Effects of Different Concentrations of Micro-Nano Bubbles on Grain Yield and Nitrogen Absorption and Utilization of Double Cropping Rice in South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Descriptions
2.2. Experimental Design and Crop Management
2.3. Sampling and Measurements
2.3.1. Observation of Tiller Characteristics
2.3.2. Measurement of Leaf SPAD Value and Net Photosynthetic Rate (Pn) Value
2.3.3. Observation of Root Characteristics
2.3.4. Biomass Observation
2.3.5. Grain Yield and Its Components
2.3.6. Nitrogen Observation
2.4. Statistical Analysis
3. Results
3.1. Grain Yield and Its Components
3.2. Tiller Characteristics
3.3. Photosynthesis Characteristics
3.4. Root Characteristics
3.5. Biomass
3.6. Nitrogen Absorption and Utilization
3.7. Correlation Analysis of Rice Characteristics with Grain Yield
4. Discussion
4.1. How MNBs Improve the Grain Yield of the Double Cropping Rice
4.2. Optimal MNB Concentration for the Double Cropping Rice
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khush, G.S. What it will take to Feed 5.0 Billion Rice consumers in 2030. Plant. Mol. Biol. 2005, 59, 1–6. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef]
- Lee, S. Recent Advances on Nitrogen Use Efficiency in Rice. Agronomy 2021, 11, 753. [Google Scholar] [CrossRef]
- Khush, G.S. Green revolution: The way forward. Nat. Rev. Genet. 2001, 2, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Zhang, Y.L.; Hu, J.; Shen, Q.R. Contribution of nitrification happened in rhizospheric soil growing with different rice cultivars to N nutrition. Biol. Fertil. Soils 2007, 43, 417–425. [Google Scholar] [CrossRef]
- Bhattarai, S.P.; Su, N.; Midmore, D.J. Oxygation Unlocks Yield Potentials of Crops in Oxygen-Limited Soil Environments. Adances Agron. 2005, 88, 313–377. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, Q.; Sun, Y.; Zhang, J. Effects of oxygenated brackish water on germination and growth characteristics of wheat. Agric. Water Manag. 2021, 245, 106520. [Google Scholar] [CrossRef]
- Zhou, Y.; Bastida, F.; Liu, Y.; He, J.; Chen, W.; Wang, X.; Xiao, Y.; Song, P.; Li, Y. Impacts and mechanisms of nanobubbles level in drip irrigation system on soil fertility, water use efficiency and crop production: The perspective of soil microbial community. J. Clean. Prod. 2022, 333, 130050. [Google Scholar] [CrossRef]
- Azevedo, A.; Etchepare, R.; Calgaroto, S.; Rubio, J. Aqueous dispersions of nanobubbles: Generation, properties and features. Miner. Eng. 2016, 94, 29–37. [Google Scholar] [CrossRef]
- Minamikawa, K.; Makino, T. Oxidation of flooded paddy soil through irrigation with water containing bulk oxygen nanobubbles. Sci. Total Environ. 2020, 709, 136323. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Wang, Q.S.; Wu, Z.X.; Tao, D.P. An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles. Int. J. Miner. Metall. Mater. 2020, 27, 152–161. [Google Scholar] [CrossRef]
- Ahmed, A.K.A.; Shi, X.; Hua, L.; Manzueta, L.; Qing, W.; Marhaba, T.; Zhang, W. Influences of air, oxygen. Nitrogen and carbon dioxide nanobubbles on seeds germination and plants growth. J. Agric. Food Chem. 2018, 66, 5117–5124. [Google Scholar] [CrossRef] [PubMed]
- Movahed, S.M.A.; Sarmah, A.K. Global trends and characteristics of nano- and micro-bubbles research in environmental engineering over the past two decades: A scientometric analysis. Sci. Total Environ. 2021, 785, 147362. [Google Scholar] [CrossRef]
- Jiang, C.Y.; Zhao, S.M.; Cheng, Y.F.; Ji, B.Y.; Tomoharu, Y. Effect of oxygen condition in Micro/nano-bubble water on leaf vegetables seed germination. North. Hortic. 2013, 2, 28–30. [Google Scholar]
- Zhou, Y.P.; Xu, F.P.; Liu, X.J.; Wang, K.Y.; Wang, X.R.; LI, Y.K. Influence of Micro bubble oxygen irrigation on vegetable growth and quality effect. J. Irrig. Drain. 2016, 35, 98–100. [Google Scholar] [CrossRef]
- Zhou, Y.P.; Zhou, B.; Xu, F.P.; Muhammad, T.; Li, Y.K. Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation. Agric. Water Manag. 2019, 223, 105713. [Google Scholar] [CrossRef]
- Cai, S. Application research of micro-nano bubble aerates irrigation technique in water conservation and wastewater discharge from rice irrigation area. Water Sav. Irrig. 2016, 9, 117–120. [Google Scholar]
- Cai, S.; Shi, H.; Pan, X.; Liu, F.; Xie, H.; Xu, Y.; Xu, T.; Cao, N. Effects of Micro-Nano Bubble Aerated Irrigation on Water requirement. Water Sav. Irrig. 2017, 2, 12–15. [Google Scholar]
- Sang, H.H.; Jiao, X.Y.; Wang, S.F.; Guo, W.H.; Salahou, M.K.; Liu, K.H. Effects of micro-nano bubble aerated irrigation and nitrogen fertilizer level on tillering, nitrogen uptake and utilization of early rice. Plant Soil Environ. 2018, 64, 297–302. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Sun, J.J.; Dai, H.; Zhang, B.J.; Xiang, W.D.; Hu, Z.x.; Li, P.; Yang, J.; Zhang, W. Nanobubbles promote nutrient utilization and plant growth in rice by upregulating nutrient uptake genes and stimulating growth hormone production. Sci. Total Environ. 2021, 800, 149627. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. National Data; National Bureau of Statistics of China: Beijing, China, 2022.
- Qiao, F.L. Analysis and Determination of Test Technology of Plant Physiology; Chinese Agricultural Science and Technology Press: Beijing, China, 2002; pp. 42–44. [Google Scholar]
- Motsara, M.R.; Roy, R.N. Guide to Laboratory Establishment for Plant Nutrient Analysis. In FAO Fertilizer and Plant Nutrient Bulletin; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008. [Google Scholar]
- Ikeura, H.; Takahashi, H.; Kobayashi, F.; Sato, M.; Tamaki, M. Effects of microbubble generation methods and dissolved oxygen concentrations on growth of Japanese mustard spinach in hydroponic culture. J. Hortic. Sci. Biotechnol. 2017, 93, 483–490. [Google Scholar] [CrossRef]
- Tsuchida, H.; Tasaki, T.; Kawasaki, Y.; Akutsu, M. Effect of micro bubble water on the growth and morphology of three leaf lettuce cultivars (Lactuca sativa L.) grown under two kinds of LED irradiation. J. Hortic. Sci. Biotechnol. 2021, 96, 44–52. [Google Scholar] [CrossRef]
- Wang, W.Q.; Zhang, F.S. The Physiological and Molecular Mechanism of Adaptation to Anaerobiosis in Higher Plants. Plant Physiol. Comun. 2001, 37, 63–70. [Google Scholar] [CrossRef]
- Meng, D.M. Study on the Capability of Rice Root Aerenchyma to Oxygen Transportation; Beijing Forestry University: Beijing, China, 2008. [Google Scholar]
- Zhao, F.; Wang, D.Y.; Xu, C.M.; Zhang, W.J.; Zhang, X.F. Progress in research on physiological and ecological response of rice to oxygen nutrition and its environment effects. Chin. J. Rice Sci. 2009, 23, 335–341. [Google Scholar] [CrossRef]
- Hodge, A.; Berta, G.; Doussan, C.; Merchan, F.; Crespi, M. Plant root growth, architecture and function. Plant Soil 2009, 321, 153–187. [Google Scholar] [CrossRef]
- Liu, S.; Oshita, S.; Kawabata, S.; Thuyet, D.Q. Nanobubble water’s promotion effect of barley (Hordeum vulgare L.) sprouts supported by RNA-Seq analysis. Langmuir 2017, 33, 12478–12486. [Google Scholar] [CrossRef]
- Ke, X.B.; Lu, W.; Conrad, R. High oxygen concentration increases the abundance and activity of bacterial rather than archaeal nitrifiers in rice field soil. Microb. Ecol. 2015, 70, 961–970. [Google Scholar] [CrossRef]
- Qu, Z.; Li, M.J.; Wang, Q.J.; Sun, Y.; Su, L.J.; Li, J. Effects of micro-nano oxygenated water addition on nitrification of Xinjiang sandy loam soil under controlled conditions. Trans. Chin. Soc. Agric. Eng. 2020, 36, 189–196. [Google Scholar] [CrossRef]
- Zhu, L.F.; Liu, X.; Yu, S.M.; OuYang, Y.N.; Jing, Q.Y. Effects of aerated irrigation on physiological characteristics and senescence at late growth stage of rice. Chin. J. Rice Sci. 2010, 24, 257–263. [Google Scholar] [CrossRef]
- Zheng, Y.B.; Wang, L.P.; Dixon, M. An upper limit for elevated root zone dissolved oxygen concentration for tomato. Sci. Hortic. 2007, 113, 162–165. [Google Scholar] [CrossRef]
- Du, J.; Zang, M.; Lei, H.J.; Wang, Z.Y.; He, A.L. Impacts of different dissolved oxygen levels in aerated irrigation water on summer maize growth and nitrogen utilization. J. Nucl. Agric. Sci. 2019, 33, 600–606. [Google Scholar]
- Ouyang, Z.; Tian, J.C.; Yan, X.F.; Shen, H. Effects of different concentrations of dissolved oxygen or temperatures on the growth, photosynthesis, yield and quality of lettuce. Agric. Water Manag. 2020, 228, 105896. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, C.M.; Wang, D.Y.; Chen, S.; Tao, L.X.; Zhang, X.F. Effect of rhizosphere oxygen on the growth characteristics of rice and its nitrogen metabolism at tillering stage. Sci. Agric. Sin. 2015, 48, 3733–3742. [Google Scholar] [CrossRef]
- Xu, C.M.; Chen, L.P.; Chen, S.; Chu, G.; Wang, D.Y.; Zhang, X.F. Effects of rhizosphere oxygen concentration on root physiological characteristics and anatomical structure at the tillering stage of rice. Ann. Appl. Biol. 2020, 177, 61–73. [Google Scholar] [CrossRef]
- Park, Y.; Kim, H.; Kim, J.; Kim, H. Measurement of liquid-vapor phase distribution on nano-and microstructured boiling surfaces. Int. J. Multiph. Flow 2016, 81, 67–76. [Google Scholar] [CrossRef]
- Liu, S.; Oshita, S.; Kawabata, S.; Makino, Y.; Yoshimoto, T. Identification of ROS produced by nanobubbles and their positive and negative effects on vegetable seed germination. Langmuir ACS J. Surf. Colloids 2016, 43, 11295–11320. [Google Scholar] [CrossRef]
- Zhang, H.J.; Xue, X.L.; Lin, S.H.; Zhang, Z.L.; Wu, N.; Yang, W.H.; Ren, Q.; Zhao, Y.G. Micro-nano Bubble Generating Technology and its Application in Hydroponics with Aeration. Vegetables 2019, 1, 59–65. [Google Scholar]
Year | Type | Treatment | Panicles | Grains per Panicle | Filled Grains | Filled Grain Weight | Grain Yield (g pot−1) |
---|---|---|---|---|---|---|---|
(no pot−1) | (%) | (mg) | |||||
2018 | Early rice | CK | 21.3 ± 0.4 a | 105.5 ± 2.8 b | 86.32 ± 0.42 c | 27.72 ± 0.26 a | 50.68 ± 2.53 b |
LM | 21.5 ± 0.5 a | 106.6 ± 3.4 b | 87.04 ± 0.26 b | 27.74 ± 0.15 a | 53.43 ± 3.46 ab | ||
MM | 21.5 ± 0.8 a | 109.4 ± 2.2 ab | 87.25 ± 0.54 ab | 27.75 ± 0.18 a | 54.62 ± 2.6 ab | ||
HM | 21.7 ± 1.2 a | 112.2 ± 1.4 a | 87.33 ± 0.42 a | 27.74 ± 0.12 a | 56.23 ± 1.58 a | ||
Late rice | CK | 21.2 ± 0.4 c | 164.4 ± 0.9 d | 82.55 ± 0.4 b | 23.1 ± 0.34 a | 64.23 ± 2.62 b | |
LM | 21.6 ± 0.6 b | 169.2 ± 2.9 c | 83.26 ± 0.78 a | 23.14 ± 0.25 a | 68.15 ± 2.63 ab | ||
MM | 21.8 ± 0.5 ab | 176.1 ± 3.4 b | 83.43 ± 0.83 a | 23.14 ± 0.14 a | 72.46 ± 3.92 a | ||
HM | 22 ± 0.8 a | 180.3 ± 2.1 a | 83.54 ± 0.65 a | 23.14 ± 0.18 a | 73.42 ± 2.24 a | ||
2019 | Early rice | CK | 25.5 ± 0.4 b | 110.4 ± 2.8 d | 87.26 ± 0.33 c | 27.52 ± 0.32 a | 65.32 ± 1.53 b |
LM | 25.6 ± 0.2 b | 114.5 ± 3.3 c | 88.13 ± 0.62 b | 27.54 ± 0.24 a | 68.48 ± 2.87 ab | ||
MM | 25.8 ± 0.4 a | 118.2 ± 4.2 b | 88.56 ± 0.34 a | 27.51 ± 0.28 a | 71.32 ± 3.88 a | ||
HM | 25.9 ± 0.3 a | 122.1 ± 3.2 a | 88.84 ± 0.54 a | 27.57 ± 0.06 a | 72.42 ± 2.62 a | ||
Late rice | CK | 24.3 ± 0.3 b | 176.5 ± 3.2 d | 82.43 ± 0.25 d | 23.52 ± 0.13 a | 80.45 ± 2.2 b | |
LM | 24.6 ± 0.8 ab | 185.6 ± 4.3 c | 83.17 ± 0.32 c | 23.54 ± 0.24 a | 86.12 ± 2.32 a | ||
MM | 24.8 ± 0.4 a | 189.2 ± 5.7 b | 83.37 ± 0.36 b | 23.58 ± 0.33 a | 89.56 ± 3.36 a | ||
HM | 25 ± 0.6 a | 193.6 ± 4.1 a | 83.63 ± 0.43 a | 23.6 ± 0.37 a | 91.21 ± 2.43 a |
Type | Treatment | Number of Adventitious Roots | The Longest Root Length (cm) | Root Diameter (mm) | Root Dry Matter (g pot−1) | Root Volume (cm3 pot−1) | α-NA Oxidation (µg h−1 g−1) |
---|---|---|---|---|---|---|---|
Early rice | CK | 208 ± 13 b | 31.1 ± 4.3 b | 0.91 ± 0.103 a | 5.58 ± 0.83 c | 72.48 ± 3.28 c | 54.43 ± 1.34 c |
LM | 224 ± 21 ab | 35.4 ± 2.8 ab | 0.88 ± 0.064 a | 7.42 ± 2.13 bc | 122.33 ± 9.39 b | 56.64 ± 2.12 c | |
MM | 245 ± 25 ab | 37.2 ± 4.3 ab | 0.86 ± 0.045 a | 10.34 ± 1.56 b | 142.68 ± 14.56 b | 62.42 ± 1.87 b | |
HM | 268 ± 31 a | 38.6 ± 2.3 a | 0.84 ± 0.031 a | 13.32 ± 2.76 a | 178.2 ± 13.98 a | 68.44 ± 2.32 a | |
Late rice | CK | 245 ± 23 b | 35.2 ± 2.4 b | 1.02 ± 0.13 a | 6.84 ± 0.64 c | 120.45 ± 5.86 c | 60.23 ± 1.21 c |
LM | 263 ± 25 ab | 38.5 ± 3.8 ab | 0.99 ± 0.102 a | 8.28 ± 1.21 c | 145.78 ± 12.39 bc | 66.48 ± 0.94 b | |
MM | 288 ± 32 ab | 40.5 ± 2.8 ab | 0.93 ± 0.098 a | 11.56 ± 0.89 b | 168.54 ± 4.2 ab | 70.32 ± 5.72 ab | |
HM | 309 ± 24 a | 42.4 ± 3 a | 0.92 ± 0.045 a | 13.88 ± 2.21 a | 188.6 ± 32.15 a | 73.24 ± 3.68 a |
Type | Treatment | Biomass (g pot−1) | Root/Shoot | HI | ||||
---|---|---|---|---|---|---|---|---|
Leaf | Stem | Ear | Root | Total | ||||
Early rice | CK | 16.92 ± 0.94 b | 25.34 ± 1.12 b | 52.34 ± 1.63 c | 6.02 ± 0.24 d | 102.62 ± 3.93 c | 0.062 ± 0.000 d | 0.52 ± 0.02 a |
LM | 17.86 ± 1.45 ab | 25.95 ± 0.42 ab | 56.32 ± 2.55 bc | 7.36 ± 0.12 c | 107.59 ± 4.54 bc | 0.074 ± 0.003 c | 0.53 ± 0.03 a | |
MM | 18.26 ± 1.31 ab | 26.65 ± 0.32 a | 58.42 ± 1.78 ab | 9.08 ± 0.28 b | 112.41 ± 3.49 ab | 0.087 ± 0.003 b | 0.53 ± 0.01 a | |
HM | 19.48 ± 1.46 a | 26.27 ± 0.46 ab | 60.42 ± 2.23 a | 10.73 ± 0.32 a | 116.9 ± 4.47 a | 0.10 ± 0.004 a | 0.53 ± 0.02 a | |
Late rice | CK | 23.22 ± 1.12 b | 28.34 ± 0.65 b | 68.44 ± 1.34 c | 4.74 ± 0.21 d | 124.74 ± 3.32 c | 0.041 ± 0.001 c | 0.54 ± 0.00 a |
LM | 24.66 ± 1.25 ab | 30.18 ± 0.58 a | 72.34 ± 1.92 b | 6.46 ± 0.54 c | 133.64 ± 4.29 b | 0.041 ± 0.003 c | 0.54 ± 0.01 a | |
MM | 25.68 ± 1.36 a | 32.34 ± 0.48 a | 76.68 ± 2.45 a | 8.26 ± 0.14 b | 142.96 ± 4.43 a | 0.048 ± 0.004 b | 0.54 ± 0.00 a | |
HM | 25.54 ± 1.13 a | 32.89 ± 0.5 a | 77.58 ± 1.6 a | 11.15 ± 0.31 a | 147.16 ± 3.54 a | 0.06 ± 0.003 a | 0.54 ± 0.02 a |
Type | Characteristics | Grain Yield | α-NA Oxidation | Total Biomass | Tiller-Bearing Rate | N Accumulation | PFPN |
---|---|---|---|---|---|---|---|
Early rice | Grain yield | 1 | |||||
α-NA oxidation | 0.934 | 1 | |||||
Total biomass | 0.987 * | 0.978 * | 1 | ||||
Tiller-bearing rate | 0.912 | 0.965 * | 0.939 | 1 | |||
N accumulation | 0.973 * | 0.990 ** | 0.997 ** | 0.949 | 1 | ||
PFPN | 0.977 * | 0.978 * | 0.997 ** | 0.92 | 0.996 ** | 1 | |
Late rice | Grain yield | 1 | |||||
α-NA oxidation | 0.989 * | 1 | |||||
Total biomass | 0.997 ** | 0.994 ** | 1 | ||||
Tiller-bearing rate | 0.993 ** | 0.996 ** | 0.999 ** | 1 | |||
N accumulation | 0.956 * | 0.967 * | 0.975 * | 0.982 * | 1 | ||
PFPN | 0.952 * | 0.973 * | 0.948 | 0.949 | 0.886 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Y.; Guan, X.; Shao, C.; Qiu, C.; Chen, X.; Chen, J.; Peng, C. Effects of Different Concentrations of Micro-Nano Bubbles on Grain Yield and Nitrogen Absorption and Utilization of Double Cropping Rice in South China. Agronomy 2022, 12, 2196. https://doi.org/10.3390/agronomy12092196
Qian Y, Guan X, Shao C, Qiu C, Chen X, Chen J, Peng C. Effects of Different Concentrations of Micro-Nano Bubbles on Grain Yield and Nitrogen Absorption and Utilization of Double Cropping Rice in South China. Agronomy. 2022; 12(9):2196. https://doi.org/10.3390/agronomy12092196
Chicago/Turabian StyleQian, Yinfei, Xianjiao Guan, Caihong Shao, Caifei Qiu, Xianmao Chen, Jin Chen, and Chunrui Peng. 2022. "Effects of Different Concentrations of Micro-Nano Bubbles on Grain Yield and Nitrogen Absorption and Utilization of Double Cropping Rice in South China" Agronomy 12, no. 9: 2196. https://doi.org/10.3390/agronomy12092196
APA StyleQian, Y., Guan, X., Shao, C., Qiu, C., Chen, X., Chen, J., & Peng, C. (2022). Effects of Different Concentrations of Micro-Nano Bubbles on Grain Yield and Nitrogen Absorption and Utilization of Double Cropping Rice in South China. Agronomy, 12(9), 2196. https://doi.org/10.3390/agronomy12092196