 | a | 539.7 | a | 115.4 | ab | 177.3 | ns | 292.8 | ns |
PE CTRL | 819 | a | 117.9 | cd | 118.3 | c | 236.2 | b | 74.0 | cd | 74.3 | ns | 148.4 | ns |
PE T2 | 687 | a | 88.9 | d | 88.6 | c | 177.5 | b | 57.0 | d | 56 | ns | 113 | ns |
PE T1 | 855.8 | a | 133.3 | cd | 128 | c | 261.2 | b | 83.7 | bcd | 80.4 | ns | 164.1 | ns |
PR CTRL | 408.8 | b | 104.9 | cd | 114.3 | c | 219.2 | b | 55.6 | d | 61.5 | ns | 117.1 | ns |
PR T2 | 871 | a | 295.6 | a | 251.9 | ab | 547.5 | a | 122.1 | a | 104.5 | ns | 226.6 | ns |
PR T1 | 666.2 | a | 251.9 | ab | 236.4 | b | 488.3 | a | 109.0 | abc | 102.4 | ns | 211.5 | ns |
Farm | 0.043 | <0.001 | <0.001 | <0.001 | 0.016 | <0.001 | <0.001 | |||||||
Treatment | 0.388 | 0.012 | 0.084 | 0.021 | 0.015 | 0.129 | 0.04 | |||||||
F * T | 0.021 | 0.011 | 0.027 | 0.01 | 0.044 | 0.344 | 0.112 |
EO L ha−1 | Flower Yield kg ha−1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Year | |||||||||
2020 | 93.6 | a | 4717 | a | |||||
2021 | 43 | b | 2785 | b | |||||
p value | <0.001 | 0.002 | |||||||
2020 | EO L ha−1 | Flower Yield kg ha−1 | 2021 | EO L ha−1 | Flower Yield kg ha−1 | ||||
Farm | Farm | ||||||||
CA | 66.2 | b | 5517 | b | CA | 38.8 | b | 4099 | ns |
PE | 52.5 | b | 2123 | c | PE | 23.9 | b | 1765 | ns |
PR | 162.3 | a | 6511 | a | PR | 66.3 | a | 2490 | ns |
p value | <0.001 | <0.001 | <0.001 | 0.097 | |||||
2020 | EO L ha−1 | Flower Yield kg ha−1 | 2021 | EO L ha−1 | Flower Yield kg ha−1 | ||||
Treatment | Treatment | ||||||||
CTRL | 85.1 | ns | 4202 | ns | CTRL | 36.6 | ns | 2181 | ns |
T1 | 95.3 | ns | 4859 | ns | T1 | 45.3 | ns | 3321 | ns |
T2 | 100.6 | ns | 5091 | ns | T2 | 47.1 | ns | 2851 | ns |
p value | 0.265 | 0.161 | 0.336 | 0.553 | |||||
2020 | EO L ha−1 | Flower Yield kg ha−1 | 2021 | EO L ha−1 | Flower Yield kg ha−1 | ||||
F * T | F * T | ||||||||
CA CTRL | 75. | c | 5.9 | bc | CA CTRL | 39 | ns | 3386 | ns |
CA T1 | 61.4 | c | 5.5 | c | CA T1 | 37 | ns | 5312 | ns |
CA T2 | 62.2 | c | 5.2 | c | CA T2 | 40.3 | ns | 3598 | ns |
PE CTRL | 45.8 | c | 2 | d | PE CTRL | 18.1 | ns | 1853 | ns |
PE T1 | 59.9 | c | 2.4 | d | PE T1 | 26.9 | ns | 1392 | ns |
PE T2 | 51.7 | c | 2 | d | PE T2 | 26.9 | ns | 2049 | ns |
PR CTRL | 134.3 | b | 4.8 | c | PR CTRL | 52.7 | ns | 1305 | ns |
PR T1 | 164.7 | a | 6.7 | b | PR T1 | 72 | ns | 3259 | ns |
PR T2 | 187.8 | a | 8. | a | PR T2 | 74.1 | ns | 2907 | ns |
p value | 0.026 | 0.001 | 0.811 | 0.797 |
CA | PE | PR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
LRI | CTRL | T1 | T2 | CTRL | T1 | T2 | CTRL | T1 | T2 | |
2-hexenal | 863 | 0.24 ± 0.02 | 0.24 ± 0.04 | 0.28 ± 0.03 | − | − | − | − | − | − |
α-thujene | 924 | 0.11 ± 0.01 | 0.11 ± 0.01 | 0.13 ± 0.02 | − | − | − | − | − | − |
α-pinene | 930 | 0.61 ± 0.04 | 0.61 ± 0.04 | 0.66 ± 0.04 | 0.56 ± 0.01 | 0.55 ± 0.05 | 0.58 ± 0.01 | 0.64 ± 0.06 | 0.64 ± 0.03 | 0.62 ± 0.02 |
camphene | 944 | 0.52 ± 0.02 | 0.53 ± 0.03 | 0.51 ± 0.04 | 0.32 ± 0.02 | 0.31 ± 0.03 | 0.33 ± 0.01 | 0.35 ± 0.01 | 0.36 ± 0.03 | 0.35 ± 0.01 |
sabinene | 970 | 0.22 ± 0.03 | 0.21 ± 0.02 | 0.28 ± 0.05 | 0.20 ± 0.01 | 0.21 ± 0.01 | 0.22 ± 0.01 | 0.23 ± 0.02 | 0.23 ± 0.01 | 0.23 ± 0.01 |
β-pinene | 973 | 0.29 ± 0.04 | 0.26 ± 0.03 | 0.34 ± 0.05 | 0.67 ± 0.04 | 0.68 ± 0.03 | 0.71 ± 0.01 | 0.75 ± 0.09 | 0.76 ± 0.02 | 0.72 ± 0.03 |
Oct-1-en-3-ol | 977 | 0.65 ± 0.04 | 0.66 ± 0.05 | 0.64 ± 0.10 | − | − | − | − | − | − |
myrcene | 989 | 1.06 ± 0.08 | 1.03 ± 0.07 | 1.23 ± 0.16 | 1.40 ± 0.22 | 1.26 ± 0.02 | 1.27 ± 0.03 | 1.48 ± 0.05 | 1.35 ± 0.07 | 1.27 ± 0.08 |
α-phellandrene | 1002 | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.15 ± 0.02 | − | − | − | − | − | − |
3-carene | 1008 | 0.23 ± 0.01 | 0.22 ± 0.03 | 0.33 ± 0.08 | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.17 ± 0.01 | 0.17 ± 0.01 | 0.16 ± 0.01 |
α- terpinene | 1013 | − | − | − | 0.19 ± 0.01 | 0.20 ± 0.01 | 0.20 ± 0.01 | 0.12 ± 0.03 | 0.13 ± 0.01 | 0.12 ± 0.02 |
limonene | 1027 | 4.62 ± 0.52 | 4.68 ± 0.43 | 6.22 ± 1.19 | 0.62 ± 0.11 | 0.53 ± 0.08 | 0.52 ± 0.04 | 0.62 ± 0.11 | 0.60 ± 0.13 | 0.62 ± 0.06 |
1,8-cineole | 1029 | 4.75 ± 0.56 | 4.27 ± 0.28 | 4.90 ± 0.65 | 6.99 ± 0.57 | 7.48 ± 0.43 | 7.49 ± 0.26 | 7.26 ± 0.91 | 7.68 ± 0.72 | 7.19 ± 0.63 |
cis-ocimene | 1037 | 3.25 ± 0.37 | 3.23 ± 0.37 | 4.22 ± 0.91 | 1.30 ± 0.11 | 1.38 ± 0.19 | 1.33 ± 0.10 | 1.51 ± 0.19 | 1.65 ± 0.26 | 1.36 ± 0.22 |
trans-ocimene | 1046 | 1.05 ± 0.12 | 1.02 ± 0.13 | 1.26 ± 0.30 | 0.65 ± 0.11 | 0.59 ± 0.03 | 0.59 ± 0.03 | 0.67 ± 0.04 | 0.62 ± 0.04 | 0.56 ± 0.07 |
γ-terpinene | 1059 | 0.18 ± 0.01 | 0.18 ± 0.01 | 0.19 ± 0.02 | 0.13 ± 0.02 | 0.15 ± 0.01 | 0.16 ± 0.02 | 0.18 ± 0.02 | 0.17 ± 0.01 | 0.20 ± 0.03 |
cis linalool oxide | 1072 | 0.19 ± 0.03 | 0.20 ± 0.01 | 0.24 ± 0.02 | 0.13 ± 0.01 | 0.14 ± 0.01 | 0.14 ± 0.01 | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.11 ± 0.01 |
trans linalool oxide | 1086 | 0.47 ± 0.02 | 0.48 ± 0.02 | 0.47 ± 0.01 | 0.32 ± 0.02 | 0.32 ± 0.01 | 0.32 ± 0.02 | 0.34 ± 0.01 | 0.34 ± 0.01 | 0.33 ± 0.01 |
linalool | 1107 | 50.97 ± 0.40 | 50.70 ± 1.90 | 45.47 ± 4.03 | 27.85 ± 0.76 | 27.48 ± 1.23 | 27.74 ± 0.62 | 28.87 ± 1.77 | 29.23 ± 2.13 | 29.47 ± 1.18 |
fenchol | 1113 | − | − | − | 0.28 ± 0.04 | 0.28 ± 0.03 | 0.30 ± 0.01 | 0.13 ± 0.01 | 0.13 ± 0.01 | 0.15 ± 0.02 |
trans rose oxide | 1129 | 0.12 ± 0.02 | 0.13 ± 0.01 | 0.17 ± 0.04 | − | − | − | − | − | − |
camphor | 1143 | 2.91 ± 0.03 | 3.06 ± 0.26 | 3.40 ± 0.58 | 6.46 ± 0.42 | 6.91 ± 0.42 | 6.83 ± 0.13 | 6.85 ± 0.10 | 7.26 ± 0.39 | 7.06 ± 0.25 |
isopulegol | 1149 | 0.18 ± 0.01 | 0.16 ± 0.01 | 0.17 ± 0.02 | 0.11 ± 0.01 | 0.12 ± 0.01 | 0.12 ± 0.01 | − | − | − |
borneol | 1167 | 11.12 ± 0.65 | 11.75 ± 0.76 | 11.15 ± 1.27 | 2.78 ± 0.43 | 2.48 ± 0.36 | 2.39 ± 0.30 | 2.01 ± 0.22 | 2.08 ± 0.22 | 2.22 ± 0.39 |
lavandulol | 1168 | − | − | − | 0.31 ± 0.03 | 0.30 ± 0.03 | 0.03 ± 0.04 | 0.32 ± 0.08 | 0.33 ± 0.06 | 0.33 ± 0.06 |
terpinen-4-ol | 1178 | 3.48 ± 0.32 | 3.71 ± 0.13 | 4.18 ± 0.28 | 1.25 ± 0.17 | 1.17 ± 0.05 | 1.20 ± 0.05 | 1.17 ± 0.12 | 1.21 ± 0.15 | 1.33 ± 0.20 |
p cymen-8-ol | 1185 | 0.33 ± 0.04 | 0.36 ± 0.04 | 0.41 ± 0.03 | − | − | − | − | − | − |
α-terpineol | 1190 | 0.28 ± 0.01 | 0.27 ± 0.03 | 0.32 ± 0.05 | 0.60 ± 0.03 | 0.60 ± 0.01 | 0.60 ± 0.04 | 0.58 ± 0.04 | 0.64 ± 0.03 | 0.60 ± 0.05 |
myrtenal | 1193 | 0.51 ± 0.03 | 0.52 ± 0.03 | 0.48 ± 0.04 | 0.24 ± 0.01 | 0.26 ± 0.03 | 0.24 ± 0.01 | 0.19 ± 0.01 | 0.19 ± 0.02 | 0.19 ± 0.01 |
nerol | 1229 | 0.19 ± 0.02 | 0.18 ± 0.02 | 0.18 ± 0.03 | − | − | − | − | − | − |
thymol methyl ether | 1241 | 0.30 ± 0.02 | 0.30 ± 0.02 | 0.34 ± 0.03 | − | − | − | − | − | − |
pulegone | 1246 | 0.14 ± 0.01 | 0.14 ± 0.01 | 0.14 ± 0.01 | 0.17 ± 0.03 | 0.15 ± 0.01 | 0.15 ± 0.01 | 0.11 ± 0.01 | 0.11 ± 0.01 | 0.11 ± 0.01 |
linalyl acetate | 1261 | 5.56 ± 0.58 | 5.11 ± 0.67 | 5.33 ± 0.73 | 35.31 ± 0.93 | 35.48 ± 1.07 | 35.35 ± 0.91 | 34.52 ± 1.57 | 33.65 ± 1.87 | 33.90 ± 1.50 |
lavandulyl acetate | 1292 | 0.89 ± 0.13 | 0.96 ± 0.10 | 1.09 ± 0.18 | 3.13 ± 0.01 | 3.06 ± 0.08 | 3.10 ± 0.11 | 3.03 ± 0.17 | 3.07 ± 0.24 | 3.12 ± 0.09 |
neryl acetate | 1366 | − | − | − | 0.28 ± 0.06 | 0.24 ± 0.01 | 0.25 ±0.01 | 0.28 ± 0.01 | 0.25 ± 0.01 | 0.24 ± 0.02 |
β-cubebene | 1385 | − | − | − | 0.56 ± 0.12 | 0.50 ± 0.01 | 0.49 ± 0.03 | 0.58 ± 0.02 | 0.51 ± 0.01 | 0.50 ± 0.04 |
β-caryophyllene | 1422 | 0.25 ± 0.22 | 0.39 ± 0.03 | 0.44 ± 0.02 | 1.75 ± 0.15 | 1.63 ± 0.07 | 1.64 ± 0.08 | 1.63 ± 0.13 | 1.61 ± 0.12 | 1.61 ± 0.08 |
α-bergamotene | 1439 | − | − | − | 0.11 ± 0.01 | 0.11 ± 0.01 | − | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.13 ± 0.02 |
α-humulene | 1459 | 1.75 ± 0.08 | 1.82 ± 0.17 | 2.11 ± 0.20 | 1.40 ± 0.03 | 1.35 ± 0.07 | 1.32 ± 0.07 | 1.27 ± 0.03 | 1.21 ± 0.06 | 1.23 ± 0.04 |
alloaromadendrene | 1467 | − | − | − | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.12 ± 0.02 | 0.12 ± 0.01 | 0.11 ± 0.01 | 0.13 ± 0.03 |
ar curcumene | 1485 | − | − | − | 0.50 ± 0.01 | 0.49 ± 0.03 | 0.48 ± 0.05 | 0.66 ± 0.12 | 0.64 ± 0.08 | 0.70 ± 0.12 |
γ-cadinene | 1520 | − | − | − | 0.35 ± 0.01 | 0.35 ± 0.01 | 0.35 ± 0.04 | 0.32 ± 0.02 | 0.30 ± 0.02 | 0.32 ± 0.06 |
δ-cadinene | 1528 | − | − | − | 0.10 ± 0.01 | 0.10 ± 0.01 | 0.10 ± 0.01 | 0.13 ± 0.01 | − | 0.14 ± 0.01 |
total | 97.61 ± 0.32 | 97.58 ± 0.32 | 97.51 ± 0.23 | 98.28 ± 0.28 | 98.07 ± 0.11 | 98.09 ± 0.1 | 98.27 ± 0.12 | 98.25 ± 0.09 | 98.14 ± 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caccialupi, G.; Caradonia, F.; Ronga, D.; Ben Hassine, M.; Truzzi, E.; Benvenuti, S.; Francia, E. Plant Biostimulants Increase the Agronomic Performance of Lavandin (Lavandula x intermedia) in Northern Apennine Range. Agronomy 2022, 12, 2189. https://doi.org/10.3390/agronomy12092189
Caccialupi G, Caradonia F, Ronga D, Ben Hassine M, Truzzi E, Benvenuti S, Francia E. Plant Biostimulants Increase the Agronomic Performance of Lavandin (Lavandula x intermedia) in Northern Apennine Range. Agronomy. 2022; 12(9):2189. https://doi.org/10.3390/agronomy12092189
Chicago/Turabian StyleCaccialupi, Giovanni, Federica Caradonia, Domenico Ronga, Mortadha Ben Hassine, Eleonora Truzzi, Stefania Benvenuti, and Enrico Francia. 2022. "Plant Biostimulants Increase the Agronomic Performance of Lavandin (Lavandula x intermedia) in Northern Apennine Range" Agronomy 12, no. 9: 2189. https://doi.org/10.3390/agronomy12092189
APA StyleCaccialupi, G., Caradonia, F., Ronga, D., Ben Hassine, M., Truzzi, E., Benvenuti, S., & Francia, E. (2022). Plant Biostimulants Increase the Agronomic Performance of Lavandin (Lavandula x intermedia) in Northern Apennine Range. Agronomy, 12(9), 2189. https://doi.org/10.3390/agronomy12092189