Fruit Cracking in Pears: Its Cause and Management—A Review
Abstract
:1. Introduction
2. Induction of Cracking and Factors Responsible for Pear Fruit Cracking
2.1. Physiology of Pear Fruit Cracking
2.2. Cuticle and Fruit Cracking
2.3. Plant Cultivars, Genetic Factors, and Fruit Cracking
2.4. Water Content of Soil and Plants
2.5. Nutrient Status
2.6. Environmental Factors
3. Control of Fruit Cracking
3.1. Cultural Practices
3.2. Plantation of Genetically-Improved Cultivars
3.3. Nutrient and Plant-Growth-Regulator Sprays
4. Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Seo, H.J.; Choi, J.H. Current Status of Pear Industry and Cultivation in Taiwan. Korean J. Int. Agric. 2016, 28, 319–324. [Google Scholar] [CrossRef]
- Sawant, S.S.; Choi, E.D.; Song, J.; Seo, H.J. Pear Production Trends and Characteristics of Important Pests in India. Korean J. Int. Agric. 2021, 33, 265–269. [Google Scholar] [CrossRef]
- Choi, J.H.; Yim, S.H.; Kim, S.J.; Lee, H.C.; Kwon, Y. Occurrence of Micro-cracking According to Bagging Paper in ‘Mansoo’ Pear Fruits. Hortic. Sci. Technol. 2015, 33, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.; Han, H.H.; Park, H.S. The Characteristics of Cork and Hypodermis Tissues and Cracking in Asian Pear (Pyrus pyrifolia cv. Mansoo). Sci. Hortic. 2016, 201, 224–228. [Google Scholar] [CrossRef]
- Choi, J.H.; Lee, B.; Gu, M.; Lee, U.Y.; Kim, M.S.; Jung, S.K.; Choi, H.S. Course of Fruit Cracking in ‘Whansan’ Pears. Hortic. Environ. Biotechnol. 2020, 61, 51–59. [Google Scholar] [CrossRef]
- Ma, K.B.; Chun, J.P.; Kim, J.B.; Do, K.R.; Cho, K.S.; Choi, J.H.; Hwang, H.S. Development of the Exocarp and Occurrence of Micro-cracking in ‘Jinmi’ Peaches. Hortic. Sci. Technol. 2012, 30, 1–5. [Google Scholar] [CrossRef]
- Fischer, G.; Balaguera-López, H.E.; Álvarez-Herrera, J. Causes of Fruit Cracking in the Era of Climate Change. A Review. Agron. Colomb. 2021, 39, 196–207. [Google Scholar] [CrossRef]
- Cebulj, A.; Mikuliˇc-Petkovšek, M.; Veberiˇc, R.; Jakopic, J. Effect of spring frost damage on apple fruit Malus domestica Borkh. inner quality at harvest. Agriculturists 2022, 12, 14. [Google Scholar] [CrossRef]
- Singh, A.; Shukla, A.K.; Meghwal, P.R. Fruit Cracking in Pomegranate: Extent, Cause, and Management—A Review. Int. J. Fruit Sci. 2020, 20, S1234–S1253. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, L.; Zhao, X.; Zhao, Y.; Hao, Z.; Luo, H.; Yuan, Z. Advances in Mechanisms and Omics Pertaining to Fruit Cracking in Horticultural Plants. Agronomy 2021, 11, 1045. [Google Scholar] [CrossRef]
- Byers, R.E.; Carbaugh, D.H.; Presley, C.N. ‘Stayman’ Fruit Cracking as Affected by Surfactants, Plant Growth Regulators, and Other Chemicals. J. Amer. Soc. Hort. Sci. 1990, 115, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Lee, S.H. Distribution of stone cell in Asian, Chinese, and European pear fruit and its morphological changes. J. Appl. Bot. Food Qual. 2013, 86, 185–189. [Google Scholar] [CrossRef]
- Park, J.E.; Kwon, Y.H.; Lee, B.H.N.; Park, Y.S.; Jung, M.H.; Choi, J.H.; Park, H.S. Anatomical Structure and Fruit Quality According to the Fruit Developmental Stage as Affected by Gibberellins Treatments in Pyrus pyrifolia Nakai cv. Hanareum. Kor. J. Hort. Sci. Technol. 2014, 32, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Tao, S.T.; Khanizadeh, S.; Zhang, H.; Zhang, S.L. Anatomy, Ultrastructure and Lignin Distribution of Stone Cells in Two Pyrus species. Plant Sci. 2019, 176, 413–419. [Google Scholar] [CrossRef]
- Zhang, C.; Guan, L.; Fan, X.; Zheng, T.; Dong, T.; Liu, C.; Fang, J. Anatomical Characteristics Associated with Different Degrees of Berry Cracking in Grapes. Sci. Hortic. 2020, 261, 108992. [Google Scholar] [CrossRef]
- Ramteke, S.D.; Urkude, V.; Parhe, S.D.; Bhagwat, S.R. Berry cracking; its causes and remedies in grapes—A review. Trends Biosci. 2017, 10, 549–556. [Google Scholar]
- Fernández-Muñoz, R.; Heredia, A.; Domínguez, E. The role of cuticle in fruit shelf-life. Curr. Opin. Biotechnol. 2022, 78, 102802. [Google Scholar] [CrossRef]
- Tafolla-Arellano, J.C.; Báez-Sañudo, R.; Tiznado-Hernández, M.E. The cuticle as a key factor in the quality of horticultural crops. Sci. Hortic. 2018, 232, 145–152. [Google Scholar] [CrossRef]
- Martin, L.B.; Rose, J.K. There’s more than one way to skin a fruit: Formation and functions of fruit cuticles. J. Exp. Bot. 2014, 65, 4639–4651. [Google Scholar] [CrossRef] [Green Version]
- Barraj, R.; Segado, P.; Moreno-González, R.; Heredia, A.; Fernández-Muñoz, R.; Domínguez, E. Genome-wide QTL analysis of tomato fruit cuticle deposition and composition. Hortic. Res. 2021, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.; Kim, Y.K.; Kim, D. Current Status of Knowledge and Research Perspectives in Korean Pear Genomics. Plant Breed. Biotech. 2015, 3, 323–332. [Google Scholar] [CrossRef]
- Yamamoto, T.; Chevreau, E. Pear Genomics. In Genetics and Genomics of Rosaceae, Plant Genetics and Genomics, Crops and Models; Folta, K.M., Gardiner, S.E., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 6, pp. 163–188. [Google Scholar]
- Bao, L.; Chen, K.; Zhang, D.; Cao, Y.; Yamamoto, T.; Teng, Y. Genetic Diversity and Similarity of Pear Pyrus L. Cultivars Native to East Asia Revealed by SSR Simple Sequence Repeat Markers. Genet. Resour. Crop. Evol. 2007, 54, 959–971. [Google Scholar] [CrossRef]
- Won, K.; Kim, Y.; Kang, S.; Song, J.; Hwang, H. Introduction of Korean Pear Cultivars with High Resistance to the Scab for Organic Pear Orchard. In Proceedings of the Third Scientific Conference of the International Society of Organic Agriculture Research ISOFAR, Namyangju-city, Korea, 28 September 2011; Volume 1, pp. 675–678. [Google Scholar]
- Cho, E.K.; Cho, W.T.; Lee, E.J. The Causal Organism of Pear Scab in Korea. Korean J. Mycol. 1985, 13, 263–265. [Google Scholar]
- Shin, I.S.; Hyeon, I.H.; Hwang, H.S.; Hong, S.S.; Cho, K.H.; Cho, H.M. Screening of Scab Venturia nashicola Resistance Germplasms in Pyrus species. Hortic. Sci. Technol. 2004, 22, 63–68. [Google Scholar]
- Cuartero, J.; Palomares, G.; Balasch, S.; Nuez, F. Tomato Fruit Cracking Under Plastic-House and in the Open Air. II. General and Specific Combining Abilities. In Genetics and Breeding of Tomato, Proceedings of the Meeting of the Eucarpia Tomato Working Group, Avignon, France, 18–21 May 1981; Institut National de la Recherche Agronomique: Versailles, France, 1981. [Google Scholar]
- Beyer, M.; Hahn, R.; Peschel, S.; Harz, M.; Knoche, M. Analysing Fruit Shape in Sweet Cherry Prunus avium L. Sci. Hortic. 2002, 96, 139–150. [Google Scholar] [CrossRef]
- Vaidyanathan, S.; Harrigan, G.G.; Goodacre, R. Metabolome Analyses, Strategies for Systems Biology; Springer Science and Business Media: Berlin, Germany, 2006. [Google Scholar]
- Khadivi-Khub, A. Physiological and Genetic Factors Influencing Fruit Cracking. Acta Physiol. Plant. 2015, 37, 1–4. [Google Scholar] [CrossRef]
- Heng, W.; Yang, J.; Hou, Z.; Li, F.; Jia, B.; Liu, P.; Liu, L.; Ye, Z.; Zhu, L. Characterization and Expression Analysis of PbEXP Genes in the Epidermis of Pear Pyrus bretschneideri Rehd. Plant Growth Regul. 2018, 84, 1–9. [Google Scholar] [CrossRef]
- Li, N.; Fu, L.; Song, Y.; Li, J.; Xue, X.; Li, S.; Li, L. Wax Composition and Concentration in Jujube Ziziphus Jujuba Mill. Cultivars With Differential Resistance to Fruit Cracking. J. Plant Physiol. 2020, 255, 153294. [Google Scholar] [CrossRef]
- Wu, X.; Yin, H.; Chen, Y.; Li, L.; Wang, Y.; Hao, P.; Cao, P.; Qi, K.; Zhang, S. Chemical Composition, Crystal Morphology and Key Gene Expression of Cuticular Waxes of Asian Pears at Harvest and After Storage. Postharvest Biol. Technol. 2017, 132, 71–80. [Google Scholar] [CrossRef]
- Poovaiah, B.W.; Glenn, G.M.; Reddy, A.S.N. Calcium and Fruit Softening, Physiology and Biochemistry. Hortic. Res. 1988, 10, 107. [Google Scholar] [CrossRef]
- Kang, S.S.; Kim, Y.K.; Hwang, H.S.; Cho, K.S.; Shin, I.S.; Won, K.H.; Choi, J.J.; Kim, K.H.; Jo, J.H. Early Autumn Maturing Pear Cultivar ‘Sinhwa’ With Fascinating Very Soft Flesh. Hortic. Sci. Technol. 2013, 31, 512–516. [Google Scholar] [CrossRef] [Green Version]
- Barzana, G.; Rios, J.J.; Lopez-Zaplana, A.; Nicolas-Espinosa, J.; Yepes-Molina, L.; Garcia-Ibanez, P.; Carvajal, M. Interrelations of Nutrient and Water Transporters in Plants Under Abiotic Stress. Physiol. Plant. 2021, 171, 595–619. [Google Scholar] [CrossRef]
- Yepes-Molina, L.; Bárzana, G.; Carvajal, M. Controversial Regulation of Gene Expression and Protein Transduction of Aquaporins under Drought and Salinity Stress. Plants 2020, 9, 1662. [Google Scholar] [CrossRef]
- Breia, R.; Mósca, A.F.; Conde, A.; Correia, S.; Conde, C.; Noronha, H.; Soveral, G.; Gonçalves, B.; Gerós, H. Sweet Cherry (Prunus avium L.) PaPIP1;4 Is a Functional Aquaporin Upregulated by Pre-Harvest Calcium Treatments that Prevent Cracking. Int. J. Mol. Sci. 2020, 21, 3017. [Google Scholar] [CrossRef] [PubMed]
- Li, W.C.; Wu, J.Y.; Zhang, H.N.; Shi, S.Y.; Liu, L.Q.; Shu, B.; Liang, Q.Z.; Xie, J.H.; Wei, Y.Z. De Novo Assembly and Characterization of Pericarp Transcriptome and Identification of Candidate Genes Mediating Fruit Cracking in Litchi chinensis Sonn. Int. J. Mol. Sci. 2014, 15, 17667–17685. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Zaplana, A.; Bárzana, G.; Ding, L.; Chaumont, F.; Carvajal, M. Foliar Mineral Treatments for The Reduction of Melon (Cucumis melo L.) Fruit Cracking. Environ. Exp. Bot. 2022, 201, 104981. [Google Scholar] [CrossRef]
- Shi, H.; Wang, Y.; Zhang, D.; Chen, L.; Zhang, Y. Pear PIP1 gene is Regulated During Fruit Development and is Invovled in Response to Salicylic Acid and Ethylene. Can. J. Plant Sci. 2015, 95, 77–85. [Google Scholar] [CrossRef]
- Qiu, Y.; Cheng, J.; Qu, L.; Wang, B.; Yuam, P. Relationship Between Fruit Cracking and Endogenous Hormones in ‘Nuomoci’ Litchi Variety. J. Fruit Sci. 1999, 16, 276–279. [Google Scholar]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Elsevier/Academic Press: Amsterdam, The Netherlands, 2012; Volume 305, p. 684. [Google Scholar]
- Ranty, B.; Aldon, D.; Cotelle, V.; Galaud, J.P.; Thuleau, P.; Mazars, C. Calcium Sensors as Key Hubs in Plant Responses to Biotic and Abiotic Stresses. Front. Plant Sci. 2016, 7, 327. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Zhu, M.; Bai, M.; Xu, Y.; Fan, S.; Yang, G. Effect of Calcium on Relieving Berry Cracking in Grape Vitis vinifera L. ‘Xiangfei’. PeerJ 2020, 8, e9896. [Google Scholar] [CrossRef]
- Devi, K.; Kumar, R.; Wali, V.K.; Bakshi, P.; Sharma, N.; Arya, V.M. Effect of Foliar Nutrition and Growth Regulators on Nutrient Status and Fruit Quality of Eureka Lemon (Citrus limon). Indian J. Agric. Sci. 2018, 88, 704–708. [Google Scholar]
- Martínez Bolaños, M.; Martínez Bolaños, L.; Guzmán Deheza, A.; Gómez Jaimes, R.; Reyes, A.L. Calcium and Gibberellic Acid in Litchi Fruits Cracking Litchi chinensis Soon cultivar Mauritius. Rev. Mex. Cienc. Agric. 2017, 8, 837–848. [Google Scholar] [CrossRef] [Green Version]
- Aydin, M.; Kaptan, M.A. Effect of Nutritional Status on Fruit Cracking of Fig (Ficus carica L. cv. Sarilop) Grown in High Level Boron Contained Soils. Ser. A Agron. 2015, 58, 20–25. [Google Scholar]
- Davarpanah, S.; Tehranifar, A.; Abadía, J.; Val, J.; Davarynejad, G.; Aran, M.; Khorassani, R. Foliar Calcium Fertilization Reduces Fruit Cracking in Pomegranate Punica granatum cv. Ardestani. Sci. Hortic. 2018, 230, 86–91. [Google Scholar] [CrossRef]
- El-Khawaga, A.S. Reduction in Fruit Cracking in Manfaluty Pomegranate Following a Foliar Application with Paclobutrazol and Zinc Sulphate. J. Appl. Sci. Res. 2007, 3, 837–840. [Google Scholar]
- Jana, B.R. Effect of Boron and Putrescene on Russet Asian Pear Pyrus spp. L. Under Subtropical Condition of Jharkhand Province of India. Am. J. Exp. Agric. 2015, 9, 1–6. [Google Scholar] [CrossRef]
- Wojcik, P.; Wojcik, M. Effects of Boron Fertilization on ‘Conference’ Pear Tree Vigor, Nutrition, and Fruit Yield and Storability. Plant Soil 2003, 256, 413–421. [Google Scholar] [CrossRef]
- Sheikh, M.K.; Manjula, N. Effect of Chemicals on Control of Fruit Cracking in Pomegranate (Punica granatum L.) var. Ganesh. In Proceedings of the 1st International Symposium on Pomegranate and Minor Mediterranean Fruits, Adana, Turkey, 16–19 October 2006; pp. 16–19. [Google Scholar]
- Maity, A.; Sharma, J.; Sarkar, A.; Basak, B.B. Zinc Nutrition Improves Fruit yield, Quality, and Reduces Bacterial Blight Disease Severity in Pomegranate (Punica granatum L.). J. Plant Nutr. 2022, 29, 1–7. [Google Scholar] [CrossRef]
- Artyszak, A. Effect of Silicon Fertilization on Crop Yield Quantity and Quality—A Literature Review in Europe. Plants 2018, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Mosa, W.F.A.; Behiry, S.I.; Ali, H.M.; Abdelkhalek, A.; Sas-Paszt, L.; Al-Huqail, A.A.; Ali, M.M.; Salem, M.Z. Pomegranate Trees Quality under Drought Conditions Using Potassium Silicate, Nanosilver, and Selenium Spray with Valorization of Peels as Fungicide Extracts. Sci. Rep. 2022, 12, 6363. [Google Scholar] [CrossRef]
- Yousef, A.F.; Youssef, M.A.; Ali, M.M.; Ibrahim, M.M.; Xu, Y.; Mauro, R.P. Improved Growth and Yield Response of Jew’s Mallow Corchorus Olitorius L. Plants Through Biofertilization Under Semi-arid Climate Conditions in Egypt. Agronomy 2020, 10, 1801. [Google Scholar] [CrossRef]
- Jiang, G.L.; Zhang, G.L.; Sun, S.X.; Li, J.; Xie, H.J.; Chen, D.; Tu, M.Y. The Biological Responses of Loquat Eriobotrya japonica Lindl. in Diverse Ecotypes of Sichuan. J. Agron. 2010, 9, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.M.; Yousef, A.F.; Li, B.; Chen, F. Effect of Environmental Factors on Growth and Development of Fruits. Trop. Plant Biol. 2021, 14, 226–238. [Google Scholar] [CrossRef]
- Lin, K.; Huang, Z.; Jin, X.; Xu, Y. Advances in the Application of Light Regulation in Plant Growth. Chin. J. Trop. Crops. 2017, 38, 1163–1170. [Google Scholar]
- Maotani, T.; Suzuki, A.; Tanaka, K.; Kimura, K.; Sugiura, T.; Kumamoto, O.; Nishimura, T.; Oshima, K.; Masada, T. Control of Fruit Cracking of Japanese Pear ‘Kosui’ and ‘Niitaka’ Using Gibberellin Tape. J. Jpn. Soc. Hortic. Sci. 1990, 58, 859–863. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.; Wilson, S.; Boucher, W.; Graham, B.; McGlasson, B. Effects of Copper-Calcium Sprays on Fruit Cracking in Sweet Cherry Prunus avium. Sci. Hortic. 1995, 62, 75–80. [Google Scholar] [CrossRef]
- Alvarez-Herrera, J.; Balaguera-López, H.; Fischer, G. Effect of Irrigation and Nutrition with Calcium on Fruit Cracking of the Cape Gooseberry Physalis peruviana L. in the Three Strata of the Plant. Acta Hortic. 2012, 928, 163–170. [Google Scholar] [CrossRef]
- Khalil, H.A.; Aly, H.S. Cracking and Fruit Quality of Pomegranate Punica granatum L. as Affected by Preharvest Sprays of Some Growth Regulators and Mineral Nutrients. J. Hortic. Sci. Ornam Plants. 2013, 5, 71–76. [Google Scholar] [CrossRef]
- Odemis, B.; Turhan, S.; Buyuktas, D. The Effects of Irrigation and Fertilizer Applications on Yield, Pomological Characteristics and Fruit Cracking in Nova Mandarin. Agric. Water Manag. 2014, 135, 54–60. [Google Scholar] [CrossRef]
- El Sayed, O.M.; El Gammal, O.H.M.; Salama, A.S.M. Effect of Proline and Tryptophan Amino Acids on Yield and Fruit Quality of Manfalouty Pomegranate Variety. Sci. Hortic. 2014, 169, 1–5. [Google Scholar] [CrossRef]
- Bhatt, B.B.; Rawat, S.S.; Naithani, D.C.; Kumar, D.; Singh, K.K. Effect of Foliar Application of Bio-regulators and Nutrients on Growth and Yield Characters of Lemon Citrus limon Burma. cv. Pant Lemon-1 under subtropical condition of Garhwal region. Plant Arch. 2016, 16, 821–825. [Google Scholar]
- Singh, A.; Burman, U.; Saxena, A.; Meghwal, P.R. Interactive Effects of Micronutrients, Kaolin and Mulching Under Drip Irrigation System in Managing Fruit Cracking of Pomegranate Punica granatum. In International Symposium on Pomegranate and Minor Mediterranean Fruits; Bartual, J., Badenes, M.L., Eds.; Illinois State Historical Society: Valencia, Spain, 2017; Volume 4, pp. 16–19. [Google Scholar]
- Maharjan, S.K. Effect of Calcium Application on Litchi Fruit Cracking. Inter. J. Agrochem. 2018, 42, 43–52. [Google Scholar]
- Ginzberg, I.; Stern, R.A. Control of Fruit Cracking by Shaping Skin Traits–Apple as a Model. Crit. Rev. Plant Sci. 2019, 38, 401–410. [Google Scholar] [CrossRef]
- Hardiyanto, F.D.; Friyanti, D.N. Application of K, Ca, and Mg on Peel Thickness and Fruit Cracking Incidence of Citrus. Russ. J. Agric. Socio Econ. Sci. 2019, 87, 45–56. [Google Scholar] [CrossRef]
- Ghanbarpour, E.; Rezaei, M.; Lawson, S. Reduction of Cracking in Pomegranate Fruit After Foliar Application of Humic Acid, Calcium-Boron and Kaolin During Water Stress. Erwerbs Obstbau 2019, 61, 29–37. [Google Scholar] [CrossRef]
- Lopez-Zaplana, A.; Bárzana, G.; Agudelo, A.; Carvajal, M. Foliar Mineral Treatments for the Reduction of Melon Cucumis melo L. Fruit Cracking. Agronomy 2020, 10, 1815. [Google Scholar] [CrossRef]
- Draie, R.; Aboras, A. Effect of Foliar Spraying with Gibberellic Acid on Fruit Cracking of Pomegranate Punica granatum L. Int. Res. J. Innov. Eng. Technol. 2021, 5, 53–62. [Google Scholar] [CrossRef]
- Opara, L.U.; Studman, C.J.; Banks, N.H.; Opara, U.L. Fruit Skin Splitting and Cracking. Hortic. Res. 1996, 19, 217–262. [Google Scholar] [CrossRef]
- Ohta, K.; Hosoki, T.; Matsumoto, K.; Ohya, M.; Ito, N.; Inaba, K. Relationships Between Fruit Cracking and Changes of Fruit Diameter Associated with Solute Flow to Fruit in Cherry Tomatoes. J. Jpn. Soc. Hortic. Sci. 1997, 65, 753–759. [Google Scholar] [CrossRef]
- Samra, N.; El-Baz, E.; Hegazi, A.; Khalil, B.M.; Gawish, M. Improving Fruit Quality of Manfaloty and Wonderfull Pomegranates by Using Bagging and Some Spray Treatments with Gibberellic Acid, Calcium Chloride and Kaolin. J. Plant. Prod. 2014, 5, 779–792. [Google Scholar] [CrossRef]
- Dinesh, K.; Rajesh, K.; Subhash, C.; Heerendra, S. Effect of Foliar Application of Nutrients on Fruit Firmness, Cracking and Shelf Life in Litchi (Litchi chinensis Sonn.) Cultivar Early Large Red. Environ. Ecol. 2017, 35, 2418–2422. [Google Scholar]
- Mignani, I.; Greve, L.C.; Ben-Arie, R.; Stotz, H.U.; Li, C.; Shackel, K.A.; Labavitch, J.M. The Effects of GA3 and Divalent Cations on Aspects of Pectin Metabolism and Tissue Softening in Ripening Tomato Pericarp. Physiol. Plant 1995, 93, 108–115. [Google Scholar] [CrossRef]
- Sadeghzadeh, B. A Review of Zinc Nutrition and Plant Breeding. J. Soil Sci. Plant Nutr. 2013, 13, 905–927. [Google Scholar] [CrossRef] [Green Version]
- Németh-Cahalan, K.L.; Kalman, K.; Froger, A.; Hall, J.E. Zinc Modulation of Water Permeability Reveals that Aquaporin 0 Functions as a Cooperative Tetramer. J. Gen. Physiol. 2007, 130, 457–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yukutake, Y.; Hirano, Y.; Suematsu, M.; Yasui, M. Rapid and Reversible Inhibition of Aquaporin-4 by Zinc. Biochemistry 2009, 48, 12059–12061. [Google Scholar] [CrossRef]
- Davarpanah, S.; Tehranifar, A.; Davarynejad, G.; Aran, M.; Abadía, J.; Khorassani, R. Effects of Foliar Nano-nitrogen and Urea Fertilizers on the Physical and Chemical Properties of Pomegranate Punica granatum cv. Ardestani Fruits. Hortscience 2017, 52, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Kumari, R.; Singh, D.P. Nano-biofertilizer, An Emerging Eco-friendly Approach for Sustainable Agriculture. Proc. Natl. Acad. Sci. India B 2020, 90, 733–741. [Google Scholar] [CrossRef]
Control Treatment | Fruit Crop | Reference |
---|---|---|
Gibberellin tapes were tied at the calyx ends (‘Kosui’ only) or peduncles about one month after full bloom. | Japanese pear ‘Kosui’ and ‘Niitaka’ | [61] |
Copper–calcium spray | Sweet cherry (Prunus avium) | [62] |
Application of Ca | Cape gooseberry | [63] |
Foliar application of pacloputrazol | Pomegranate (Punica granatum L.) | [64] |
Fertilizer application of NPK + Ca(NO3)2 | Nova mandarin (Citrus reticulate) | [65] |
Spraying proline and tryptophan during full bloom and after four weeks | Pomegranate | [66] |
Application of naphthaleneacetic acid | Lemon | [67] |
Spraying of boron | Pomegranate | [68] |
Application of Ca | Litchi | [69] |
Foliar and fruit application of Ca nano-fertilizers | Pomegranate | [49] |
Application of K2SO4 and CaCl2 | Eureka lemon | [46] |
Treated with a mixture of gibberellic acids 4 and 7 (GA4 + 7) and the cytokinin 6-benzyladenine (BA) early in fruit development | Apple | [70] |
Application of K, Ca, and Mg | Citrus | [71] |
Foliar Application of humic acid, Calcium–Boron and kaolin during water stress | Pomegranate | [72] |
Foliar application of microelements (B, Cu, Fe, Mn, Mo, and Zn) | Melon (Cucumis melo L.) | [73] |
Foliar spraying with gibberellic acid | Pomegranate (Punica granatum L.) | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, H.-J.; Sawant, S.S.; Song, J. Fruit Cracking in Pears: Its Cause and Management—A Review. Agronomy 2022, 12, 2437. https://doi.org/10.3390/agronomy12102437
Seo H-J, Sawant SS, Song J. Fruit Cracking in Pears: Its Cause and Management—A Review. Agronomy. 2022; 12(10):2437. https://doi.org/10.3390/agronomy12102437
Chicago/Turabian StyleSeo, Ho-Jin, Shailesh S. Sawant, and Janghoon Song. 2022. "Fruit Cracking in Pears: Its Cause and Management—A Review" Agronomy 12, no. 10: 2437. https://doi.org/10.3390/agronomy12102437
APA StyleSeo, H. -J., Sawant, S. S., & Song, J. (2022). Fruit Cracking in Pears: Its Cause and Management—A Review. Agronomy, 12(10), 2437. https://doi.org/10.3390/agronomy12102437